Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (182)

Search Parameters:
Keywords = Small Angle Light Scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 2695 KB  
Review
Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Evaluation of Spectroscopic Methods for Examining Structure and Dynamics of Nanosponges
by Bartłomiej Pyrak, Karolina Rogacka-Pyrak and Tomasz Gubica
Int. J. Mol. Sci. 2025, 26(19), 9342; https://doi.org/10.3390/ijms26199342 - 24 Sep 2025
Viewed by 16
Abstract
Cyclodextrin-based nanosponges (CDNSs) are novel polymers composed of cross-linked cyclodextrin (CD) macrocyclic units, whose characteristics make them great candidates for drug delivery systems with adjustable properties for the drug release process. Examination of the molecular structure and dynamics of CDNSs is a necessary [...] Read more.
Cyclodextrin-based nanosponges (CDNSs) are novel polymers composed of cross-linked cyclodextrin (CD) macrocyclic units, whose characteristics make them great candidates for drug delivery systems with adjustable properties for the drug release process. Examination of the molecular structure and dynamics of CDNSs is a necessary starting point in the first step toward their broad application. Spectroscopic methods are effective analytical tools for probing the structure–property relationships of polymer structures. Infrared (IR) and Raman spectroscopies provide insight into the behavior of hydrogen bond (H-bond) networks influencing the properties of CDNS polymeric networks. Scattering techniques such as inelastic neutron scattering (INS) and Brillouin light scattering (BLS) probe elastic properties, while small-angle neutron scattering (SANS) examines the structural inhomogeneities and water sorption abilities of CDNS materials. Complete evaluation is possible using nuclear magnetic resonance (NMR), which can provide data on CDNS network dynamics. This article summarizes the results of a wide examination of CDNSs with the use of spectroscopic methods and reveals the links between the microscopic behavior and macroscopic properties of CDNSs, enabling the customization of their properties for various biomedical purposes. Full article
(This article belongs to the Special Issue Cyclodextrins: Properties and Applications, 3rd Edition)
Show Figures

Figure 1

26 pages, 3940 KB  
Article
In Vitro Proof-of-Concept Study: Lidocaine and Epinephrine Co-Loaded in a Mucoadhesive Liquid Crystal Precursor System for Topical Oral Anesthesia
by Giovana Maria Fioramonti Calixto, Aylla Mesquita Pestana, Arthur Antunes Costa Bezerra, Marcela Tavares Luiz, Jonatas Lobato Duarte, Marlus Chorilli and Michelle Franz-Montan
Pharmaceuticals 2025, 18(8), 1166; https://doi.org/10.3390/ph18081166 - 6 Aug 2025
Viewed by 761
Abstract
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and [...] Read more.
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and characterized a novel lidocaine and epinephrine co-loaded liquid crystalline precursor system (LCPS) for topical anesthesia. The formulation was structurally characterized using polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). Rheological behavior was assessed through continuous and oscillatory rheological analyses. Texture profile analysis, in vitro mucoadhesive force evaluation, in vitro drug release and permeation studies, and an in vivo toxicity assay using the chicken chorioallantoic membrane (CAM) model were also conducted. Results: PLM and SAXS confirmed the transition of the LCPS from a microemulsion to a lamellar liquid crystalline structure upon contact with artificial saliva. This transition enhanced formulation consistency by over 100 times and tripled mucoadhesion strength. The LCPS also provided controlled drug release, reducing permeation flow by 93% compared to the commercial formulation. Importantly, the CAM assay indicated that the LCPS exhibited similar toxicity to the commercial product. Conclusions: The developed LCPS demonstrated promising physicochemical and biological properties for topical anesthesia, including enhanced mucoadhesion, controlled drug delivery, and acceptable biocompatibility. These findings support its potential for in vivo application and future clinical use to reduce pain during dental anesthesia procedures. Full article
(This article belongs to the Special Issue Advances in Topical and Mucosal Drug Delivery Systems)
Show Figures

