Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = ONOO− scavenging activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 306 KB  
Review
The Interplay Between Melatonin and Nitric Oxide: Mechanisms and Implications in Stroke Pathophysiology
by Santos Blanco, María del Mar Muñoz-Gallardo, Raquel Hernández and María Ángeles Peinado
Antioxidants 2025, 14(6), 724; https://doi.org/10.3390/antiox14060724 - 13 Jun 2025
Cited by 1 | Viewed by 1157
Abstract
This work reviews the complex interplay between melatonin and nitric oxide (NO) in the central nervous system (CNS), with a detailed focus on its involvement in stroke pathophysiology. Melatonin, a neurohormone with potent antioxidant, anti-inflammatory, and neuroprotective properties, and NO, a gaseous signaling [...] Read more.
This work reviews the complex interplay between melatonin and nitric oxide (NO) in the central nervous system (CNS), with a detailed focus on its involvement in stroke pathophysiology. Melatonin, a neurohormone with potent antioxidant, anti-inflammatory, and neuroprotective properties, and NO, a gaseous signaling molecule with diverse roles, interact crucially. In the context of ischemic stroke, NO exhibits a dual role: it can be neuroprotective (primarily via endothelial nitric oxide synthase (eNOS)) or neurotoxic (especially through inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS), contributing to the formation of damaging peroxynitrite (ONOO)). Melatonin has consistently demonstrated neuroprotective effects in animal models of stroke. Its key mechanisms related to NO include (1) differential modulation of nitric oxide synthase isoforms, suppressing detrimental iNOS expression/activity while often preserving or enhancing beneficial eNOS; (2) direct scavenging of NO and, critically, highly reactive peroxynitrite, thereby attenuating nitrosative stress; (3) reduction in neuroinflammation, partly by promoting M2 (anti-inflammatory) microglia polarization; and (4) mitochondrial protection and decreased apoptosis. These multifaceted actions of melatonin contribute to reduced infarct volume and improved functional outcomes, underscoring its considerable therapeutic potential for ischemic stroke through the favorable modulation of the melatonin–NO axis. Full article
16 pages, 842 KB  
Article
Bioactive Compounds and Scavenging Capacity of Adansonia digitata L. (Baobab Fruit) Pulp Extracts against ROS and RNS of Physiological Relevance
by Ana F. Vinha, Anabela S. G. Costa, Filipa B. Pimentel, Liliana Espírito Santo, Carla Sousa, Marisa Freitas, Eduarda Fernandes and M. Beatriz P. P. Oliveira
Appl. Sci. 2024, 14(8), 3408; https://doi.org/10.3390/app14083408 - 17 Apr 2024
Cited by 6 | Viewed by 3364
Abstract
Background: Baobab fruit is valued for its nutritional and medicinal benefits. Although it is acknowledged that baobab pulp is beneficial for health, studies that link its nutraceutical properties to the ability to eliminate reactive species (ROS and RNS) are scarce. Methods: The nutritional [...] Read more.
Background: Baobab fruit is valued for its nutritional and medicinal benefits. Although it is acknowledged that baobab pulp is beneficial for health, studies that link its nutraceutical properties to the ability to eliminate reactive species (ROS and RNS) are scarce. Methods: The nutritional profile and the antioxidant properties of baobab pulp extracts from Angola were evaluated. Thus, for the first time, the evaluation of in vitro scavenging capacity against the most physiologically relevant reactive oxygen species (ROS) and reactive nitrogen species (RNS) were the focus of investigation. Results: Angolan fruit pulp presented high contents of ash (8.0%) and total dietary fiber (52%). Vitamin E content was reported for the first time in fruit pulp. Green solvents were used to quantify bioactive compounds and antioxidant activity. Hydroalcoholic extracts exhibited the highest contents of phenolics (1573.0 mg/100 g) and flavonoids (768.7 mg/100 g). Thus, hydroalcoholic extracts showed higher antioxidant activity, and higher scavenging capacity for ROS (O2•−, H2O2, HOCl, ROO) and RNS (NO, ONOO), being most active for NO and ONOO. Conclusion: For the first time, Angolan baobab fruit was described in respect to its nutritional contribution as well as its positive antioxidant effects, both as a functional food and as a nutraceutical ingredient. Full article
(This article belongs to the Special Issue Natural Products and Bioactive Compounds)
Show Figures

