Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = North Aegean Region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2989 KB  
Article
Unraveling Zooplankton Trophic Dynamics: Insights from Stable Isotope Analysis in the Eastern Mediterranean (Aegean, Cretan and Ionian Seas)
by Maria Protopapa and Soultana Zervoudaki
Water 2025, 17(8), 1187; https://doi.org/10.3390/w17081187 - 15 Apr 2025
Viewed by 585
Abstract
Understanding the trophic interactions and community structure of zooplankton is essential for assessing energy transfer in marine ecosystems. This study investigates the spatial and seasonal variations in stable carbon (δ13C) and nitrogen (δ15N) isotopes of dominant mesozooplankton groups across [...] Read more.
Understanding the trophic interactions and community structure of zooplankton is essential for assessing energy transfer in marine ecosystems. This study investigates the spatial and seasonal variations in stable carbon (δ13C) and nitrogen (δ15N) isotopes of dominant mesozooplankton groups across three sub-basins of the Eastern Mediterranean (North Aegean, Cretan, and South Ionian Seas) during two seasonal surveys (October 2014 and May 2015). Zooplankton samples were collected using a WP-2 net and analyzed for taxonomic composition, abundance, biomass, and stable isotopic signatures to assess trophic positioning. The results indicate that copepods dominated the zooplankton community at all stations, with Clausocalanus and Oithona juveniles being the most abundant taxa. Salps contributed significantly at certain stations, reflecting regional variations in the planktonic food web structure. Zooplankton δ15N values exhibited pronounced spatial and seasonal differences, with higher enrichment observed in 2014 compared to 2015. The calculated trophic positions highlight the variability in feeding strategies among copepod species, with Calanus helgolandicus occupying the highest trophic position (TP = 3.34) and Lucicutia spp. the lowest (TP = 1.22). Isotopic niche analysis identified two distinct feeding guilds: a group relying on phytoplankton and microzooplankton and another exhibiting broader trophic plasticity, including omnivorous and carnivorous taxa. These findings underscore the complexity of zooplankton trophic interactions in the Eastern Mediterranean and the role of regional hydrographic conditions in shaping the food web structure. This study provides essential baseline data for future research on the impacts of climate change and nutrient variability on Mediterranean marine ecosystems. Full article
(This article belongs to the Special Issue The Study of Plankton in the Mediterranean Sea)
Show Figures

Figure 1

21 pages, 14565 KB  
Article
Surficial Sediment Distribution in a Complex Marine Setting—The Example of Coastal and Open Sea Areas of Evia Island, Central Aegean, Greece
by Irene Zananiri and Ioannis Vakalas
Oceans 2025, 6(1), 8; https://doi.org/10.3390/oceans6010008 - 3 Feb 2025
Viewed by 2178
Abstract
This study examines sediment distribution patterns in the Aegean Sea, focusing on the western coast of Evia Island and the southern Evoikos and Petalioi Gulfs. A total of 200 granulometric data points were analyzed to evaluate textural characteristics, including mean grain size, sorting, [...] Read more.
This study examines sediment distribution patterns in the Aegean Sea, focusing on the western coast of Evia Island and the southern Evoikos and Petalioi Gulfs. A total of 200 granulometric data points were analyzed to evaluate textural characteristics, including mean grain size, sorting, and skewness. The findings reveal significant variation in mean grain size: finer sediments (ϕ = 5–8) dominate the northern Aegean near Skyros, while coarser sands (ϕ = 2–4) are prevalent in the South Evoikos and Petalioi gulfs. The coarsest materials (ϕ = 0–2) are found around Chalkis, with sorting generally poor except in those two areas. Negative skewness values in the northern part of the study area indicate a predominance of finer particles, while southern regions exhibit slightly positive skewness, suggesting a greater proportion of coarser grains. Complex net transport patterns between Evia and Skyros are influenced by north-northeast trending water currents from the northern Aegean, with fluvial influx observed in the southern Evia coastal area. Around Skyros, the interplay of water currents and prevailing north-northwest winds dictates the orientation of net transport vectors. In the Evoikos gulfs, sediment movement aligns with a general northward flow, featuring coarse sediments in the Petalioi Gulf and muddy deposits in the narrower northern segment, where minimal transport indicates stagnant conditions. Coarse-grained materials in North Evoikos are primarily influenced by strong tidal activity. Full article
Show Figures