Graphical abstract

14 pages, 1885 KB  
Article
Insight into the Mechanism for the Emergence of Thermally Stable Reflection Colors from Cholesteric Liquid Crystals of Etherified Ethyl Cellulose Derivatives and Methacrylic Acid
by Wakako Kishi, Naoto Iwata and Seiichi Furumi
Molecules 2025, 30(13), 2839; https://doi.org/10.3390/molecules30132839 - 2 Jul 2025
Viewed by 416
Abstract
Ethyl cellulose (EC) and its derivatives are known to exhibit the cholesteric liquid crystal (CLC) phase with visible light reflection in a lyotropic manner after adding appropriate solvents. Generally, the reflection peak of conventional CLCs is easily wavelength shifted by temperature. However, our [...] Read more.
Ethyl cellulose (EC) and its derivatives are known to exhibit the cholesteric liquid crystal (CLC) phase with visible light reflection in a lyotropic manner after adding appropriate solvents. Generally, the reflection peak of conventional CLCs is easily wavelength shifted by temperature. However, our previous study showed that the reflection wavelength can be maintained even after heating for the lyotropic CLCs of completely pentyl-etherified EC derivatives with methacrylic acid (MAA). However, the emergence of thermally stable reflection colors still remains obscure in the mechanism at the mesoscopic scale. In this study, we evaluated the temperature dependence of the reflection wavelength for the lyotropic CLCs of a series of completely etherified EC derivatives possessing different alkoxy chains by addition of MAA. It was found that butyl- or pentyl-etherified EC derivatives are suitable for preparation of the lyotropic CLCs with visible Bragg reflection, whereas visible light reflection cannot be observed for the other mixtures of propyl- and hexyl-etherified EC derivatives with MAA. Furthermore, it turned out that lyotropic CLCs of pentyl-etherified EC derivatives with MAA show the smallest temperature dependence of their reflection wavelength. Based on the results of ultra-small-angle X-ray scattering (USAXS) and small-angle X-ray scattering (SAXS) measurements of CLC films, we presumed that the emergence of thermally stable reflection colors from the lyotropic CLCs of pentyl-etherified EC derivatives with MAA arises from their phase separation at the mesoscopic scale by changing the temperature. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

19 pages, 2636 KB  
Article
Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties
by Pradip K. Bhowmik, David King, Haesook Han, András F. Wacha and Matti Knaapila
Polymers 2025, 17(13), 1785; https://doi.org/10.3390/polym17131785 - 27 Jun 2025
Viewed by 486
Abstract
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium [...] Read more.
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium salt)s-fluorene containing 9,9-bis(4-aminophenyl)fluorene moieties with various organic counterions that were synthesized using ring-transmutation polymerization and metathesis reactions, which are non-conjugated polyelectrolytes. Their chemical structures were characterized by Fourier transform infrared (FTIR), proton (1H) and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers, and elemental analysis. They exhibited polyelectrolytic behavior in dimethyl sulfoxide. Their lyotropic liquid-crystalline phases were examined by polarizing optical microscopy (POM) and small angle X-ray scattering (SAXS) studies. Their emission spectra exhibited a positive solvatochromism on changing the polarity of solvents. They emitted greenish-yellow lights in polar organic solvents. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0–90%), whose λem peaks were blue shifted. Full article
(This article belongs to the Special Issue Smart Polymers for Stimuli-Responsive Devices)
Show Figures

Graphical abstract

10 pages, 2871 KB  
Article
Characterization of Multi-Pass Enhanced Raman Spectroscopy for Gaseous Measurement
by Miao Fan, Huinan Yang and Jun Chen
Analytica 2025, 6(2), 13; https://doi.org/10.3390/analytica6020013 - 16 Apr 2025
Viewed by 1071
Abstract
With the rise in global temperatures, it is of great significance to achieve rapid and accurate detection of greenhouse gases, such as carbon dioxide and methane. Raman spectroscopy not only overcomes the weakness of absorption spectroscopy in simultaneously measuring homonuclear diatomic molecules but [...] Read more.
With the rise in global temperatures, it is of great significance to achieve rapid and accurate detection of greenhouse gases, such as carbon dioxide and methane. Raman spectroscopy not only overcomes the weakness of absorption spectroscopy in simultaneously measuring homonuclear diatomic molecules but also enables the simultaneous detection of multiple gases using a single-wavelength laser. However, due to the small Raman scattering cross-section and weak intensity of molecules, its application in gas detection is limited. To enhance the intensity of Raman scattering, this paper designs and constructs a multi-pass enhanced Raman spectroscopy setup. This study focuses on the effects of Raman scattering collection geometry, laser multi-pass patterns, and laser polarization relative to the Raman collection direction on signal intensity. Investigations into Raman scattering collection angles of 30°, 60°, and 90° reveal that the Raman scattering signal intensity increases as the collection angle decreases. Different laser multi-pass patterns also impact the signal, with the near-concentric linear multi-pass pattern found to collect more signals. To minimize the influence of excitation light on the signal, a side collection system is employed. Experiments show that the Raman scattering signal is stronger when the laser polarization is perpendicular to the collection direction. This study achieves overall system performance enhancement through coordinated optimization of multiple physical mechanisms, including Raman scattering collection geometry, laser multi-pass patterns, and laser polarization characteristics. The optimized setup was employed to characterize the laser power dependence for nitrogen, oxygen, and carbon dioxide detection. The results showed that the Raman scattering intensity varied linearly with the laser power of the gases, with linear fitting goodness R2 values of 0.9902, 0.9848, and 0.9969, respectively. Finally, by configuring different concentrations of carbon dioxide gas using nitrogen, it was found that the Raman scattering intensity varied linearly with the concentration of carbon dioxide, with a linear fitting goodness R2 of 0.9812. The system achieves a CO2 detection limit of 500 ppm at 200 s integration time, meeting the requirements for greenhouse gas emission monitoring applications. Full article
(This article belongs to the Special Issue Green Analytical Techniques and Their Applications)
Show Figures