Figure 1

17 pages, 6160 KB  
Article
Isolation of High-Purity Betanin from Red Beet and Elucidation of Its Antioxidant Activity against Peroxynitrite: An in vitro Study
by Yasuko Sakihama, Takashi Kato, Sopanat Sawatdee, Yo Yakushi, Junichi Asano, Hiroyo Hayashi, Yuya Goto, Makoto Hashimoto and Yasuyuki Hashidoko
Int. J. Mol. Sci. 2023, 24(20), 15411; https://doi.org/10.3390/ijms242015411 - 21 Oct 2023
Cited by 5 | Viewed by 3178
Abstract
Reactive oxygen species and reactive nitrogen species (RNS) are damaging for many biomolecules. Peroxynitrite (ONOO) is the most toxic molecular species among RNS. Betalains are known to possess ONOO scavenging ability. Betanin, a betalain isolated from red beet, possesses antioxidant, [...] Read more.
Reactive oxygen species and reactive nitrogen species (RNS) are damaging for many biomolecules. Peroxynitrite (ONOO) is the most toxic molecular species among RNS. Betalains are known to possess ONOO scavenging ability. Betanin, a betalain isolated from red beet, possesses antioxidant, anti-inflammatory, and antitumor activities; however, detailed studies of this isolated pigment have not been conducted, owing to its instability under physiological conditions. This study aimed to isolate highly purified betanin from red beetroots using an improved purification method involving deproteinization and citric acid co-precipitation and evaluated its antioxidant activities. The purified betanin thus obtained had a significantly lower isobetanin content than the commercially available betanin dyes. The antioxidant activity of purified betanin examined in the 2,2-diphenyl-1-picrylhydrazyl assay, the direct ONOO reaction, ONOO-dependent DNA damage, and lipid peroxidation reactions revealed that betanin possessed higher antioxidant capacity than general antioxidants such as ascorbic acid and quercetin. Furthermore, betanin showed indirect and direct cytoprotective effects against H2O2 and ONOO cytotoxicity, respectively, in cultured mouse fibroblasts. To the best of our knowledge, this is the first study to demonstrate the cytoprotective effects of betanin against ONOO toxicity. The highly purified betanin obtained in this study will aid in further exploring its physiological functions. Full article
Show Figures

Figure 1

21 pages, 5961 KB  
Article
An Arylbenzofuran, Stilbene Dimers, and Prenylated Diels–Alder Adducts as Potent Diabetic Inhibitors from Morus bombycis Leaves
by Seon Min Ju, Md Yousof Ali, Seung-Mi Ko, Jung-Hye Ryu, Jae-Sue Choi and Hyun-Ah Jung
Antioxidants 2023, 12(4), 837; https://doi.org/10.3390/antiox12040837 - 30 Mar 2023
Cited by 2 | Viewed by 3787
Abstract
Morus bombycis has a long history of usage as a treatment for metabolic diseases, especially, diabetes mellitus (DM). Thus, we aimed to isolate and evaluate bioactive constituents derived from M. bombycis leaves for the treatment of DM. According to bioassay-guided isolation by column [...] Read more.
Morus bombycis has a long history of usage as a treatment for metabolic diseases, especially, diabetes mellitus (DM). Thus, we aimed to isolate and evaluate bioactive constituents derived from M. bombycis leaves for the treatment of DM. According to bioassay-guided isolation by column chromatography, eight compounds were obtained from M. bombycis leaves: two phenolic compounds, p-coumaric acid (1) and chlorogenic acid methyl ester (2), one stilbene, oxyresveratrol (3), two stilbene dimers, macrourin B (4) and austrafuran C (6), one 2-arylbenzofuran, moracin M (5), and two Diels–Alder type adducts, mulberrofuran F (7) and chalcomoracin (8). Among the eight isolated compounds, the anti-DM activity of 38 (which possess chemotaxonomic significance in Morus species) was evaluated by inhibition of α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), human recombinant aldose reductase (HRAR), and advanced glycation end-product (AGE) formation as well as by scavenging peroxynitrite (ONOO), which are crucial therapeutic targets of DM and its complications. Compounds 4 and 68 significantly inhibited α-glucosidase, PTP1B, and HRAR enzymes with mixed-type and non-competitive-type inhibition modes. Furthermore, the four compounds had low negative binding energies in both enzymes according to molecular docking simulation, and compounds 38 exhibited strong antioxidant capacity by inhibiting AGE formation and ONOO scavenging. Overall results suggested that the most active stilbene-dimer-type compounds (4 and 6) along with Diels–Alder type adducts (7 and 8) could be promising therapeutic and preventive resources against DM and have the potential to be used as antioxidants, anti-diabetic agents, and anti-diabetic complication agents. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