Figure 1

23 pages, 4191 KB  
Review
Non-Indigenous Species (NIS) Know No Geopolitical Borders—An Update of NIS in the Aegean Sea
by Argyro Zenetos, Alper Doğan, Ahmet Kerem Bakir, Georgios Chatzigeorgiou, Maria Corsini-Foka, Ertan Dağli, Athanasios Evangelopoulos, Engin Meriç, Maria Stoumboudi, Ergun Taşkin, Mehmet Baki Yokeş and Marika Galanidi
Diversity 2025, 17(1), 12; https://doi.org/10.3390/d17010012 - 26 Dec 2024
Cited by 2 | Viewed by 1968
Abstract
In this work, combined efforts by Greek and Turkish scientists produced an updated validated NIS inventory of the Aegean ecoregion, covering 120 years of records up to August 2024. Of the 342 NIS currently present in the Aegean Sea, the majority (281 species) [...] Read more.
In this work, combined efforts by Greek and Turkish scientists produced an updated validated NIS inventory of the Aegean ecoregion, covering 120 years of records up to August 2024. Of the 342 NIS currently present in the Aegean Sea, the majority (281 species) have invaded the South Aegean, followed by the North Aegean (128 species out of 206 NIS). A total of 73 species were added to the list, while 56 were removed. Overall, unaided spread of Lessepsian immigrants from the Levantine Sea and shipping are equally responsible for NIS reported at the regional level. An increase in publications addressing NIS matches the upward trend of NIS since the mid-1990s, which continues to the present day. While unaided introductions of Lessepsian species and/or direct introductions via the Suez Canal peaked in the South Aegean during 2000–2005, they peaked in 2012–2017 in the North Aegean—a decade later. The opposite pattern was observed in ship-transferred NIS. The spatial distribution of introduction hotspots largely reflects the following phenomena/processes: unaided introduction is witnessed initially in the southeastern Aegean Sea; monitoring efforts are concentrated in vulnerable and at-risk areas; and research efforts relate to the spatial allocation of institutions and marine experts working on marine NIS along the Aegean coasts. Full article
(This article belongs to the Special Issue Marine Biodiversity and Ecosystems Management—2nd Edition)
Show Figures

Figure 1

13 pages, 3764 KB  
Article
Elemental Composition and Morphometry of Rhyssoplax olivacea (Polyplacophora): Part II—Intraspecific Variation
by Konstantinos Voulgaris, Anastasios Varkoulis, Thomas Mygdalias, Stefanos Zaoutsos and Dimitris Vafidis
J. Mar. Sci. Eng. 2024, 12(12), 2230; https://doi.org/10.3390/jmse12122230 - 5 Dec 2024
Viewed by 926
Abstract
Rhyssoplax olivacea is a common mediterranean chiton that exhibits great geographic distribution characterized by variability in its abiotic parameters. Using morphometric measurements of the valves and radula, as well as the element composition of its tooth types from individuals sampled from five different [...] Read more.
Rhyssoplax olivacea is a common mediterranean chiton that exhibits great geographic distribution characterized by variability in its abiotic parameters. Using morphometric measurements of the valves and radula, as well as the element composition of its tooth types from individuals sampled from five different regions across the Hellenic seas, intraspecific differences were examined. The relationship between the abiotic factors and elemental composition was also investigated. Hierarchical clustering on principal components (HCPC) was employed separately on the radular and valve characteristics to determine whether these traits can distinguish regions in the form of clusters, while canonical correspondence analysis (CCA) with ANOVA testing were used to examine the effect of temperature, depth and salinity on these features. Both datasets resulted in three clusters; however, investigation of the radula appeared to better distinguish populations among the examined regions, differentiating Kymi and Pagasitikos. The morphometrics of the valves distinguished the North Aegean Sea (Chalkidiki) from the other regions. The CCA reported that the depth, minimum temperature and average salinity influenced the elemental composition of the radular teeth, while the depth and maximum temperature explained variation regarding the valve morphometrics. Full article
(This article belongs to the Special Issue Marine Biota Distribution and Biodiversity)
Show Figures

