Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = P. amaryllifolius

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5089 KiB  
Article
Pandanus Amaryllifolius Roxb. Polyphenol Extract Alleviates NAFLD via Regulating Gut Microbiota and AMPK/AKT/mTOR Signaling Pathway
by Jinji Lin, Fei Ren, Mengxu Zhu, Yibo Hu, Zhiao Zhao, Jianfei Pei, Haiming Chen, Weijun Chen, Qiuping Zhong, Ying Lyu, Rongrong He and Wenxue Chen
Foods 2025, 14(6), 1000; https://doi.org/10.3390/foods14061000 - 15 Mar 2025
Viewed by 760
Abstract
With the drastic changes in lifestyle, nonalcoholic fatty liver disease (NAFLD) has become a widespread health problem. Natural actives such as polyphenols have multi-target, multi-mechanism characteristics, and offer new opportunities for NAFLD treatment. This study established a high-fat diet (HFD)-induced NAFLD model in [...] Read more.
With the drastic changes in lifestyle, nonalcoholic fatty liver disease (NAFLD) has become a widespread health problem. Natural actives such as polyphenols have multi-target, multi-mechanism characteristics, and offer new opportunities for NAFLD treatment. This study established a high-fat diet (HFD)-induced NAFLD model in mice to investigate the molecular mechanism of Pandanus amaryllifolius Roxb. polyphenol extract (PAE) in alleviating NAFLD. The results showed that PAE significantly inhibited HFD-induced obesity, maintained glucose homeostasis, mitigated oxidative damage in liver tissue, and reduced liver steatosis. Moreover, PAE treatment remarkably reversed 16 endogenous DMs, and significantly affected glycerophospholipid metabolism, which increased the levels of phosphatidylcholine and phosphatidylethanolamine, and down-regulated choline and sn-glyceropl-3P. Further validation revealed that PAE was able to prevent NAFLD progression by regulating the AMPK/AKT/mTOR signaling pathway to enhance autophagy levels. Meanwhile, PAE treatment restored the balance of gut microbiota mainly by increasing the relative abundance of Bacteroidetes, decreasing the relative abundance of Firmicutes and the ratio of Firmicutes/Bacteroidetes. Overall, the findings highlight that the mechanism by which PAE alleviates NAFLD may be related to the regulation of the gut microbes and AMPK/AKT/mTOR signaling pathway, enriching the health-promoting effects of PAE on NAFLD. Full article
Show Figures

Figure 1

19 pages, 3039 KiB  
Article
Rubber-Based Agroforestry Ecosystems Enhance Soil Enzyme Activity but Exacerbate Microbial Nutrient Limitations
by Wenxian Xu, Yingying Zhang, Ashar Tahir, Yumiao Cao, Changgeng Kuang, Xinwei Guo, Rui Sun, Wenjie Liu, Zhixiang Wu and Qiu Yang
Forests 2024, 15(10), 1827; https://doi.org/10.3390/f15101827 - 19 Oct 2024
Cited by 2 | Viewed by 1400
Abstract
Agroforestry ecosystems are an efficient strategy for enhancing soil nutrient conditions and sustainable agricultural development. Soil extracellular enzymes (EEAs) are important drivers of biogeochemical processes. However, changes in EEAs and chemometrics in rubber-based agroforestry systems and their mechanisms of action are still not [...] Read more.
Agroforestry ecosystems are an efficient strategy for enhancing soil nutrient conditions and sustainable agricultural development. Soil extracellular enzymes (EEAs) are important drivers of biogeochemical processes. However, changes in EEAs and chemometrics in rubber-based agroforestry systems and their mechanisms of action are still not fully understood. Distribution of EEAs, enzymatic stoichiometry, and microbial nutrient limitation characteristics of rubber plantations under seven planting patterns (RM, rubber monoculture system; AOM, Hevea brasiliensis-Alpinia oxyphylla Miq; PAR, Hevea brasiliensis-Pandanus amaryllifolius Roxb; AKH, Hevea brasiliensis-Alpinia katsumadai Hayata; CAA, Hevea brasiliensis-Coffea Arabica; CCA, Hevea brasiliensis-Cinnamomum cassia (L.) D. Don, and TCA, Hevea brasiliensis-Theobroma Cacao) were analyzed to investigate the metabolic limitations of microorganisms and to identify the primary determinants that restrict nutrient limitation. Compared with rubber monoculture systems, agroforestry ecosystems show increased carbon (C)-acquiring enzyme (EEAC), nitrogen (N)-acquiring enzyme (EEAN), and phosphorus (P)-acquiring enzyme (EEAP) activities. The ecoenzymatic stoichiometry model demonstrated that all seven plantation patterns experienced C and N limitation. Compared to the rubber monoculture system, all agroforestry systems exacerbated the microbial limitations of C and N by reducing the vector angle and increasing vector length. P limitation was not detected in any plantation pattern. In agroforestry systems, progression from herbs to shrubs to trees through intercropping results in a reduction in soil microbial nutrient constraints. This is primarily because of the accumulation of litter and root biomass in tree-based systems, which enhances the soil nutrient content (e.g., soil organic carbon, total nitrogen, total phosphorus, and ammonium nitrogen) and accessibility. Conversely, as soil depth increased, microbial nutrient limitations tended to become more pronounced. Partial least squares path modelling (PLS-PM) indicated that nutrient ratios and soil total nutrient content were the most important factors influencing microbial C limitation (−0.46 and 0.40) and N limitation (−0.30 and −0.42). This study presented novel evidence regarding the constraints and drivers of soil microbial metabolism in rubber agroforestry systems. Considering the constraints of soil nutrients and microbial metabolism, intercropping of rubber trees with arboreal species is recommended over that of herbaceous species to better suit the soil environment of rubber plantation areas on Hainan Island. Full article
Show Figures