10 pages, 723 KB  
Article
New Anti-Glycative Lignans from the Defatted Seeds of Sesamum indicum
by Gyeong Han Jeong and Tae Hoon Kim
Molecules 2023, 28(5), 2255; https://doi.org/10.3390/molecules28052255 - 28 Feb 2023
Cited by 2 | Viewed by 2294
Abstract
Seven known analogs, along with two previously undescribed lignan derivatives sesamlignans A (1) and B (2), were isolated from a water-soluble extract of the defatted sesame seeds (Sesamum indicum L.) by applying the chromatographic separation method. Structures of [...] Read more.
Seven known analogs, along with two previously undescribed lignan derivatives sesamlignans A (1) and B (2), were isolated from a water-soluble extract of the defatted sesame seeds (Sesamum indicum L.) by applying the chromatographic separation method. Structures of compounds 1 and 2 were elucidated based on extensive interpretation of 1D, 2D NMR, and HRFABMS spectroscopic data. The absolute configurations were established by analyzing the optical rotation and circular dichroism (CD) spectrum. Inhibitory effects against the formation of advanced glycation end products (AGEs) and peroxynitrite (ONOO) scavenging assays were performed to evaluate the anti-glycation effects of all isolated compounds. Among the isolated compounds, (1) and (2) showed potent inhibition towards AGEs formation, with IC50 values of 7.5 ± 0.3 and 9.8 ± 0.5 μM, respectively. Furthermore, the new aryltetralin-type lignan 1 exhibited the most potent activity when tested in the in vitro ONOO scavenging assay. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

27 pages, 4608 KB  
Article
Design and Synthesis of (Z)-5-(Substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one Analogues as Anti-Tyrosinase and Antioxidant Compounds: In Vitro and In Silico Insights
by Jeongin Ko, Jieun Lee, Hee Jin Jung, Sultan Ullah, Yeongmu Jeong, Sojeong Hong, Min Kyung Kang, Yu Jung Park, YeJi Hwang, Dongwan Kang, Yujin Park, Pusoon Chun, Jin-Wook Yoo, Hae Young Chung and Hyung Ryong Moon
Antioxidants 2022, 11(10), 1918; https://doi.org/10.3390/antiox11101918 - 27 Sep 2022
Cited by 9 | Viewed by 2774
Abstract
Many compounds containing the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold, including cinnamamide derivatives, have been shown to inhibit tyrosinase potently in vitro and in vivo. Structural changes to cinnamamide derivatives were produced by adding a dithionate functional group to provide eight (Z)-5-(substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one [...] Read more.
Many compounds containing the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold, including cinnamamide derivatives, have been shown to inhibit tyrosinase potently in vitro and in vivo. Structural changes to cinnamamide derivatives were produced by adding a dithionate functional group to provide eight (Z)-5-(substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one analogs with high log p values for skin. These analogs were synthesized using a two-step reaction, and their stereochemistry was confirmed using the 3JC4-Hβ values of C4 measured in proton-coupled 13C mode. Analogs 2 (IC50 = 5.21 ± 0.86 µM) and 3 (IC50 = 1.03 ± 0.14 µM) more potently inhibited mushroom tyrosinase than kojic acid (IC50 = 25.26 ± 1.10 µM). Docking results showed 2 binds strongly to the active site of tyrosinase, while 3 binds strongly to an allosteric site. Kinetic studies using l-tyrosine as substrate indicated 2 and 3 competitively and non-competitively inhibit tyrosinase, respectively, which was supported by our docking results. In B16F10 cells, 3 significantly and concentration-dependently reduced α–MSH plus IBMX induced increases in cellular tyrosinase activity and melanin production and the similarity between these inhibitory patterns implied that the anti-melanogenic effect of 3 might be due to its tyrosinase-inhibitory ability. In addition, 2 and 3 exhibited strong antioxidant effects; for example, they reduced ROS and ONOO levels and exhibited radical scavenging activities, suggesting that these effects might underlie their anti-melanogenic effects. Furthermore, 3 suppressed the expressions of melanogenesis-associated proteins and genes in B16F10 cells. These results suggest (Z)-5-(substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one analogs offer a means of producing novel anti-melanogenesis agents. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