Figure 1

27 pages, 8610 KB  
Article
A Fuzzy Spatial Multiple Criteria Analysis Methodology for Solid Waste Landfill Siting
by Themistoklis D. Kontos and Yiannis G. Zevgolis
J 2024, 7(4), 502-528; https://doi.org/10.3390/j7040031 - 25 Nov 2024
Viewed by 2074
Abstract
The process of siting municipal solid waste landfills in Greece faces significant challenges due to land resource limitations, the country’s mountainous and water-permeable terrain, and strong public opposition. This study introduces a novel methodology for optimizing landfill sites on Lemnos Island in the [...] Read more.
The process of siting municipal solid waste landfills in Greece faces significant challenges due to land resource limitations, the country’s mountainous and water-permeable terrain, and strong public opposition. This study introduces a novel methodology for optimizing landfill sites on Lemnos Island in the North Aegean Sea using a Fuzzy Spatial Multiple Criteria Analysis (FSMCA) approach. By combining fuzzy sets theory, Geographic Information Systems (GIS), Analytic Hierarchy Process (AHP), spatial autocorrelation, spatial clustering and sensitivity analysis, this methodology addresses the uncertainties and complexities inherent in landfill siting. The decision problem is structured hierarchically into five levels to manage multiple criteria effectively. Criteria weights are determined using AHP, with discrete criteria graded according to Greek and EU guidelines, and continuous criteria evaluated through fuzzy sets theory. The region’s suitability is assessed using multiple criteria analysis, revealing that 9.7% of Lemnos Island is appropriate for landfill placement. Sensitivity analysis confirms the robustness of the methodology to changes in criteria weights. The case study demonstrates the practical application and benefits of FSMCA in a real-world scenario, underscoring its potential to improve sustainable waste management practices and inform policy making. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

28 pages, 6240 KB  
Article
The Contribution of Siliceous Plankton to Vertical Export Flux in the Eastern Mediterranean: A Comparative Study of the North Aegean, Cretan, and Ionian Seas
by Ioanna Nikolopoulou, Elisavet Skampa, Ioanna Varkitzi, Margarita D. Dimiza, Constantine Parinos, Georgia Kambouri, Ioanna Stavrakaki, Alexandra Gogou and Maria V. Triantaphyllou
J. Mar. Sci. Eng. 2024, 12(11), 2084; https://doi.org/10.3390/jmse12112084 - 18 Nov 2024
Cited by 4 | Viewed by 1213
Abstract
This study investigates the intricate dynamics of siliceous plankton species within the open marine regions of the Greek Seas, focusing on their seasonal and spatial variability. For this purpose, vertical export fluxes of diatoms (DtF), silicoflagellates (SF), and radiolaria (RF) were analyzed in [...] Read more.
This study investigates the intricate dynamics of siliceous plankton species within the open marine regions of the Greek Seas, focusing on their seasonal and spatial variability. For this purpose, vertical export fluxes of diatoms (DtF), silicoflagellates (SF), and radiolaria (RF) were analyzed in three sediment trap time series obtained from the North Aegean, Cretan, and Ionian Seas. Special attention was given to diatom assemblages, resulting in the estimation of the DtF community structure and diversity for each studied site. Diatom flux values reached 353.9 × 103 valves m−2 day−1, 77.7 × 103 valves m−2 day−1, and 42.4 × 103 valves m−2 day−1 in the North Aegean, Ionian, and Cretan Seas, respectively. SF maxima were 1309.8 × 103 skeletons m−2 day−1 in the North Aegean Sea, 35.2 × 103 skeletons m−2 day−1 in the Ionian Sea, and 11.9 × 103 skeletons m−2 day−1 in the Cretan Sea (South Aegean Sea). RF values reached 13.9 × 103 radiolaria m−2 day−1, 11.9 × 103 radiolaria m−2 day−1, and 5.4 × 103 radiolaria m−2 day−1 in the North Aegean, Ionian, and Cretan Seas, respectively. The North Aegean Sea exhibited significantly higher mean total fluxes, particularly for diatoms, driven by the north-to-south oligotrophy gradient, which was influenced by riverine inflows and the nutrient-rich Black Sea water. In the Cretan and Ionian Seas, convective mixing and atmospheric deposition, especially during increased rainfall (precipitation) events, were identified as primary drivers for the increased siliceous plankton fluxes recorded in the late winter–spring months. Diatom communities were dominated by Naviculales and Fragilariales; the prevalence of the former in the North Aegean Sea is likely linked to the higher nutrient levels in its upper photic zone, as Naviculales includes species with a high affiliation to nutrient enrichment. Full article
Show Figures