Figure 1

23 pages, 5930 KB  
Article
Modulation of Structural and Physical-Chemical Properties of Fish Gelatin Hydrogel by Natural Polysaccharides
by Aidar T. Gubaidullin, Aliya I. Galeeva, Yuriy G. Galyametdinov, Georgiy G. Ageev, Alexey A. Piryazev, Dimitri A. Ivanov, Elena A. Ermakova, Alena A. Nikiforova, Svetlana R. Derkach, Olga S. Zueva and Yuriy F. Zuev
Int. J. Mol. Sci. 2025, 26(7), 2901; https://doi.org/10.3390/ijms26072901 - 22 Mar 2025
Cited by 1 | Viewed by 1398
Abstract
Gelatin, a water-soluble protein, shows unique gellification properties, which determine the active commercial availability of gelatin hydrogels in modern alimentary, cosmetic, and pharmaceutical applications. The traditional sources of gelatin for industrial technologies are pork and bovine skin and bones, which sometimes produce religious [...] Read more.
Gelatin, a water-soluble protein, shows unique gellification properties, which determine the active commercial availability of gelatin hydrogels in modern alimentary, cosmetic, and pharmaceutical applications. The traditional sources of gelatin for industrial technologies are pork and bovine skin and bones, which sometimes produce religious and some other restrictions. In recent years, there has been a significant increase in the production of gelatin from alternative sources, such as raw fish materials. Unfortunately, fish gelatin is characterized by weak gelling ability and a decrease in gelation and melting temperature, which are a consequence of the amino acid composition and structural features of fish gelatin. One of the ways to strengthen the natural gelling properties of fish gelatin is the structural modification of gelatin hydrogels by the introduction of polysaccharides of various natural origins. We have studied the association of our laboratory-made fish gelatin with three polysaccharides, namely, κ-carrageenan, alginate, and chitosan, which have distinct chemical structures and gelling capabilities. Structural features of the studied systems were analyzed by small-angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). We applied computer modeling of molecular interactions between fish gelatin and polysaccharides by means of molecular docking and molecular dynamics approaches. The existence of a correlation between the structure of gelatin-polysaccharide systems and their physicochemical properties was demonstrated by wetting angles (flow angles) and dynamic light scattering (DLS) studies of hydrodynamic sizes and surface ζ-potential. Full article
(This article belongs to the Special Issue New Trends and Challenges in Polysaccharide Biomaterials)
Show Figures

Figure 1

27 pages, 3819 KB  
Article
The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly
by Mohit Agarwal, Alexander Zika, Müge Yücel, Ralf Schweins, Joachim Kohlbrecher and Franziska Gröhn
Polymers 2025, 17(2), 170; https://doi.org/10.3390/polym17020170 - 11 Jan 2025
Cited by 1 | Viewed by 1752
Abstract
pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic [...] Read more.
pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole–dipole interactions provides well-defined assemblies within a broad size range (10 nm–1 μm) with various shapes. The size and shape of these assemblies were determined using dynamic and static light scattering (DLS/SLS) and small-angle neutron scattering (SANS); ζ-potential measurements were performed to elucidate the charge characteristics, revealing the effective surface charge density of the nano-objects as an important parameter in the size and shape control. UV–vis spectroscopy and isothermal titration calorimetry (ITC) were employed to investigate the interaction on a molecular level and from a thermodynamic point of view. The results show that the amount of isomerized cis dye depends on the dendrimer generation because of a photoprotective effect through electrostatics for lower generations and through dipole–dipole interactions for higher generations; as the cis dye and trans dye bind with different strength, the amount of cis dye then again encodes the charge density and thereby the particle size and shape. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