20 pages, 7262 KB  
Article
Alpha-Ketoglutarate or 5-HMF: Single Compounds Effectively Eliminate Leukemia Cells via Caspase-3 Apoptosis and Antioxidative Pathways
by Joachim Greilberger, Ralf Herwig, Mehtap Kacar, Naime Brajshori, Georg Feigl, Philipp Stiegler and Reinhold Wintersteiger
Int. J. Mol. Sci. 2022, 23(16), 9034; https://doi.org/10.3390/ijms23169034 - 12 Aug 2022
Cited by 4 | Viewed by 3375
Abstract
Background: We recently showed that a combined solution containing alpha-ketoglutarate (aKG) and 5-hydroxymethyl-furfural (5-HMF) has a solid antitumoral effect on the Jurkat cell line due to the fact of its antioxidative, caspase-3 and apoptosis activities, but no negative effect on human fibroblasts was [...] Read more.
Background: We recently showed that a combined solution containing alpha-ketoglutarate (aKG) and 5-hydroxymethyl-furfural (5-HMF) has a solid antitumoral effect on the Jurkat cell line due to the fact of its antioxidative, caspase-3 and apoptosis activities, but no negative effect on human fibroblasts was obtained. The question arises how the single compounds, aKG and 5-HMF, affect peroxynitrite (ONOO) and nitration of tyrosine residues, Jurkat cell proliferation and caspase-activated apoptosis. Methods: The ONOO luminol-induced chemiluminescence reaction was used to measure the ONOO scavenging function of aKG or 5-HMF, and their protection against nitration of tyrosine residues on bovine serum albumin was estimated with the ELISA technique. The Jurkat cell line was cultivated in the absence or presence of aKG or 5-HMF solutions between 0 and 3.5 µM aKG or 0 and 4 µM 5-HMF. Jurkat cells were tested for cell proliferation, mitochondrial activity and caspase-activated apoptosis. Results: aKG showed a concentration-dependent reduction in ONOO, resulting in a 90% elimination of ONOO using 200 mM aKG. In addition, 20 and 200 mM 5-HMF were able to reduce ONOO only by 20%, while lower concentrations of 5-HMF remained stable in the presence of ONOO. Nitration of tyrosine residues was inhibited 4 fold more effectively with 5-HMF compared to aKG measuring the IC50%. Both substances, aKG and 5-HMF, were shown to cause a reduction in Jurkat cell growth that was dependent on the dose and incubation time. The aKG effectively reduced Jurkat cell growth down to 50% after 48 and 72 h of incubation using the highest concentration of 3.5 µM, and 1, 1.6, 2, 3 and 4 µM 5-HMF inhibited any cell growth within (i) 24 h; 1.6, 2, 3 and 4 µM 5-HMF within 48 h (ii); 2, 3 and 4 µM 5-HMF within 72 h (iii). Furthermore, 4 µM was able to eliminate the starting cell number of 20,000 cells after 48 and 72 h down to 11,233 cells. The mitochondrial activity measurements supported the data on aKG or 5-HMF regarding cell growth in Jurkat cells, in both a dose- and incubation-time-dependent manner: the highest concentration of 3.5 µM aKG reduced the mitochondrial activity over 24 h (67.7%), 48 h (57.9%) and 72 h (46.8%) of incubation with Jurkat cells compared to the control incubation without aKG (100%). 5-HMF was more effective compared to aKG; the mitochondrial activity in the presence of 4 µM 5-HMF decreased after 24 h down to 68.4%, after 48 h to 42.9% and after 72 h to 32.0%. Moreover, 1.7 and 3.4 µM aKG had no effect on caspase-3-activated apoptosis (0.58% and 0.56%) in the Jurkat cell line. However, 2 and 4 µM 5-HMF increased the caspase-3-activated apoptosis up to 22.1% and 42.5% compared to the control (2.9%). A combined solution of 1.7 µM aKG + 0.7 µM 5-HMF showed a higher caspase-3-activated apoptosis (15.7%) compared to 1.7 µM aKG or 2 µM 5-HMF alone. In addition, 3.5 µM µg/mL aKG + 1.7 µM 5-HMF induced caspase-activated apoptosis up to 55.6% compared to 4.5% or 35.6% caspase-3 activity using 3.5 µM aKG or 4 µM 5-HMF. Conclusion: Both substances showed high antioxidative potential in eliminating either peroxynitrite or nitration of tyrosine residues, which results in a better inhibition of cell growth and mitochondrial activity of 5-HMF compared to aKG. However, caspase-3-activated apoptosis measurements revealed that the combination of both substances synergistically is the most effective compared to single compounds. Full article
Show Figures