Figure 1

21 pages, 11833 KB  
Article
Ductile Versus Brittle Tectonics in the Anatolian–Aegean–Balkan System
by Enzo Mantovani, Marcello Viti, Daniele Babbucci, Caterina Tamburelli, Massimo Baglione and Vittorio D’Intinosante
Geosciences 2024, 14(10), 277; https://doi.org/10.3390/geosciences14100277 - 19 Oct 2024
Cited by 4 | Viewed by 1602
Abstract
It is hypothesized that the present tectonic setting of the Anatolian, Aegean and Balkan regions has been deeply influenced by the different deformation styles of the inner and outer belts which constituted the Oligocene Tethyan system. Stressed by the Arabian indenter, this buoyant [...] Read more.
It is hypothesized that the present tectonic setting of the Anatolian, Aegean and Balkan regions has been deeply influenced by the different deformation styles of the inner and outer belts which constituted the Oligocene Tethyan system. Stressed by the Arabian indenter, this buoyant structure has undergone a westward escape and strong bending. The available evidence suggests that in the Plio–Pleistocene time frame, the inner metamorphic core mainly deformed without undergoing major fragmentations, whereas the orogenic belts which flanked that core (Pontides, Balkanides, Dinarides and Hellenides) behaved as mainly brittle structures, undergoing marked fractures and fragmentations. This view can plausibly explain the formation of the Eastern (Crete–Rhodes) and Western (Peloponnesus) Hellenic Arcs, the peculiar time-space features of the Cretan basins, the development of the Cyprus Arc, the North Aegean strike-slip fault system, the southward escapes of the Antalya and Peloponnesus wedges and the complex tectonic setting in the Balkan zone. These tectonic processes have mostly developed since the late Late Miocene, in response to the collision of the Tethyan belt with the Adriatic continental domain, which accelerated the southward bending of the Anatolian and Aegean sectors, at the expense of the Levantine and Ionian oceanic domains. The proposed interpretation may help us to understand the connection between the ongoing tectonic processes and the spatio-temporal distribution of major earthquakes, increasing the chances of estimating the long-term seismic hazard in the study area. In particular, it is suggested that seismic activity in the Serbo–Macedonian zone may be favored by the post-seismic relaxation that develops after seismic crises in the Epirus thrust front and inhibited/delayed by the activations of the North Anatolian fault system. Full article
Show Figures

Figure 1

18 pages, 12593 KB  
Article
Modeling of the Potential Distribution Areas Suitable for Olive (Olea europaea L.) in Türkiye from a Climate Change Perspective
by Muhammed Mustafa Özdel, Beyza Ustaoğlu and İsa Cürebal
Agriculture 2024, 14(9), 1629; https://doi.org/10.3390/agriculture14091629 - 17 Sep 2024
Cited by 7 | Viewed by 3757 | Correction
Abstract
Türkiye is one of the first regions where olives were domesticated, and olives reflect the country’s millennia-old agricultural and cultural heritage. Moreover, Türkiye is one of the leading nations in olive and olive oil production in terms of quality and diversity. This study [...] Read more.
Türkiye is one of the first regions where olives were domesticated, and olives reflect the country’s millennia-old agricultural and cultural heritage. Moreover, Türkiye is one of the leading nations in olive and olive oil production in terms of quality and diversity. This study aims to determine the current and future distribution areas of olives, which is important for Türkiye’s socio-economic structure. For this purpose, 19 different bioclimatic variables, such as annual mean temperature (Bio1), temperature seasonality (Bio4), and annual precipitation (Bio12), have been used. The RCP4.5 and RCP8.5 emission scenarios of the CCSM4 model were used for future projections (2050 and 2070). MaxEnt software, which uses the principle of maximum entropy, was employed to determine the current and future habitat areas of the olives. Currently and in the future, it is understood that the Mediterranean, Aegean, Marmara, and Black Sea coastlines have areas with potential suitability for olives. However, the model projections indicate that the species may shift from south to north and to higher elevations in the future. Analyses indicate that the Aegean Region is the most sensitive area and that a significant portion of habitats in the Marmara Region will remain unaffected by climate change. Full article
Show Figures