19 pages, 1622 KB  
Article
Saponins Effect on Human Insulin Amyloid Aggregation
by Eleonora Mari, Silvia Vilasi, Paolo Moretti, Maria Rosalia Mangione, Giorgia Giorgini, Roberta Galeazzi and Maria Grazia Ortore
Biomolecules 2025, 15(1), 40; https://doi.org/10.3390/biom15010040 - 31 Dec 2024
Viewed by 1723
Abstract
The misfolding and amyloid aggregation of proteins have been attracting scientific interest for a few decades, due to their link with several diseases, particularly neurodegenerative diseases. Proteins can assemble and result in insoluble aggregates that, together with intermediate oligomeric species, modify the extracellular [...] Read more.
The misfolding and amyloid aggregation of proteins have been attracting scientific interest for a few decades, due to their link with several diseases, particularly neurodegenerative diseases. Proteins can assemble and result in insoluble aggregates that, together with intermediate oligomeric species, modify the extracellular environment. Many efforts have been and are devoted to the search for cosolvents and cosolutes able to interfere with amyloid aggregation. In this work, we intensively study the effect of saponins, bioactive compounds, on human insulin aggregation. To monitor the kinetic of amyloid aggregation following secondary structure changes, we perform fluorescence and UV-Visible absorption spectroscopies, using Thioflavin T and Congo Red as amyloid specific probes, and Circular Dichroism. To study the overall structural features and size of aggregates, we perform Synchrotron Small-Angle X-ray Scattering and Dynamic Light Scattering experiments. The morphology of the aggregates was assessed by Atomic Force Microscopy. To deepen the understanding of the saponins interaction with insulin, a Molecular Dynamics investigation is performed, too. The reported data demonstrate that saponins interfere with the amyloid aggregation by inducing a strong inhibition on the formation of insulin fibrils, likely through specific interactions with insulin monomers. A dose-dependent effect is evident, and amyloid inhibition is already clear when saponins are just 0.01% w/w in solution. We suggest that saponins, which are natural metabolites present in a wide range of foods ranging from grains, pulses, and green leaves to sea stars and cucumbers, can be promising metabolites to inhibit human insulin aggregation. This basic research work can pave the way to further investigations concerning insulin amyloidosis, suggesting the use of saponins as amyloid inhibitors and/or stabilizing agents in solution. Full article
(This article belongs to the Collection Feature Papers in Molecular Structure and Dynamics)
Show Figures

Graphical abstract

16 pages, 9220 KB  
Article
Microbeam X-ray and Scanning Electron Microscopic Analyses on Sector-Banded Spherulites of Poly(p-dioxanone) Justified with Pixelated Iridescence
by Eamor M. Woo, Chia-Hui Lin, Selvaraj Nagarajan and Chean-Cheng Su
Polymers 2024, 16(19), 2736; https://doi.org/10.3390/polym16192736 - 27 Sep 2024
Viewed by 1151
Abstract
Poly(p-dioxanone) (PPDO) is crystallized with amorphous poly(p-vinyl phenol) (PVPh) and tannic acid (TA) as co-diluents to regulate and induce dendritic-ringed PPDO spherulites, with spoke- or sector-bands, aiming for convenience of analyses on interior lamellar assembly. Morphologies and interior lamellar arrangement leading to the [...] Read more.
Poly(p-dioxanone) (PPDO) is crystallized with amorphous poly(p-vinyl phenol) (PVPh) and tannic acid (TA) as co-diluents to regulate and induce dendritic-ringed PPDO spherulites, with spoke- or sector-bands, aiming for convenience of analyses on interior lamellar assembly. Morphologies and interior lamellar arrangement leading to the peculiar rings on individual dendrites are evaluated by using polarized-light microscopy (PLM) and scanning electron microscope (SEM). Combinatory microbeam small-/wide-angle X-ray scattering (SAXS/WAXS) analyses further confirm the unique assembly patterns in periodic cycles. Alternate gratings are packed with periodic ridges composed of feather-like branches and the valley is featured with some embossed textures. The periodic gratings in the ringed spokes resemble those in nature’s structured coloration and are proven to display light-interference iridescence. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