Figure 1

22 pages, 2685 KB  
Article
On the Antioxidant Properties of L-Kynurenine: An Efficient ROS Scavenger and Enhancer of Rat Brain Antioxidant Defense
by Daniela Ramírez Ortega, Perla Eugenia Ugalde Muñiz, Tonali Blanco Ayala, Gustavo Ignacio Vázquez Cervantes, Rafael Lugo Huitrón, Benjamín Pineda, Dinora Fabiola González Esquivel, Gonzalo Pérez de la Cruz, José Pedraza Chaverrí, Laura Sánchez Chapul, Saúl Gómez-Manzo and Verónica Pérez de la Cruz
Antioxidants 2022, 11(1), 31; https://doi.org/10.3390/antiox11010031 - 24 Dec 2021
Cited by 29 | Viewed by 4898
Abstract
L-kynurenine (L-KYN) is an endogenous metabolite, that has been used as a neuroprotective strategy in experimental models. The protective effects of L-KYN have been attributed mainly to kynurenic acid (KYNA). However, considering that L-KYN is prone to oxidation, this redox property may play [...] Read more.
L-kynurenine (L-KYN) is an endogenous metabolite, that has been used as a neuroprotective strategy in experimental models. The protective effects of L-KYN have been attributed mainly to kynurenic acid (KYNA). However, considering that L-KYN is prone to oxidation, this redox property may play a substantial role in its protective effects. The aim of this work was to characterize the potential impact of the redox properties of L-KYN, in both synthetic and biological systems. First, we determined whether L-KYN scavenges reactive oxygen species (ROS) and prevents DNA and protein oxidative degradation in synthetic systems. The effect of L-KYN and KYNA (0.1–100 µM) on redox markers (ROS production, lipoperoxidation and cellular function) was compared in rat brain homogenates when exposed to FeSO4 (10 µM). Then, the effect of L-KYN administration (75 mg/kg/day for 5 days) on the GSH content and the enzymatic activity of glutathione reductase (GR) and glutathione peroxidase (GPx) was determined in rat brain tissue. Finally, brain homogenates from rats pretreated with L-KYN were exposed to pro-oxidants and oxidative markers were evaluated. The results show that L-KYN is an efficient scavenger of OH and ONOO, but not O2●– or H2O2 and that it prevents DNA and protein oxidative degradation in synthetic systems. L-KYN diminishes the oxidative effect induced by FeSO4 on brain homogenates at lower concentrations (1 µM) when compared to KYNA (100 µM). Furthermore, the sub-chronic administration of L-KYN increased the GSH content and the activity of both GR and GPx, and also prevented the oxidative damage induced by the ex vivo exposure to pro-oxidants. Altogether, these findings strongly suggest that L-KYN can be considered as a potential endogenous antioxidant. Full article
Show Figures

Graphical abstract

15 pages, 1930 KB  
Article
Ballodiolic Acid A and B: Two New ROS, (OH), (ONOO) Scavenging and Potent Antimicrobial Constituents Isolated from Ballota pseudodictamnus (L.) Benth.
by Fozia, Asmat Shaheen, Ijaz Ahmad, Syed Badar Amin, Nisar Ahmad, Riaz Ullah, Ahmed Bari, Muhammad Sohaib, Mahmood Hafiz Majid and Abdulrahman Alobaid
Pharmaceutics 2021, 13(3), 402; https://doi.org/10.3390/pharmaceutics13030402 - 17 Mar 2021
Cited by 8 | Viewed by 2848
Abstract
Bioassays guided phytochemical investigations on the ethyl acetate-soluble fraction of the root material of Ballota pseudodictamnus (L.) Benth. led to the isolation of two new compounds, ballodiolic acid A (1) and ballodiolic acid B (2), along with three known [...] Read more.
Bioassays guided phytochemical investigations on the ethyl acetate-soluble fraction of the root material of Ballota pseudodictamnus (L.) Benth. led to the isolation of two new compounds, ballodiolic acid A (1) and ballodiolic acid B (2), along with three known compounds ballodiolic acid (3), ballotenic acid (4), and β-amyrin (5), which were also isolated for the first time from this species by using multiple chromatographic techniques. The structures of the compounds (15) were determined by modern spectroscopic analysis including 1D and 2D NMR techniques and chemical studies. In three separate experiments, the isolated compounds (15) demonstrated potent antioxidant scavenging activity, with IC50 values ranging from 07.22–34.10 μM in the hydroxyl radical (OH) inhibitory activity test, 58.10–148.55 μM in the total ROS (reactive oxygen species) inhibitory activity test, and 6.23–69.01 μM in the peroxynitrite (ONOO) scavenging activity test. With IC50 values of (07.22 ± 0.03, 58.10 ± 0.07, 6.23 ± 0.04 μM) for OH, total ROS, and scavenge ONOO, respectively, ballodiolic acid B (2) showed the highest scavenging ability. Antibacterial and antifungal behaviors were also exposed to the pure compounds 15. In contrast to compounds 4 and 5, compounds 13 were active against all bacterial strains studied, with a good zone of inhibition proving these as a potent antibacterial agent. Similarly, compared to compounds 35, compounds 1 and 2 with a 47 percent and 45 percent respective inhibition zone were found to be more active against tested fungal strains. Full article
Show Figures