Figure 1

15 pages, 2396 KiB  
Article
Effects of Hevea brasiliensis Intercropping on the Volatiles of Pandanus amaryllifolius Leaves
by Ang Zhang, Zhiqing Lu, Huan Yu, Yaoyu Zhang, Xiaowei Qin, Xunzhi Ji, Shuzhen He, Ying Zong, Yiming Zhong and Lihua Li
Foods 2023, 12(4), 888; https://doi.org/10.3390/foods12040888 - 19 Feb 2023
Cited by 3 | Viewed by 2123
Abstract
Pandanus amaryllifolius Roxb. is a special tropical spice crop resource with broad development prospects. It is widely cultivated under a Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg. canopy to improve the comprehensive benefits to Hevea brasiliensis plantations in Hainan Provence, China. However, [...] Read more.
Pandanus amaryllifolius Roxb. is a special tropical spice crop resource with broad development prospects. It is widely cultivated under a Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg. canopy to improve the comprehensive benefits to Hevea brasiliensis plantations in Hainan Provence, China. However, the effects of intercropping with Hevea brasiliensis on the component number and relative contents of volatile substances in different categories in the Pandanus amaryllifolius leaves are still unknown. Therefore, a Hevea brasiliensis and Pandanus amaryllifolius intercropping experiment was set up to clarify the differences between several cultivated patterns on volatile substances in the Pandanus amaryllifolius leaves, and the key regulatory factors of volatile substances. The results showed that the soil pH was significantly decreased, while soil bulk density, alkali-hydrolyzable nitrogen and available phosphorus contents were significantly increased under the intercropping pattern. The component numbers of esters in volatile substances were increased by 6.20%, while the component numbers of ketones were decreased by 4.26% under the intercropping pattern. Compared with the Pandanus amaryllifolius monoculture, the relative contents of pyrroles, esters and furanones were significantly increased by 8.83%, 2.30% and 8.27%, respectively, while the relative contents of ketones, furans and hydrocarbons were decreased by 1.01%, 10.55% and 9.16% under the intercropping pattern, respectively. The relative contents of pyrroles, esters, furanones, ketones, furans and hydrocarbons were associated with changes in soil pH, soil available phosphorus content and air temperature. The results indicated that the reduction in soil pH and enhancement in soil-available phosphorus may be the main reasons for promoting the relative content of pyrroles and reducing the relative content of hydrocarbons under an intercropping pattern. Overall, Hevea brasiliensis intercropping with Pandanus amaryllifolius could not only improve soil properties, but also significantly increase the relative contents of the main volatile substances in Pandanus amaryllifolius leaves, which could provide a theoretical basis for the application and promotion of high-quality production patterns of Pandanus amaryllifolius. Full article
Show Figures