Graphical abstract

21 pages, 4018 KB  
Article
Investigating Seismic Events along the Eurasian Plate between Greece and Turkey: 10 Years of Seismological Analysis and Implications
by Alexandra Moshou
Earth 2024, 5(3), 311-331; https://doi.org/10.3390/earth5030017 - 26 Jul 2024
Viewed by 4029
Abstract
The North Aegean Sea region in Greece is located at the convergence of the Eurasian, African, and Anatolian tectonic plates. The region experiences frequent seismicity ranging from moderate to large-magnitude earthquakes. Tectonic interactions and seismic events in this area have far-reaching implications for [...] Read more.
The North Aegean Sea region in Greece is located at the convergence of the Eurasian, African, and Anatolian tectonic plates. The region experiences frequent seismicity ranging from moderate to large-magnitude earthquakes. Tectonic interactions and seismic events in this area have far-reaching implications for understanding the broader geological processes in the eastern Mediterranean region. This study aims to conduct a comprehensive investigation of the seismic activity of the North Aegean Sea region by employing advanced seismological techniques and data analyses. Data from onshore seismological networks were collected and analyzed to assess the characteristics of the earthquakes in the region. Seismicity patterns, focal mechanisms, and seismic moment calculations were performed to assess current seismic activity. The present study combined spatiotemporal analysis with the analysis of genesis mechanisms, and this resulted in more results than those of previous studies. Detailed analysis of the seismic data showed patterns in the occurrence of earthquakes over time, with periodic episodes of increased seismic activity compared to activities followed by quieter periods. Finally, this study proves that recent earthquakes in the study area (2017, 2020) highlight the complexity of seismicity as well as the consequences of strong earthquakes on people and buildings. Overall, these findings suggest that the North Aegean Sea is becoming increasingly seismically active and is a potential risk zone for adjacent regions. Full article
Show Figures

Figure 1

22 pages, 5676 KB  
Article
Projections on the Spatiotemporal Bioclimatic Change over the Phytogeographical Regions of Greece by the Emberger Index
by Ioannis Charalampopoulos, Fotoula Droulia, Ioannis P. Kokkoris and Panayotis Dimopoulos
Water 2024, 16(14), 2070; https://doi.org/10.3390/w16142070 - 22 Jul 2024
Cited by 3 | Viewed by 1959
Abstract
Unquestionably, the rapidly changing climate and, therefore, alterations in the associated bioclimate, constitute an alarming reality with implications for daily practice and natural capital management. This research displays the present and projected bioclimate evolution over Greece’s phytogeographical regions. For this purpose, ultrahigh-resolution computation [...] Read more.
Unquestionably, the rapidly changing climate and, therefore, alterations in the associated bioclimate, constitute an alarming reality with implications for daily practice and natural capital management. This research displays the present and projected bioclimate evolution over Greece’s phytogeographical regions. For this purpose, ultrahigh-resolution computation results on the spatial distribution of the Emberger index’s Q2 classes of bioclimatic characterization are analyzed and illustrated for the first time. The assessments are performed over the reference period (1970–2000) and two future time frames (2021–2040; 2041–2060) under the RCP4.5 and RCP8.5 emission scenarios. By 2060 and under the extreme RCP8.5, intense xerothermic trends are demonstrated owing to the resulting significant spatial evolution mainly of the Arid–Hot, Semi-Arid–Very Hot, Semi-Arid–Hot, and Semi-Arid–Temperate Q2 classes, respectively, over the phytogeographical regions of Kiklades (up to 29% occupation), Kriti and Karpathos (up to 30%), West Aegean Islands (up to 26%), North East (up to 56%), and North Central (up to 31%). The RCP8.5 long-term period exhibits the strongest impacts over approximately the right half of the Greek territory, with the bioclimate appearing more dry–thermal in the future. In conclusion, the Emberger index provides an in-depth view of the Greek area’s bioclimatic regime and the potential alterations due to climate change per phytogeographical region. Full article
(This article belongs to the Special Issue Impacts of Climate Change on Water Resources: Assessment and Modeling)
Show Figures