Figure 1

22 pages, 3375 KB  
Article
Insulin–Mimetic Dihydroxanthyletin-Type Coumarins from Angelica decursiva with Protein Tyrosine Phosphatase 1B and α-Glucosidase Inhibitory Activities and Docking Studies of Their Molecular Mechanisms
by Md Yousof Ali, Susoma Jannat, Hyun Ah Jung and Jae Sue Choi
Antioxidants 2021, 10(2), 292; https://doi.org/10.3390/antiox10020292 - 15 Feb 2021
Cited by 16 | Viewed by 3843
Abstract
As a traditional medicine, Angelica decursiva has been used for the treatment of many diseases. The goal of this study was to evaluate the potential of four natural major dihydroxanthyletin-type coumarins—(+)-trans-decursidinol, Pd-C-I, Pd-C-II, and Pd-C-III—to inhibit the enzymes, protein tyrosine phosphatase [...] Read more.
As a traditional medicine, Angelica decursiva has been used for the treatment of many diseases. The goal of this study was to evaluate the potential of four natural major dihydroxanthyletin-type coumarins—(+)-trans-decursidinol, Pd-C-I, Pd-C-II, and Pd-C-III—to inhibit the enzymes, protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. In the kinetic study of the PTP1B enzyme’s inhibition, we found that (+)-trans-decursidinol, Pd-C-I, and Pd-C-II led to competitive inhibition, while Pd-C-III displayed mixed-type inhibition. Moreover, (+)-trans-decursidinol exhibited competitive-type, and Pd-C-I and Pd-C-II mixed-type, while Pd-C-III showed non-competitive type inhibition of α-glucosidase. Docking simulations of these coumarins showed negative binding energies and a similar proximity to residues in the PTP1B and α-glucosidase binding pocket, which means they are closely connected and strongly binding with the active enzyme site. In addition, dihydroxanthyletin-type coumarins are up to 40 µM non-toxic in HepG2 cells and have substantially increased glucose uptake and decreased expression of PTP1B in insulin-resistant HepG2 cells. Further, coumarins inhibited ONOO-mediated albumin nitration and scavenged peroxynitrite (ONOO), and reactive oxygen species (ROS). Our overall findings showed that dihydroxanthyletin-type coumarins derived from A. decursiva is used as a dual inhibitor for enzymes, such as PTP1B and α-glucosidase, as well as for insulin susceptibility. Full article
Show Figures

Figure 1

14 pages, 3532 KB  
Article
Possible Role of Peroxynitrite in the Responses Induced by Fusicoccin in Plant Cultured Cells
by Massimo Malerba and Raffaella Cerana
Plants 2021, 10(1), 182; https://doi.org/10.3390/plants10010182 - 19 Jan 2021
Cited by 4 | Viewed by 3016
Abstract
Fusicoccin (FC) is a well-known phytotoxin able to induce in Acer pseudoplatanus L. (sycamore) cultured cells, a set of responses similar to those induced by stress conditions. In this work, the possible involvement of peroxynitrite (ONOO) in FC-induced stress responses was [...] Read more.
Fusicoccin (FC) is a well-known phytotoxin able to induce in Acer pseudoplatanus L. (sycamore) cultured cells, a set of responses similar to those induced by stress conditions. In this work, the possible involvement of peroxynitrite (ONOO) in FC-induced stress responses was studied measuring both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific ONOO scavenger: (1) cell death; (2) specific DNA fragmentation; (3) lipid peroxidation; (4) production of RNS and ROS; (5) activity of caspase-3-like proteases; and (6) release of cytochrome c from mitochondria, variations in the levels of molecular chaperones Hsp90 in the mitochondria and Hsp70 BiP in the endoplasmic reticulum (ER), and of regulatory 14-3-3 proteins in the cytosol. The obtained results indicate a role for ONOO in the FC-induced responses. In particular, ONOO seems involved in a PCD form showing apoptotic features such as specific DNA fragmentation, caspase-3-like protease activity, and cytochrome c release from mitochondria. Full article
(This article belongs to the Special Issue Bioactive Components in Plant Pathogens)
Show Figures