Figure 1

11 pages, 1229 KiB  
Communication
Pandanus amaryllifolius Exhibits In Vitro Anti-Amyloidogenic Activity and Promotes Neuroprotective Effects in Amyloid-β-Induced SH-SY5Y Cells
by Mario A. Tan, Hayato Ishikawa and Seong Soo A. An
Nutrients 2022, 14(19), 3962; https://doi.org/10.3390/nu14193962 - 24 Sep 2022
Cited by 11 | Viewed by 3866
Abstract
Accumulation of amyloid-beta (Aβ) plaques leading to oxidative stress, mitochondrial damage, and cell death is one of the most accepted pathological hallmarks of Alzheimer’s disease (AD). Pandanus amaryllifolius, commonly recognized as fragrant screw pine due to its characteristic smell, is widely [...] Read more.
Accumulation of amyloid-beta (Aβ) plaques leading to oxidative stress, mitochondrial damage, and cell death is one of the most accepted pathological hallmarks of Alzheimer’s disease (AD). Pandanus amaryllifolius, commonly recognized as fragrant screw pine due to its characteristic smell, is widely distributed in Southeast Asia and is consumed as a food flavor. In search for potential anti-AD agents from terrestrial sources, P. amaryllifolius was explored for its in vitro anti-amyloidogenic and neuroprotective effects. Thioflavin T (ThT) assay and the high-throughput screening multimer detection system (MDS-HTS) assay were used to evaluate the extracts’ potential to inhibit Aβ aggregations and oligomerizations, respectively. The crude alcoholic extract (CAE, 50 μg/mL) and crude base extract (CBE, 50 μg/mL) obstructed the Aβ aggregation. Interestingly, results revealed that only CBE inhibited the Aβ nucleation at 100 μg/mL. Both CAE and CBE also restored the cell viability, reduced the level of reactive oxygen species, and reversed the mitochondrial dysfunctions at 10 and 20 μg/mL extract concentrations in Aβ-insulted SY-SY5Y cells. In addition, the unprecedented isolation of nicotinamide from P. amaryllifolius CBE is a remarkable discovery as one of its potential bioactive constituents against AD. Hence, our results provided new insights into the promising potential of P. amaryllifolius extracts against AD and further exploration of other prospective bioactive constituents. Full article
(This article belongs to the Special Issue Functional Properties of Natural Products and Human Health)
Show Figures

Figure 1

18 pages, 1539 KiB  
Article
Ultrasonic Extraction of 2-Acetyl-1-Pyrroline (2AP) from Pandanus amaryllifolius Roxb. Using Ethanol as Solvent
by Aisyah Nur Hanis Azhar, Nurul Aini Amran, Suzana Yusup and Mohd Hizami Mohd Yusoff
Molecules 2022, 27(15), 4906; https://doi.org/10.3390/molecules27154906 - 31 Jul 2022
Cited by 12 | Viewed by 3998
Abstract
2-acetyl-1-pyrroline (2AP) is the compound that gives out the typical aroma and flavour of pandan leaves (Pandanus amaryllifolius Roxb.). This research incorporates ultrasonic extraction to extract the aromatic compound in pandan leaves. The parameters varied in this study are the extraction [...] Read more.
2-acetyl-1-pyrroline (2AP) is the compound that gives out the typical aroma and flavour of pandan leaves (Pandanus amaryllifolius Roxb.). This research incorporates ultrasonic extraction to extract the aromatic compound in pandan leaves. The parameters varied in this study are the extraction time, sonicator amplitude, concentration of solvent and the mass of pandan leaves. The experiment was conducted using a central composite design (CCD) model generated by the response surface methodology (RSM). From the extraction process, it can be deduced that the effect of leaves’ mass is comparably higher than other parameters, while sonicator amplitude gives the most negligible impact on the process. The obtained p-value was 0.0014, which was less than 0.05. The high R-squared 0.9603 and adjusted R-squared 0.8809 indicate the model is well agreed with the actual data. The optimal control variables of ultrasonic extraction of 2AP are at an extraction time of 20 min, 60% of solvent concentration, amplitude of 25% and 12.5 g of pandan leaves, which produced 60.51% of yield of the extract and 1.43 ppm of 2AP. It is found that the mass of pandan leaves and the concentration of solvent have a significant impact on the extraction process of 2AP. Full article
Show Figures

Figure 1

21 pages, 4016 KiB  
Article
Drought Stress Induces Morpho-Physiological and Proteome Changes of Pandanus amaryllifolius
by Muhammad Asyraf Mohd Amnan, Wan Mohd Aizat, Fiqri Dizar Khaidizar and Boon Chin Tan
Plants 2022, 11(2), 221; https://doi.org/10.3390/plants11020221 - 15 Jan 2022
Cited by 31 | Viewed by 5193
Abstract
Drought is one of the significant threats to the agricultural sector. However, there is limited knowledge on plant response to drought stress and post-drought recovery. Pandanus amaryllifolius, a moderate drought-tolerant plant, is well-known for its ability to survive in low-level soil moisture [...] Read more.
Drought is one of the significant threats to the agricultural sector. However, there is limited knowledge on plant response to drought stress and post-drought recovery. Pandanus amaryllifolius, a moderate drought-tolerant plant, is well-known for its ability to survive in low-level soil moisture conditions. Understanding the molecular regulation of drought stress signaling in this plant could help guide the rational design of crop plants to counter this environmental challenge. This study aimed to determine the morpho-physiological, biochemical, and protein changes of P. amaryllifolius in response to drought stress and during recovery. Drought significantly reduced the leaf relative water content and chlorophyll content of P. amaryllifolius. In contrast, relative electrolyte leakage, proline and malondialdehyde contents, and the activities of antioxidant enzymes in the drought-treated and recovered samples were relatively higher than the well-watered sample. The protein changes between drought-stressed, well-watered, and recovered plants were evaluated using tandem mass tags (TMT)-based quantitative proteomics. Of the 1415 differentially abundant proteins, 74 were significantly altered. The majority of proteins differing between them were related to carbon metabolism, photosynthesis, stress response, and antioxidant activity. This is the first study that reports the protein changes in response to drought stress in Pandanus. The data generated provide an insight into the drought-responsive mechanisms in P. amaryllifolius. Full article
(This article belongs to the Special Issue Water Stress and Desiccation Tolerance in Plants Ⅱ)
Show Figures