Figure 1

25 pages, 12983 KB  
Article
First Analyses of the TIMELINE AVHRR SST Product: Long-Term Trends of Sea Surface Temperature at 1 km Resolution across European Coastal Zones
by Philipp Reiners, Laura Obrecht, Andreas Dietz, Stefanie Holzwarth and Claudia Kuenzer
Remote Sens. 2024, 16(11), 1932; https://doi.org/10.3390/rs16111932 - 27 May 2024
Cited by 3 | Viewed by 1710
Abstract
Coastal areas are among the most productive areas in the world, ecologically as well as economically. Sea Surface Temperature (SST) has evolved as the major essential climate variable (ECV) and ocean variable (EOV) to monitor land–ocean interactions and oceanic warming trends. SST monitoring [...] Read more.
Coastal areas are among the most productive areas in the world, ecologically as well as economically. Sea Surface Temperature (SST) has evolved as the major essential climate variable (ECV) and ocean variable (EOV) to monitor land–ocean interactions and oceanic warming trends. SST monitoring can be achieved by means of remote sensing. The current relatively coarse spatial resolution of established SST products limits their potential in small-scale, coastal zones. This study presents the first analysis of the TIMELINE 1 km SST product from AVHRR in four key European regions: The Northern and Baltic Sea, the Adriatic Sea, the Aegean Sea, and the Balearic Sea. The analysis of monthly anomaly trends showed high positive SST trends in all study areas, exceeding the global average SST warming. Seasonal variations reveal peak warming during the spring, early summer, and early autumn, suggesting a potential seasonal shift. The spatial analysis of the monthly anomaly trends revealed significantly higher trends at near-coast areas, which were especially distinct in the Mediterranean study areas. The clearest pattern was visible in the Adriatic Sea in March and May, where the SST trends at the coast were twice as high as that observed at a 40 km distance to the coast. To validate our findings, we compared the TIMELINE monthly anomaly time series with monthly anomalies derived from the Level 4 CCI SST anomaly product. The comparison showed an overall good accordance with correlation coefficients of R > 0.82 for the Mediterranean study areas and R = 0.77 for the North and Baltic Seas. This study highlights the potential of AVHRR Local Area Coverage (LAC) data with 1 km spatial resolution for mapping long-term SST trends in areas with high spatial SST variability, such as coastal regions. Full article
Show Figures

Figure 1

14 pages, 11264 KB  
Article
Future Projections of Precipitation Extremes for Greece Based on an Ensemble of High-Resolution Regional Climate Model Simulations
by Prodromos Zanis, Aristeidis K. Georgoulias, Kondylia Velikou, Dimitris Akritidis, Alkiviadis Kalisoras and Dimitris Melas
Atmosphere 2024, 15(5), 601; https://doi.org/10.3390/atmos15050601 - 14 May 2024
Cited by 7 | Viewed by 2931
Abstract
An assessment of the projected changes in precipitation extremes for the 21st century is presented here for Greece and its individual administrative regions. The analysis relies on an ensemble of high-resolution Regional Climate Model (RCM) simulations following various Representative Concentration Pathways (RCP2.6, RCP4.5, [...] Read more.
An assessment of the projected changes in precipitation extremes for the 21st century is presented here for Greece and its individual administrative regions. The analysis relies on an ensemble of high-resolution Regional Climate Model (RCM) simulations following various Representative Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5). The simulated changes in future annual total precipitation (PRTOT) under the examined scenarios are generally negative but statistically non-robust, except towards the end of the century (2071–2100) over high-altitude mountainous regions in Western Greece, Peloponnese, and Crete under RCP8.5. The pattern of change in the number of very heavy precipitation days (R20) is linked to the respective pattern of the PRTOT change with a statistically robust decrease of up to −5 days per year only over parts of the high-altitude mountainous regions in Western Greece, Peloponnese, and Crete for 2071–2100 under RCP8.5. Contrasting the future tendency for decrease in total precipitation and R20, the changes in the intensity of precipitation extremes show a tendency for intensification. However, these change patterns are non-robust for all periods and scenarios. Statistical significance is indicated for the highest 1-day precipitation amount in a year (Rx1day) for the administrative regions of Thessaly, Central Greece, Ionian Islands, and North Aegean under RCP8.5 in 2071–2100. The changes in the contribution of the wettest day per year to the annual total precipitation (RxTratio) are mainly positive but non-robust for most of Greece and all scenarios in the period 2021–2050, becoming more positive and robust in 2071–2100 for RCP8.5. This work highlights the necessity of taking into consideration high-resolution multi-model RCM estimates in future precipitation extremes with various scenarios, for assessing their potential impact on flood episodes and the strategic planning of structure resilience at national and regional level under the anticipated human-induced future climate change. Full article
Show Figures

Figure 1

23 pages, 20033 KB  
Article
A 3D BEM-Coupled Mode Model for the Performance Analysis of Wave Energy Converter Parks in Nearshore-Coastal Regions
by Theodoros Gerostathis, Alexandros Magkouris and Kostas Belibassakis
J. Mar. Sci. Eng. 2024, 12(2), 212; https://doi.org/10.3390/jmse12020212 - 24 Jan 2024
Cited by 1 | Viewed by 1366
Abstract
Estimation on the production capacity of wave energy converter arrays (WECs) of the type of simple floaters deployed in nearshore locations highly depends on the evaluation of their performance. The latter also depends on various factors, including the dimensions and inertial characteristics of [...] Read more.
Estimation on the production capacity of wave energy converter arrays (WECs) of the type of simple floaters deployed in nearshore locations highly depends on the evaluation of their performance. The latter also depends on various factors, including the dimensions and inertial characteristics of the devices, their relevant positioning, and the power take-off (PTO) system characteristics. Studying the system operation, based on the prevailing sea conditions in the region considered for deployment, can ensure that such WEC farms are sized and designed in an effective way. Furthermore, the wavelength and propagation direction of incoming wave fields can be significantly impacted by wave-seabed interactions in coastal areas, which can alter the WECs’ response pattern and ultimately the array’s power output. In this work, a 3D BEM hydrodynamic model is proposed aiming to assess the energy-capturing capacity of WEC arrays, accounting for the hydrodynamic interactions between various identical floating devices, as well as the local seabed topography. The model is supplemented by a Coupled Mode System (CMS) to calculate the incident wave field propagating over variable bathymetry, in order to simulate realistic nearshore environments. Finally, a case study is performed for an indicative geographical area, north of the coast of the island of Ikaria, located in the Eastern Aegean Sea region, where the wave potential is high, using long-term data. The latter study highlights the applicability of the proposed method and suggests its usage as a tool to support optimal WEC park design. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 9269 KB  
Review
Tectonic Geodesy Synthesis and Review of the North Aegean Region, Based on the Strain Patterns of the North Aegean Sea, Strymon Basin and Thessalian Basin Case Studies
by Ilias Lazos, Sotirios Sboras and Christos Pikridas
Appl. Sci. 2023, 13(17), 9943; https://doi.org/10.3390/app13179943 - 2 Sep 2023
Cited by 2 | Viewed by 2259
Abstract
Satellite geodesy, an indispensable modern tool for determining upper-crust deformation, can be used to assess tectonically active structures and improve our understanding of the geotectonic evolution in tectonically active regions. A region fulfilling these criteria is the North Aegean, part of the Eastern [...] Read more.
Satellite geodesy, an indispensable modern tool for determining upper-crust deformation, can be used to assess tectonically active structures and improve our understanding of the geotectonic evolution in tectonically active regions. A region fulfilling these criteria is the North Aegean, part of the Eastern Mediterranean. It is one of the most tectonically, and hence, seismically, active regions worldwide, which makes it ideal for applying a satellite geodesy investigation. Although many regional studies have been carried out across the entire Aegean region, there are three more focused case studies that provide better resolution for different parts of the North Aegean. The synthesis of these case studies can lead to an overall geodynamic assessment of the North Aegean. The North Aegean Sea case study is characterized by the North Aegean Trough (NAT), which is directly associated with the westward prolongation of the North Anatolian Fault (NAF). Both NE–SW normal and strike-slip faulting have been documented in this offshore region. Geodetic analysis considers geodetic data, derived from 32 permanent GPS/GNSS stations (recorded for the 2008–2014 time period). This results in the estimation of the Maximum (MaHE) and Minimum (MiHE) Horizontal Extension, Maximum Shear Strain (MSS) and Area Strain (AS) parameters, based on triangular methodology implementation; the same strain parameters have similarly been estimated for the Strymon and Thessalian basins, respectively. The Strymon basin (first case study) is located in the central part of the northern Greek mainland, and it is dominated by NW–SE (up to E–W) dip-slip normal faults; this area has been monitored by 16 permanent GPS/GNSS stations for seven consecutive years. Regarding the Thessalian basin case study, E–W, dip-slip and normal faults are noted at the basin boundaries and within the Thessalian plain. This region has also been monitored for seven consecutive years by 27 permanent GPS/GNSS stations. However, this case study is characterized by a strong seismic event (Mw6.3; 3 March 2021), and thus all strain parameters depicted the pre-seismic deformation. Analysis of these three different case studies confirmed the current tectonic setting of the North Aegean region, while revealing new aspects about the geodynamic evolution of the wider region, such as highlighting areas with significant tectonic activity and the crucial role of strike-slip faulting in the broader Aegean region. Full article
(This article belongs to the Special Issue Applied Geodesy and Morphometrics)
Show Figures

Figure 1

22 pages, 17967 KB  
Article
A 3D BEM Model for the Hydrodynamic Analysis and Design of Heaving WEC Arrays Attached to a Breakwater
by Alexandros Magkouris, Markos Bonovas, Theodoros Gerostathis and Kostas Belibassakis
Sustainability 2023, 15(17), 12777; https://doi.org/10.3390/su151712777 - 23 Aug 2023
Cited by 2 | Viewed by 1484
Abstract
Assessment of the performance of arrays of wave energy converters (WECs) of the type of simple heaving floaters, operating in nearshore and coastal areas, is essential to estimate their power production capacity. The effective design and layout of such WEC farms can be [...] Read more.
Assessment of the performance of arrays of wave energy converters (WECs) of the type of simple heaving floaters, operating in nearshore and coastal areas, is essential to estimate their power production capacity. The effective design and layout of such WEC farms can be supported by studying the system’s operational characteristics based on the wave climatology of the deployment region. Installation along the exposed side of harbor breakwaters in sea areas with substantial incoming energy potential is a promising option. In this study, a 3D hydrodynamic model based on the boundary element method (BEM) is presented and discussed, aiming to evaluate the performance of WEC arrays consisting of multiple heaving bodies attached to the exposed side of a harbor breakwater, modelled as a vertical wall, considering its reflective effects, as well as hydrodynamic interactions between the multiple floating devices. Numerical results of the predicted power performance for various configurations, including interactions of multiple WECs with the nearshore topography and the breakwater wall, as well as the effects of power take off (PTO) parameters, are presented and discussed. Finally, a case study is presented for a selected coastal site at the port of Heraklion, located in the north-central part of Crete Island in the South Aegean Sea, characterized by relatively increased wave energy potential, using long-term climatological data, illustrating the method and its applicability as a supporting tool for optimal design of WEC arrangements. Full article
(This article belongs to the Special Issue Climate Change, Marine Renewables and Sustainable Development)
Show Figures

Figure 1

Back to TopTop