Figure 1

13 pages, 1401 KB  
Review
Hydrogen Is Promising for Medical Applications
by Shin-ichi Hirano, Yusuke Ichikawa, Bunpei Sato, Fumitake Satoh and Yoshiyasu Takefuji
Clean Technol. 2020, 2(4), 529-541; https://doi.org/10.3390/cleantechnol2040033 - 16 Dec 2020
Cited by 26 | Viewed by 13894
Abstract
Hydrogen (H2) is promising as an energy source for the next generation. Medical applications using H2 gas can be also considered as a clean and economical technology. Since the H2 gas based on electrolysis of water production has potential [...] Read more.
Hydrogen (H2) is promising as an energy source for the next generation. Medical applications using H2 gas can be also considered as a clean and economical technology. Since the H2 gas based on electrolysis of water production has potential to expand the medical applications, the technology has been developed in order to safely dilute it and to supply it to the living body by inhalation, respectively. H2 is an inert molecule which can scavenge the highly active oxidants including hydroxyl radical (·OH) and peroxynitrite (ONOO), and which can convert them into water. H2 is clean and causes no adverse effects in the body. The mechanism of H2 is different from that of traditional drugs because it works on the root of many diseases. Since H2 has extensive and various effects, it may be called a “wide spectrum molecule” on diseases. In this paper, we reviewed the current medical applications of H2 including its initiation and development, and we also proposed its prospective medical applications. Due to its marked efficacy and no adverse effects, H2 will be a next generation therapy candidate for medical applications. Full article
(This article belongs to the Special Issue Hydrogen Economy Technologies)
Show Figures

Figure 1

13 pages, 2282 KB  
Article
Root Bark of Paeonia suffruticosa Extract and Its Component Methyl Gallate Possess Peroxynitrite Scavenging Activity and Anti-Inflammatory Properties through NF-κB Inhibition in LPS-treated Mice
by Dong Jin Park, Hee Jin Jung, Chan Hum Park, Takako Yokozawa and Ji-Cheon Jeong
Molecules 2019, 24(19), 3483; https://doi.org/10.3390/molecules24193483 - 25 Sep 2019
Cited by 18 | Viewed by 4040
Abstract
A peroxynitrite (ONOO)-generating system induced by 3-morpholinosydnonimine, was used to evaluate the ONOO scavenging properties of plants that have been widely used as traditional medicine in Korea for the treatment of several diseases. The most effective medicinal plants were Paeonia [...] Read more.
A peroxynitrite (ONOO)-generating system induced by 3-morpholinosydnonimine, was used to evaluate the ONOO scavenging properties of plants that have been widely used as traditional medicine in Korea for the treatment of several diseases. The most effective medicinal plants were Paeonia suffruticosa Andrew, followed in order by Lonicera japonica Thunb., Curcuma zedoaria (Christm.) Roscoe, and Pueraria thunbergiana Benth. In addition, root bark of P. suffruticosa was partitioned with organic solvents of different polarities, and the ethyl acetate (EtOAc) fraction showed the strongest ONOO scavenging activity. Methyl gallate, a plant-derived phenolic compound identified from the EtOAc fraction, exerted strong ONOO scavenging activity. The in vivo therapeutic potential of methyl gallate was investigated using lipopolysaccharide-treated mice. Oral administration of methyl gallate protected against acute renal injury and exhibited potential anti-inflammatory properties through an increase in antioxidant activity and decrease in nuclear factor-kappa B activity. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