Figure 1

18 pages, 6180 KiB  
Article
Fragrance in Pandanus amaryllifolius Roxb. Despite the Presence of a Betaine Aldehyde Dehydrogenase 2
by Vacha Bhatt, Vitthal T. Barvkar, Agnelo Furtado, Robert J. Henry and Altafhusain Nadaf
Int. J. Mol. Sci. 2021, 22(13), 6968; https://doi.org/10.3390/ijms22136968 - 28 Jun 2021
Cited by 8 | Viewed by 3315
Abstract
Pandanus amaryllifolius Roxb. accumulates the highest concentration of the major basmati aroma volatile 2-acetyl-1-pyrroline (2AP) in the plant kingdom. The expression of 2AP is correlated with the presence of a nonfunctional betaine aldehyde dehydrogenase 2(BADH2) in aromatic rice and other plant species. In [...] Read more.
Pandanus amaryllifolius Roxb. accumulates the highest concentration of the major basmati aroma volatile 2-acetyl-1-pyrroline (2AP) in the plant kingdom. The expression of 2AP is correlated with the presence of a nonfunctional betaine aldehyde dehydrogenase 2(BADH2) in aromatic rice and other plant species. In the present study, a full-length BADH2 sequence was reconstructed from the transcriptome data of leaf tissue from P. amaryllifolius seedlings. Based on this sequence, a 1509 bp coding sequence was defined that encoded a 54 kD PaBADH2 protein. This revealed the presence of a full-length BADH2 protein in P. amaryllifolius. Moreover, quantitative real-time PCR analysis, combined with BADH2 enzyme activity, confirmed the expression and functionality of the PaBADH2 protein. To understand the apparent structural variation, docking analysis was carried out in which protein showed a good affinity with both betaine aldehyde (BAD) and γ-aminobutyraldehyde (GAB-ald) as substrates. Overall, the analysis showed the presence of a functional BADH2, along with substantial 2AP synthesis (4.38 ppm). Therefore, we conclude that unlike all other plants studied to date, 2AP biosynthesis in P. amaryllifolius is not due to the inactivation of BADH2. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

8 pages, 1399 KiB  
Article
Antioxidant Properties of Thai Traditional Herbal Teas
by Pratchaya Tipduangta, Jakaphun Julsrigival, Kritsaya Chaithatwatthana, Nusrin Pongterdsak, Pramote Tipduangta and Sunee Chansakaow
Beverages 2019, 5(3), 44; https://doi.org/10.3390/beverages5030044 - 2 Jul 2019
Cited by 9 | Viewed by 7648
Abstract
Recipes for Thai traditional herbal teas have been formulated based on Thai traditional medicine, which tries to achieve a balance of the body’s elements (fire, water, wind and earth) in each season. This study aims to assess the benefits of Thai traditional herbal [...] Read more.
Recipes for Thai traditional herbal teas have been formulated based on Thai traditional medicine, which tries to achieve a balance of the body’s elements (fire, water, wind and earth) in each season. This study aims to assess the benefits of Thai traditional herbal teas through evaluating their antioxidant properties and measuring the satisfaction levels of healthy volunteers. Antioxidant activity tests performed on 11 tea recipes and on green tea (positive control) included 2,2-diphenyl-1-picrylhydrazyl (DPPH), a radical scavenging assay and a 2,2’-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) assay. In addition, total phenolic contents were determined using a Folin-Ciocalteu assay. Tests of satisfaction were performed on volunteer subjects aged between 18 and 30 years old, using the criteria of color, flavor, taste and overall satisfaction. Among the 11 tea recipes tested, the summer recipe 1 containing Aegle marmelos (L.) Correa, Stevia rebaudiana (Bert.) Bertoni, Pandanus amaryllifolius Roxb. and Morus alba L. demonstrated the most promising antioxidant properties (p > 0.05) and a phenolic content (p > 0.05), which was comparable to green tea. Furthermore, it got the highest satisfaction scores in every assessed category. Therefore, this study shows that Thai traditional herbal teas, developed based on the concepts of Thai traditional medicine, could be a good choice for people looking for health-promoting beverages. Full article
(This article belongs to the Special Issue Antioxidant Activity Research and Bioactive Compounds in Beverages)
Show Figures

Graphical abstract

Back to TopTop