18 pages, 5769 KB  
Article
Study on the Structural Features of Eight Dendrobium Polysaccharides and Their Protective Effects on Gastric Mucosa
by Haonan Wang, Ying Wang, Yuanxi Liu, Jinxin Xie, Yazhong Zhang, Hongyu Jin, Feng Wei and Shuangcheng Ma
Foods 2024, 13(18), 3011; https://doi.org/10.3390/foods13183011 - 23 Sep 2024
Cited by 5 | Viewed by 1750
Abstract
This study aimed to analyze the structure of polysaccharides from eight different Dendrobium species and their protective effects on gastric mucosa. Ultraviolet (UV) analysis showed that the contents of eight polysaccharides ranged from 51.89 ± 6.91% to 80.57 ± 11.63%; the degree of [...] Read more.
This study aimed to analyze the structure of polysaccharides from eight different Dendrobium species and their protective effects on gastric mucosa. Ultraviolet (UV) analysis showed that the contents of eight polysaccharides ranged from 51.89 ± 6.91% to 80.57 ± 11.63%; the degree of acetylation ranged from 0.17 ± 0.03 to 0.48 ± 0.03. High-performance liquid chromatography (HPLC) results showed that these polysaccharides were mainly composed of mannose (Man) and glucose (Glc) with a small amount of galactose (Gal) and arabinose (Ara), and the monosaccharide ratios of different Dendrobium species were different. High-performance size exclusion chromatography—multi angle light scattering—refractive index detector (HPSEC-MALS-RID) showed that the molecular weight (Mw) of all Dendrobium polysaccharides was >1 × 105 Da; D. huoshanense had the lowest molecular weight. Subsequently, an ethanol injured GES-1 cell model was constructed to evaluate the gastric mucosal protective potential of polysaccharides from eight different Dendrobium species. The results showed that the protective effect of the low concentration 50 μg/mL DHP treatment group was similar to that of the control group (p > 0.05), and the cell viability could reach 97.32% of that of the control group. Based on the polysaccharide composition, different kinds of Dendrobium have different degrees of migration and repair effects on GES-1 damaged cells, and the effect of DHP is slightly better than that of other varieties (83.13 ± 1.05%). Additionally, Dendrobium polysaccharides alleviated ethanol-induced oxidative stress and inflammatory response in gastric mucosal cells by enhancing the activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) and reducing the levels of malondialdehyde and reactive oxygen species. Overall, DHP can most effectively protect gastric mucosa. These findings enhance our understanding of the relationship between the structure and biological activity of Dendrobium polysaccharides, providing a foundation for the quality control of Dendrobium. Furthermore, these findings offer theoretical support for the development of Dendrobium polysaccharides as nutraceuticals to treat digestive system diseases. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

13 pages, 2817 KB  
Article
Structure–Elasticity Relationships in Hybrid-Carrageenan Hydrogels Studied by Image Dynamic Light Scattering, Ultra-Small-Angle Light Scattering and Dynamic Rheometry
by Amine Ben Yahia, Adel Aschi, Bruno Faria and Loic Hilliou
Materials 2024, 17(17), 4331; https://doi.org/10.3390/ma17174331 - 31 Aug 2024
Viewed by 1373
Abstract
Hybrid-carrageenan hydrogels are characterized using novel techniques based on high-resolution speckle imaging, namely image dynamic light scattering (IDLS) and ultra-small-angle light scattering (USALS). These techniques, used to probe the microscopic structure of the system in sol–gel phase separation and at different concentrations in [...] Read more.
Hybrid-carrageenan hydrogels are characterized using novel techniques based on high-resolution speckle imaging, namely image dynamic light scattering (IDLS) and ultra-small-angle light scattering (USALS). These techniques, used to probe the microscopic structure of the system in sol–gel phase separation and at different concentrations in the gel phase, give access to a better understanding of the network’s topology on the basis of fractals in the dense phase. Observations of the architecture and the spatial and the size distributions of gel phase and fractal dimension were performed by USALS. The pair-distance distribution function, P(r), extracted from USALS patterns, is a new methodology of calculus for determining the network’s internal size with precision. All structural features are systematically compared with a linear and non-linear rheological characterization of the gels and structure–elasticity relationships are identified in the framework of fractal colloid gels in the diffusion limit. Full article
(This article belongs to the Special Issue Modification and Processing of Biodegradable Polymers (Volume II))
Show Figures

Figure 1

17 pages, 5985 KB  
Article
Characterization of Nanoparticles in Drinking Water Using Field-Flow Fractionation Coupled with Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry
by Talie Zarei, Marcos B. A. Colombo, Elmar C. Fuchs, Herman L. Offerhaus, Denis Gebauer and Luewton L. F. Agostinho
Water 2024, 16(17), 2419; https://doi.org/10.3390/w16172419 - 27 Aug 2024
Cited by 1 | Viewed by 1885
Abstract
The current absence of well-established and standardized methods for characterizing submicrometer- and nano-sized particles in water samples presents a significant analytical challenge. With the increasing utilization of nanomaterials, the potential for unintended exposure escalates. The widespread and persistent pollution of water by micro- [...] Read more.
The current absence of well-established and standardized methods for characterizing submicrometer- and nano-sized particles in water samples presents a significant analytical challenge. With the increasing utilization of nanomaterials, the potential for unintended exposure escalates. The widespread and persistent pollution of water by micro- and nanoplastics globally is a concern that demands attention, not only to reduce pollution but also to develop methods for analyzing these pollutants. Additionally, the analysis of naturally occurring nano entities such as bubbles and colloidal matter poses challenges due to the lack of systematic and consistent methodologies. This study presents Asymmetric Flow Field-Flow Fractionation (AF4) separation coupled with a UV-VIS spectrometer followed by Multi-Angle Light Scattering (MALS) for detection and size characterization of nanometric entities. It is coupled with an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) for elemental analysis. Water samples from different sources, such as untreated mountain spring water, groundwater, and bottled drinking water, were analyzed. The system was calibrated using pure particle standards of different metallic compositions. Our study demonstrates the capability of AF4-UV-MALS-ICP-MS to detect metals such as Al, Ba, Cu, and Zn in particles of around 200 nm diameter and Mg associated with very small particles between 1.5 and 10 nm in different drinking water samples. Full article
Show Figures

Figure 1

12 pages, 2749 KB  
Article
Association of Thermoresponsive Diblock Copolymer PDEGMA-b-PDIPAEMA in Aqueous Solutions: The Influence of Terminal Groups
by Adam Škorňa, Dimitrios Selianitis, Stergios Pispas and Miroslav Štěpánek
Polymers 2024, 16(15), 2102; https://doi.org/10.3390/polym16152102 - 24 Jul 2024
Viewed by 1116
Abstract
Aqueous solutions of a thermoresponsive diblock copolymer poly(di-[ethylene glycol] methyl ether methacrylate)-b-poly(2-[diisopropylamino] ethyl methacrylate) (PDEGMA-b-PDIPAEMA) were studied by static, dynamic and electrophoretic light scattering, small-angle X-ray scattering and differential scanning calorimetry. Thermoresponsive behavior of PDEGMA-b-PDIPAEMA was investigated [...] Read more.
Aqueous solutions of a thermoresponsive diblock copolymer poly(di-[ethylene glycol] methyl ether methacrylate)-b-poly(2-[diisopropylamino] ethyl methacrylate) (PDEGMA-b-PDIPAEMA) were studied by static, dynamic and electrophoretic light scattering, small-angle X-ray scattering and differential scanning calorimetry. Thermoresponsive behavior of PDEGMA-b-PDIPAEMA was investigated at two pH values, pH = 2, at which the terminal carboxylic group of the PDEGMA chain and the PDIPAEMA block are protonated, and pH = 7, where the carboxyl terminal group is ionized while the PDIPAEMA block is partially deprotonated and more hydrophobic. Both at pH = 2 and 7, PDEGMA-b-PDIPAEMA copolymer underwent extensive association (the size of the aggregates was between 100 and 300 nm), indicating strong interchain interactions. While the measurements confirmed thermoresponsive behavior of PDEGMA-b-PDIPAEMA at pH = 7, no changes in the association with temperature were observed at pH 2 as the thermoresponsivity of PDEGMA was suppressed by hydrogen bonding between carboxylic groups and PDEGMA segments, as well as due to the increased hydrophilicity of the PDIPAEMA block. Fluorescence measurements with pyrene as a fluorescent probe showed that both at pH = 2 and pH = 7 the associates were able to solubilize hydrophobic substances. Full article
(This article belongs to the Special Issue Drug-Loaded Polymer Colloidal Systems in Nanomedicine III)
Show Figures

Graphical abstract

20 pages, 9004 KB  
Review
Advancements in Characterization Techniques for Microemulsions: From Molecular Insights to Macroscopic Phenomena
by Longfei Li, Jiepeng Qu, Weidong Liu, Baoliang Peng, Sunan Cong, Haobo Yu, Biao Zhang and Yingying Li
Molecules 2024, 29(12), 2901; https://doi.org/10.3390/molecules29122901 - 18 Jun 2024
Cited by 8 | Viewed by 3150
Abstract
Microemulsions are thermodynamically stable, optically isotropic, transparent, or semi-transparent mixed solutions composed of two immiscible solvents stabilized by amphiphilic solutes. This comprehensive review explores state-of-the-art techniques for characterizing microemulsions, which are versatile solutions essential across various industries, such as pharmaceuticals, food, and petroleum. [...] Read more.
Microemulsions are thermodynamically stable, optically isotropic, transparent, or semi-transparent mixed solutions composed of two immiscible solvents stabilized by amphiphilic solutes. This comprehensive review explores state-of-the-art techniques for characterizing microemulsions, which are versatile solutions essential across various industries, such as pharmaceuticals, food, and petroleum. This article delves into spectroscopic methods, nuclear magnetic resonance, small-angle scattering, dynamic light scattering, conductometry, zeta potential analysis, cryo-electron microscopy, refractive index measurement, and differential scanning calorimetry, examining each technique’s strengths, limitations, and potential applications. Emphasizing the necessity of a multi-technique approach for a thorough understanding, it underscores the importance of integrating diverse analytical methods to unravel microemulsion structures from molecular to macroscopic scales. This synthesis provides a roadmap for researchers and practitioners, fostering advancements in microemulsion science and its wide-ranging industrial applications. Full article
Show Figures

Graphical abstract

23 pages, 5334 KB  
Article
Antimicrobial and Anesthetic Niosomal Formulations Based on Amino Acid-Derived Surfactants
by Martina Romeo, Zakaria Hafidi, Rita Muzzalupo, Ramon Pons, María Teresa García, Elisabetta Mazzotta and Lourdes Pérez
Molecules 2024, 29(12), 2843; https://doi.org/10.3390/molecules29122843 - 14 Jun 2024
Cited by 5 | Viewed by 1795
Abstract
Background: This work proposes the development of new vesicular systems based on anesthetic compounds (lidocaine (LID) and capsaicin (CA)) and antimicrobial agents (amino acid-based surfactants from phenylalanine), with a focus on physicochemical characterization and the evaluation of antimicrobial and cytotoxic properties. Method: Phenylalanine [...] Read more.
Background: This work proposes the development of new vesicular systems based on anesthetic compounds (lidocaine (LID) and capsaicin (CA)) and antimicrobial agents (amino acid-based surfactants from phenylalanine), with a focus on physicochemical characterization and the evaluation of antimicrobial and cytotoxic properties. Method: Phenylalanine surfactants were characterized via high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Different niosomal systems based on capsaicin, lidocaine, cationic phenylalanine surfactants, and dipalmitoyl phosphatidylcholine (DPPC) were characterized in terms of size, polydispersion index (PI), zeta potential, and encapsulation efficiency using dynamic light scattering (DLS), transmitted light microscopy (TEM), and small-angle X-ray scattering (SAXS). Furthermore, the interaction of the pure compounds used to prepare the niosomal formulations with DPPC monolayers was determined using a Langmuir balance. The antibacterial activity of the vesicular systems and their biocompatibility were evaluated, and molecular docking studies were carried out to obtain information about the mechanism by which these compounds interact with bacteria. Results: The stability and reduced size of the analyzed niosomal formulations demonstrate their potential in pharmaceutical applications. The nanosystems exhibit promising antimicrobial activity, marking a significant advancement in pharmaceutical delivery systems with dual therapeutic properties. The biocompatibility of some formulations underscores their viability. Conclusions: The proposed niosomal formulations could constitute an important advance in the pharmaceutical field, offering delivery systems for combined therapies thanks to the pharmacological properties of the individual components. Full article
(This article belongs to the Special Issue Design, Characterization and Application of Surfactants)
Show Figures

Graphical abstract

Back to TopTop