13 pages, 1006 KB  
Article
Sorbus domestica Leaf Extracts and Their Activity Markers: Antioxidant Potential and Synergy Effects in Scavenging Assays of Multiple Oxidants
by Magdalena Rutkowska, Monika Anna Olszewska, Joanna Kolodziejczyk-Czepas, Pawel Nowak and Aleksandra Owczarek
Molecules 2019, 24(12), 2289; https://doi.org/10.3390/molecules24122289 - 20 Jun 2019
Cited by 35 | Viewed by 4664
Abstract
Sorbus domestica leaves are a traditionally used herbal medicine recommended for the treatment of oxidative stress-related diseases. Dry leaf extracts (standardized by LC-MS/MS and LC-PDA) and nine model activity markers (polyphenols), were tested in scavenging assays towards six in vivo-relevant oxidants (O2 [...] Read more.
Sorbus domestica leaves are a traditionally used herbal medicine recommended for the treatment of oxidative stress-related diseases. Dry leaf extracts (standardized by LC-MS/MS and LC-PDA) and nine model activity markers (polyphenols), were tested in scavenging assays towards six in vivo-relevant oxidants (O2•−, OH, NO, H2O2, ONOO, HClO). Ascorbic acid (AA) and Trolox (TX) were used as positive standards. The most active extracts were the diethyl ether and ethyl acetate fractions with activities in the range of 3.61–20.03 µmol AA equivalents/mg, depending on the assay. Among the model compounds, flavonoids were especially effective in OH scavenging, while flavan-3-ols were superior in O2•− quenching. The most active constituents were quercetin, (−)-epicatechin, procyanidins B2 and C1 (3.94–24.16 µmol AA/mg), but considering their content in the extracts, isoquercitrin, (−)-epicatechin and chlorogenic acid were indicated as having the greatest influence on extract activity. The analysis of the synergistic effects between those three compounds in an O2•− scavenging assay demonstrated that the combination of chlorogenic acid and isoquercitrin exerts the greatest influence. The results indicate that the extracts possess a strong and broad spectrum of antioxidant capacity and that their complex composition plays a key role, with various constituents acting complementarily and synergistically. Full article
(This article belongs to the Special Issue The Antioxidant Capacities of Natural Products 2019)
Show Figures

Graphical abstract

15 pages, 50678 KB  
Article
Comparative Evaluation of the Antioxidant and Anti-Alzheimer’s Disease Potential of Coumestrol and Puerarol Isolated from Pueraria lobata Using Molecular Modeling Studies
by Prashamsa Koirala, Su Hui Seong, Hyun Ah Jung and Jae Sue Choi
Molecules 2018, 23(4), 785; https://doi.org/10.3390/molecules23040785 - 28 Mar 2018
Cited by 26 | Viewed by 6504
Abstract
The current study assesses the antioxidant effects of two similar isoflavonoids isolated from Pueraria lobata, coumestrol and puerarol, along with the cholinergic and amyloid-cascade pathways to mitigate Alzheimer’s disease (AD). Antioxidant activity was evaluated via 1,1-diphenyl-2-picryhydrazyl (DPPH) and peroxynitrite (ONOO) [...] Read more.
The current study assesses the antioxidant effects of two similar isoflavonoids isolated from Pueraria lobata, coumestrol and puerarol, along with the cholinergic and amyloid-cascade pathways to mitigate Alzheimer’s disease (AD). Antioxidant activity was evaluated via 1,1-diphenyl-2-picryhydrazyl (DPPH) and peroxynitrite (ONOO) scavenging ability further screened via ONOO-mediated nitrotyrosine. Similarly, acetyl- and butyrylcholinesterase (AChE/BChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitory activities were assessed together with docking and kinetic studies. Considering DPPH and ONOO scavenging activity, coumestrol (EC50 values of 53.98 and 1.17 µM) was found to be more potent than puerarol (EC50 values of 82.55 and 6.99 µM) followed by dose dependent inhibition of ONOO-mediated nitrotyrosine. Coumestrol showed pronounced AChE and BChE activity with IC50 values of 42.33 and 24.64 µM, respectively, acting as a dual cholinesterase (ChE) inhibitor. Despite having weak ChE inhibitory activity, puerarol showed potent BACE1 inhibition (28.17 µM). Kinetic studies of coumestrol showed AChE and BChE inhibition in a competitive and mixed fashion, whereas puerarol showed mixed inhibition for BACE1. In addition, docking simulations demonstrated high affinity and tight binding capacity towards the active site of the enzymes. In summary, we undertook a comparative study of two similar isoflavonoids differing only by a single aliphatic side chain and demonstrated that antioxidant agents coumestrol and puerarol are promising, potentially complementary therapeutics for AD. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop