Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = TUBGCP5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
4 pages, 2564 KB  
Interesting Images
Microcephaly and Chorioretinopathy Relevance as a Differential Diagnosis
by Mauricio Bayram-Suverza, Karla Alejandra Torres-Navarro, Ángeles Yahel Hernández-Vázquez and Juan Abel Ramírez-Estudillo
Diagnostics 2023, 13(15), 2588; https://doi.org/10.3390/diagnostics13152588 - 3 Aug 2023
Viewed by 1659
Abstract
Microcephaly and chorioretinopathy are genetic disorders that are inherited in an autosomal recessive manner. The most frequent ocular manifestation is the presence of lacunar atrophy in the retina and choroid. The diagnosis of this condition can be challenging as several potential causes and [...] Read more.
Microcephaly and chorioretinopathy are genetic disorders that are inherited in an autosomal recessive manner. The most frequent ocular manifestation is the presence of lacunar atrophy in the retina and choroid. The diagnosis of this condition can be challenging as several potential causes and related syndromes need to be ruled out. We present two cases of microcephaly and chorioretinopathy in Mexican patients, their clinical characterization, and discuss the differential diagnoses that should be considered. An 8-year-old girl was examined due to a history of decreased vision in both eyes. Fundus examination showed excavated, well-defined, sectorial, bilateral, and symmetrical areas of chorioretinal atrophy. An 18-year-old male had a history of poor vision since childhood. Previous ophthalmological examinations reported bilateral symmetric chorioretinal atrophy with pigment accumulation. Both patients had a prior diagnosis of microcephaly and language delay. Blood tests and a comprehensive systemic evaluation ruled out intrauterine infections. The electroretinogram showed decreased amplitude and increased implicit time in the photopic and scotopic responses. Genetic tests revealed mutations in the TUBGCP4 gene, leading to a diagnosis of microcephaly and chorioretinopathy. As observed in these cases, there was variability in retinal lesions. The presence of chorioretinal lacunae and genetic testing can help to correctly diagnose this disorder. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Retinal Diseases)
Show Figures

Figure 1

13 pages, 1219 KB  
Review
Prader–Willi Syndrome and Chromosome 15q11.2 BP1-BP2 Region: A Review
by Merlin G. Butler
Int. J. Mol. Sci. 2023, 24(5), 4271; https://doi.org/10.3390/ijms24054271 - 21 Feb 2023
Cited by 32 | Viewed by 9488
Abstract
Prader–Willi syndrome (PWS) is a complex genetic disorder with three PWS molecular genetic classes and presents as severe hypotonia, failure to thrive, hypogonadism/hypogenitalism and developmental delay during infancy. Hyperphagia, obesity, learning and behavioral problems, short stature with growth and other hormone deficiencies are [...] Read more.
Prader–Willi syndrome (PWS) is a complex genetic disorder with three PWS molecular genetic classes and presents as severe hypotonia, failure to thrive, hypogonadism/hypogenitalism and developmental delay during infancy. Hyperphagia, obesity, learning and behavioral problems, short stature with growth and other hormone deficiencies are identified during childhood. Those with the larger 15q11-q13 Type I deletion with the absence of four non-imprinted genes (NIPA1, NIPA2, CYFIP1, TUBGCP5) from the 15q11.2 BP1-BP2 region are more severely affected compared with those with PWS having a smaller Type II deletion. NIPA1 and NIPA2 genes encode magnesium and cation transporters, supporting brain and muscle development and function, glucose and insulin metabolism and neurobehavioral outcomes. Lower magnesium levels are reported in those with Type I deletions. The CYFIP1 gene encodes a protein associated with fragile X syndrome. The TUBGCP5 gene is associated with attention-deficit hyperactivity disorder (ADHD) and compulsions, more commonly seen in PWS with the Type I deletion. When the 15q11.2 BP1-BP2 region alone is deleted, neurodevelopment, motor, learning and behavioral problems including seizures, ADHD, obsessive-compulsive disorder (OCD) and autism may occur with other clinical findings recognized as Burnside–Butler syndrome. The genes in the 15q11.2 BP1-BP2 region may contribute to more clinical involvement and comorbidities in those with PWS and Type I deletions. Full article
Show Figures

Figure 1

15 pages, 4301 KB  
Article
A Zebrafish/Drosophila Dual System Model for Investigating Human Microcephaly
by Slawomir Bartoszewski, Mateusz Dawidziuk, Natalia Kasica, Roma Durak, Marta Jurek, Aleksandra Podwysocka, Dorothy Lys Guilbride, Piotr Podlasz, Cecilia Lanny Winata and Pawel Gawlinski
Cells 2022, 11(17), 2727; https://doi.org/10.3390/cells11172727 - 1 Sep 2022
Cited by 2 | Viewed by 3253
Abstract
Microcephaly presents in neurodevelopmental disorders with multiple aetiologies, including bi-allelic mutation in TUBGCP2, a component of the biologically fundamental and conserved microtubule-nucleation complex, γ-TuRC. Elucidating underlying principles driving microcephaly requires clear phenotype recapitulation and assay reproducibility, areas where go-to experimental models fall [...] Read more.
Microcephaly presents in neurodevelopmental disorders with multiple aetiologies, including bi-allelic mutation in TUBGCP2, a component of the biologically fundamental and conserved microtubule-nucleation complex, γ-TuRC. Elucidating underlying principles driving microcephaly requires clear phenotype recapitulation and assay reproducibility, areas where go-to experimental models fall short. We present an alternative simple vertebrate/invertebrate dual system to investigate fundamental TUBGCP2-related processes driving human microcephaly and associated developmental traits. We show that antisense morpholino knockdown (KD) of the Danio rerio homolog, tubgcp2, recapitulates human TUBGCP2-associated microcephaly. Co-injection of wild type mRNA pre-empts microcephaly in 55% of KD zebrafish larvae, confirming causality. Body shortening observed in morphants is also rescued. Mitotic marker (pH3) staining further reveals aberrantly accumulated dividing brain cells in microcephalic tubgcp2 KD morphants, indicating that tubgcp2 depletion disrupts normal mitosis and/or proliferation in zebrafish neural progenitor brain cells. Drosophila melanogaster double knockouts (KO) for TUBGCP2 homologs Grip84/cg7716 also develop microcephalic brains with general microsomia. Exacerbated Grip84/cg7716-linked developmental aberration versus single mutations strongly suggests interactive or coinciding gene functions. We infer that tubgcp2 and Grip84/cg7716 affect brain size similarly to TUBGCP2 and recapitulate both microcephaly and microcephaly-associated developmental impact, validating the zebrafish/fly research model for human microcephaly. Given the conserved cross-phyla homolog function, the data also strongly support mitotic and/or proliferative disruption linked to aberrant microtubule nucleation in progenitor brain cells as key mechanistic defects for human microcephaly. Full article
(This article belongs to the Special Issue Fishing for Health: Zebrafish Models of Human Disease)
Show Figures

Figure 1

10 pages, 303 KB  
Article
Adverse Perinatal and Early Life Outcomes following 15q11.2 CNV Diagnosis
by Fu-Chieh Chu, Steven W. Shaw, Chien-Hong Lee, Liang-Ming Lo, Jenn-Jeih Hsu and Tai-Ho Hung
Genes 2021, 12(10), 1480; https://doi.org/10.3390/genes12101480 - 23 Sep 2021
Cited by 7 | Viewed by 3246
Abstract
The copy number variation (CNV) of 15q11.2, an emerging and common condition observed during prenatal counseling, is encompassed by four highly conserved and non-imprinted genes—TUBGCP5, CYFIP1, NIPA1, and NIPA2—which are reportedly related to developmental delays or general behavioral [...] Read more.
The copy number variation (CNV) of 15q11.2, an emerging and common condition observed during prenatal counseling, is encompassed by four highly conserved and non-imprinted genes—TUBGCP5, CYFIP1, NIPA1, and NIPA2—which are reportedly related to developmental delays or general behavioral problems. We retrospectively analyzed 1337 samples from genetic amniocentesis for fetal CNV using microarray-based comparative genomic hybridization analysis between January 2014 and December 2019. 15q11.2 CNV showed a prevalence of 1.5% (21/1337). Separately, 0.7% was noted for 15q11.2 BP1–BP2 microdeletion and 0.8% for 15q11.2 microduplication. Compared to the normal array group, the 15q11.2 BP1–BP2 microdeletion group had more cases of neonatal intensive care unit transfer, an Apgar score of <7 at 1 min, and neonatal death. Additionally, the group was symptomatic with developmental delays and had more infantile deaths related to congenital heart disease (CHD). Our study makes a novel contribution to the literature by exploring the differences in the adverse perinatal outcomes and early life conditions between the 15q11.2 CNV and normal array groups. Parent-origin gender-based differences may help in the prognosis of the fetal phenotype; development levels should be followed up in the long term and echocardiography should be offered prenatally and postnatally for the prevention of a delayed diagnosis of CHD. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

11 pages, 1128 KB  
Case Report
Phenotypic Diversity of 15q11.2 BP1–BP2 Deletion in Three Korean Families with Development Delay and/or Intellectual Disability: A Case Series and Literature Review
by Ji Yoon Han and Joonhong Park
Diagnostics 2021, 11(4), 722; https://doi.org/10.3390/diagnostics11040722 - 19 Apr 2021
Cited by 4 | Viewed by 2772
Abstract
The 15q11.2 breakpoint (BP) 1–BP2 deletion syndrome is emerging as the most frequent pathogenic copy number variation in humans related to neurodevelopmental diseases, with changes in cognition, behavior, and brain morphology. Previous publications have reported that patients with 15q11.2 BP1–BP2 deletion showed intellectual [...] Read more.
The 15q11.2 breakpoint (BP) 1–BP2 deletion syndrome is emerging as the most frequent pathogenic copy number variation in humans related to neurodevelopmental diseases, with changes in cognition, behavior, and brain morphology. Previous publications have reported that patients with 15q11.2 BP1–BP2 deletion showed intellectual disability (ID), speech impairment, developmental delay (DD), and/or behavioral problems. We describe three new cases, aged 3 or 6 years old and belonging to three unrelated Korean families, with a 350-kb 15q11.2 BP1–BP2 deletion of four highly conserved genes, namely, the TUBGCP5, CYFIP1, NIPA2, and NIPA1 genes. All of our cases presented with global DD and/or ID, and the severity ranged from mild to severe, but common facial dysmorphism and congenital malformations in previous reports were not characteristic. The 15q11.2 BP1–BP2 deletion was inherited from an unaffected parent in all cases. Our three cases, together with previous findings from the literature review, confirm some of the features earlier reported to be associated with 15q11.2 BP1–BP2 deletion and help to further delineate the phenotype associated with 15q11.2 deletion. Identification of more cases with 15q11.2 BP1–BP2 deletion will allow us to obtain a better understanding of the clinical phenotypes. Further explanation of the functions of the genes within the 15q11.2 BP1–BP2 region is required to resolve the pathogenic effects on neurodevelopment. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

24 pages, 2793 KB  
Article
Genomic, Clinical, and Behavioral Characterization of 15q11.2 BP1-BP2 Deletion (Burnside-Butler) Syndrome in Five Families
by Isaac Baldwin, Robin L. Shafer, Waheeda A. Hossain, Sumedha Gunewardena, Olivia J. Veatch, Matthew W. Mosconi and Merlin G. Butler
Int. J. Mol. Sci. 2021, 22(4), 1660; https://doi.org/10.3390/ijms22041660 - 7 Feb 2021
Cited by 13 | Viewed by 6592
Abstract
The 15q11.2 BP1-BP2 deletion (Burnside-Butler) syndrome is emerging as the most common cytogenetic finding in patients with neurodevelopmental or autism spectrum disorders (ASD) presenting for microarray genetic testing. Clinical findings in Burnside-Butler syndrome include developmental and motor delays, congenital abnormalities, learning and behavioral [...] Read more.
The 15q11.2 BP1-BP2 deletion (Burnside-Butler) syndrome is emerging as the most common cytogenetic finding in patients with neurodevelopmental or autism spectrum disorders (ASD) presenting for microarray genetic testing. Clinical findings in Burnside-Butler syndrome include developmental and motor delays, congenital abnormalities, learning and behavioral problems, and abnormal brain findings. To better define symptom presentation, we performed comprehensive cognitive and behavioral testing, collected medical and family histories, and conducted clinical genetic evaluations. The 15q11.2 BP1-BP2 region includes the TUBGCP5, CYFIP1, NIPA1, and NIPA2 genes. To determine if additional genomic variation outside of the 15q11.2 region influences expression of symptoms in Burnside-Butler syndrome, whole-exome sequencing was performed on the parents and affected children for the first time in five families with at least one parent and child with the 15q1l.2 BP1-BP2 deletion. In total, there were 453 genes with possibly damaging variants identified across all of the affected children. Of these, 99 genes had exclusively de novo variants and 107 had variants inherited exclusively from the parent without the deletion. There were three genes (APBB1, GOLGA2, and MEOX1) with de novo variants that encode proteins evidenced to interact with CYFIP1. In addition, one other gene of interest (FAT3) had variants inherited from the parent without the deletion and encoded a protein interacting with CYFIP1. The affected individuals commonly displayed a neurodevelopmental phenotype including ASD, speech delay, abnormal reflexes, and coordination issues along with craniofacial findings and orthopedic-related connective tissue problems. Of the 453 genes with variants, 35 were associated with ASD. On average, each affected child had variants in 6 distinct ASD-associated genes (x¯ = 6.33, sd = 3.01). In addition, 32 genes with variants were included on clinical testing panels from Clinical Laboratory Improvement Amendments (CLIA) approved and accredited commercial laboratories reflecting other observed phenotypes. Notably, the dataset analyzed in this study was small and reported results will require validation in larger samples as well as functional follow-up. Regardless, we anticipate that results from our study will inform future research into the genetic factors influencing diverse symptoms in patients with Burnside-Butler syndrome, an emerging disorder with a neurodevelopmental behavioral phenotype. Full article
Show Figures

Figure 1

18 pages, 2910 KB  
Article
Subcellular Localization and Mitotic Interactome Analyses Identify SIRT4 as a Centrosomally Localized and Microtubule Associated Protein
by Laura Bergmann, Alexander Lang, Christoph Bross, Simone Altinoluk-Hambüchen, Iris Fey, Nina Overbeck, Anja Stefanski, Constanze Wiek, Andreas Kefalas, Patrick Verhülsdonk, Christian Mielke, Dennis Sohn, Kai Stühler, Helmut Hanenberg, Reiner U. Jänicke, Jürgen Scheller, Andreas S. Reichert, Mohammad Reza Ahmadian and Roland P. Piekorz
Cells 2020, 9(9), 1950; https://doi.org/10.3390/cells9091950 - 24 Aug 2020
Cited by 26 | Viewed by 6183
Abstract
The stress-inducible and senescence-associated tumor suppressor SIRT4, a member of the family of mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5), regulates bioenergetics and metabolism via NAD+-dependent enzymatic activities. Next to the known mitochondrial location, we found that a fraction of endogenous or [...] Read more.
The stress-inducible and senescence-associated tumor suppressor SIRT4, a member of the family of mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5), regulates bioenergetics and metabolism via NAD+-dependent enzymatic activities. Next to the known mitochondrial location, we found that a fraction of endogenous or ectopically expressed SIRT4, but not SIRT3, is present in the cytosol and predominantly localizes to centrosomes. Confocal spinning disk microscopy revealed that SIRT4 is found during the cell cycle dynamically at centrosomes with an intensity peak in G2 and early mitosis. Moreover, SIRT4 precipitates with microtubules and interacts with structural (α,β-tubulin, γ-tubulin, TUBGCP2, TUBGCP3) and regulatory (HDAC6) microtubule components as detected by co-immunoprecipitation and mass spectrometric analyses of the mitotic SIRT4 interactome. Overexpression of SIRT4 resulted in a pronounced decrease of acetylated α-tubulin (K40) associated with altered microtubule dynamics in mitotic cells. SIRT4 or the N-terminally truncated variant SIRT4(ΔN28), which is unable to translocate into mitochondria, delayed mitotic progression and reduced cell proliferation. This study extends the functional roles of SIRT4 beyond mitochondrial metabolism and provides the first evidence that SIRT4 acts as a novel centrosomal/microtubule-associated protein in the regulation of cell cycle progression. Thus, stress-induced SIRT4 may exert its role as tumor suppressor through mitochondrial as well as extramitochondrial functions, the latter associated with its localization at the mitotic spindle apparatus. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

36 pages, 2828 KB  
Article
The 15q11.2 BP1-BP2 Microdeletion (Burnside–Butler) Syndrome: In Silico Analyses of the Four Coding Genes Reveal Functional Associations with Neurodevelopmental Disorders
by Syed K. Rafi and Merlin G. Butler
Int. J. Mol. Sci. 2020, 21(9), 3296; https://doi.org/10.3390/ijms21093296 - 6 May 2020
Cited by 50 | Viewed by 11839
Abstract
The 15q11.2 BP1-BP2 microdeletion (Burnside–Butler) syndrome is emerging as the most frequent pathogenic copy number variation (CNV) in humans associated with neurodevelopmental disorders with changes in brain morphology, behavior, and cognition. In this study, we explored functions and interactions of the [...] Read more.
The 15q11.2 BP1-BP2 microdeletion (Burnside–Butler) syndrome is emerging as the most frequent pathogenic copy number variation (CNV) in humans associated with neurodevelopmental disorders with changes in brain morphology, behavior, and cognition. In this study, we explored functions and interactions of the four protein-coding genes in this region, namely NIPA1, NIPA2, CYFIP1, and TUBGCP5, and elucidate their role, in solo and in concert, in the causation of neurodevelopmental disorders. First, we investigated the STRING protein-protein interactions encompassing all four genes and ascertained their predicted Gene Ontology (GO) functions, such as biological processes involved in their interactions, pathways and molecular functions. These include magnesium ion transport molecular function, regulation of axonogenesis and axon extension, regulation and production of bone morphogenetic protein and regulation of cellular growth and development. We gathered a list of significantly associated cardinal maladies for each gene from searchable genomic disease websites, namely MalaCards.org: HGMD, OMIM, ClinVar, GTR, Orphanet, DISEASES, Novoseek, and GeneCards.org. Through tabulations of such disease data, we ascertained the cardinal disease association of each gene, as well as their expanded putative disease associations. This enabled further tabulation of disease data to ascertain the role of each gene in the top ten overlapping significant neurodevelopmental disorders among the disease association data sets: (1) Prader–Willi Syndrome (PWS); (2) Angelman Syndrome (AS); (3) 15q11.2 Deletion Syndrome with Attention Deficit Hyperactive Disorder & Learning Disability; (4) Autism Spectrum Disorder (ASD); (5) Schizophrenia; (6) Epilepsy; (7) Down Syndrome; (8) Microcephaly; (9) Developmental Disorder, and (10) Peripheral Nervous System Disease. The cardinal disease associations for each of the four contiguous 15q11.2 BP1-BP2 genes are NIPA1- Spastic Paraplegia 6; NIPA2—Angelman Syndrome and Prader–Willi Syndrome; CYFIP1—Fragile X Syndrome and Autism; TUBGCP5—Prader–Willi Syndrome. The four genes are individually associated with PWS, ASD, schizophrenia, epilepsy, and Down syndrome. Except for TUBGCP5, the other three genes are associated with AS. Unlike the other genes, TUBGCP5 is also not associated with attention deficit hyperactivity disorder and learning disability, developmental disorder, or peripheral nervous system disease. CYFIP1 was the only gene not associated with microcephaly but was the only gene associated with developmental disorders. Collectively, all four genes were associated with up to three-fourths of the ten overlapping neurodevelopmental disorders and are deleted in this most prevalent known pathogenic copy number variation now recognized among humans with these clinical findings. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

7 pages, 604 KB  
Commentary
Magnesium Supplement and the 15q11.2 BP1–BP2 Microdeletion (Burnside–Butler) Syndrome: A Potential Treatment?
by Merlin G. Butler
Int. J. Mol. Sci. 2019, 20(12), 2914; https://doi.org/10.3390/ijms20122914 - 14 Jun 2019
Cited by 19 | Viewed by 11532
Abstract
The 15q11.2 BP1–BP2 microdeletion (Burnside–Butler) syndrome is an emerging disorder that encompasses four genes (NIPA1, NIPA2, CYFIP1, and TUBGCP5). When disturbed, these four genes can lead to cognitive impairment, language and/or motor delay, psychiatric/behavioral problems (attention-deficit hyperactivity, autism, dyslexia, schizophrenia/paranoid [...] Read more.
The 15q11.2 BP1–BP2 microdeletion (Burnside–Butler) syndrome is an emerging disorder that encompasses four genes (NIPA1, NIPA2, CYFIP1, and TUBGCP5). When disturbed, these four genes can lead to cognitive impairment, language and/or motor delay, psychiatric/behavioral problems (attention-deficit hyperactivity, autism, dyslexia, schizophrenia/paranoid psychosis), ataxia, seizures, poor coordination, congenital anomalies, and abnormal brain imaging. This microdeletion was reported as the most common cytogenetic finding when using ultra-high- resolution chromosomal microarrays in patients presenting for genetic services due to autism with or without additional clinical features. Additionally, those individuals with Prader–Willi or Angelman syndromes having the larger typical 15q11–q13 type I deletion which includes the 15q11.2 BP1–BP2 region containing the four genes, show higher clinical severity than those having the smaller 15q11–q13 deletion where these four genes are intact. Two of the four genes (i.e., NIPA1 and NIPA2) are expressed in the brain and encode magnesium transporters. Magnesium is required in over 300 enzyme systems that are critical for multiple cellular functions, energy expenditure, protein synthesis, DNA transcription, and muscle and nerve function. Low levels of magnesium are found in those with seizures, depression, and acute or chronic brain diseases. Anecdotally, parents have administered magnesium supplements to their children with the 15q11.2 BP1–BP2 microdeletion and have observed improvement in behavior and clinical presentation. These observations require more attention from the medical community and should include controlled studies to determine if magnesium supplements could be a treatment option for this microdeletion syndrome and also for a subset of individuals with Prader–Willi and Angelman syndromes. Full article
Show Figures

Figure 1

21 pages, 3134 KB  
Article
Genetics and Expression Profile of the Tubulin Gene Superfamily in Breast Cancer Subtypes and Its Relation to Taxane Resistance
by Babak Nami and Zhixiang Wang
Cancers 2018, 10(8), 274; https://doi.org/10.3390/cancers10080274 - 18 Aug 2018
Cited by 105 | Viewed by 10390
Abstract
Taxanes are a class of chemotherapeutic agents that inhibit cell division by disrupting the mitotic spindle through the stabilization of microtubules. Most breast cancer (BC) tumors show resistance against taxanes partially due to alterations in tubulin genes. In this project we investigated tubulin [...] Read more.
Taxanes are a class of chemotherapeutic agents that inhibit cell division by disrupting the mitotic spindle through the stabilization of microtubules. Most breast cancer (BC) tumors show resistance against taxanes partially due to alterations in tubulin genes. In this project we investigated tubulin isoforms in BC to explore any correlation between tubulin alterations and taxane resistance. Genetic alteration and expression profiling of 28 tubulin isoforms in 6714 BC tumor samples from 4205 BC cases were analyzed. Protein-protein, drug-protein and alterations neighbor genes in tubulin pathways were examined in the tumor samples. To study correlation between promoter activity and expression of the tubulin isoforms in BC, we analyzed the ChIP-seq enrichment of active promoter histone mark H3K4me3 and mRNA expression profile of MCF-7, ZR-75-30, SKBR-3 and MDA-MB-231 cell lines. Potential correlation between tubulin alterations and taxane resistance, were investigated by studying the expression profile of taxane-sensitive and resistant BC tumors also the MDA-MB-231 cells acquired resistance to paclitaxel. All genomic data were obtained from public databases. Results showed that TUBD1 and TUBB3 were the most frequently amplified and deleted tubulin genes in the BC tumors respectively. The interaction analysis showed physical interactions of α-, β- and γ-tubulin isoforms with each other. The most of FDA-approved tubulin inhibitor drugs including taxanes target only β-tubulins. The analysis also revealed sex tubulin-interacting neighbor proteins including ENCCT3, NEK2, PFDN2, PTP4A3, SDCCAG8 and TBCE which were altered in at least 20% of the tumors. Three of them are tubulin-specific chaperons responsible for tubulin protein folding. Expression of tubulin genes in BC cell lines were correlated with H3K4me3 enrichment on their promoter chromatin. Analyzing expression profile of BC tumors and tumor-adjacent normal breast tissues showed upregulation of TUBA1A, TUBA1C, TUBB and TUBB3 and downregulation of TUBB2A, TUBB2B, TUBB6, TUBB7P pseudogene, and TUBGCP2 in the tumor tissues compared to the normal breast tissues. Analyzing taxane-sensitive versus taxane-resistant tumors revealed that expression of TUBB3 and TUBB6 was significantly downregulated in the taxane-resistant tumors. Our results suggest that downregulation of tumor βIII- and βV-tubulins is correlated with taxane resistance in BC. Based on our results, we conclude that aberrant protein folding of tubulins due to mutation and/or dysfunction of tubulin-specific chaperons may be potential mechanisms of taxane resistance. Thus, we propose studying the molecular pathology of tubulin mutations and folding in BC and their impacts on taxane resistance. Full article
(This article belongs to the Special Issue Drug Resistance in Cancers)
Show Figures

Figure 1

20 pages, 2248 KB  
Article
Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects
by Shang-Lang Huang and Chuck C.-K. Chao
Cancers 2015, 7(2), 1052-1071; https://doi.org/10.3390/cancers7020824 - 16 Jun 2015
Cited by 10 | Viewed by 5846
Abstract
A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes [...] Read more.
A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug. Full article
(This article belongs to the Special Issue Cancer Cell Proliferation)
Show Figures

Figure 1

15 pages, 1062 KB  
Review
The 15q11.2 BP1–BP2 Microdeletion Syndrome: A Review
by Devin M. Cox and Merlin G. Butler
Int. J. Mol. Sci. 2015, 16(2), 4068-4082; https://doi.org/10.3390/ijms16024068 - 13 Feb 2015
Cited by 170 | Viewed by 26352
Abstract
Patients with the 15q11.2 BP1–BP2 microdeletion can present with developmental and language delay, neurobehavioral disturbances and psychiatric problems. Autism, seizures, schizophrenia and mild dysmorphic features are less commonly seen. The 15q11.2 BP1–BP2 microdeletion involving four genes (i.e., TUBGCP5, CYFIP1, [...] Read more.
Patients with the 15q11.2 BP1–BP2 microdeletion can present with developmental and language delay, neurobehavioral disturbances and psychiatric problems. Autism, seizures, schizophrenia and mild dysmorphic features are less commonly seen. The 15q11.2 BP1–BP2 microdeletion involving four genes (i.e., TUBGCP5, CYFIP1, NIPA1, NIPA2) is emerging as a recognized syndrome with a prevalence ranging from 0.57%–1.27% of patients presenting for microarray analysis which is a two to four fold increase compared with controls. Review of clinical features from about 200 individuals were grouped into five categories and included developmental (73%) and speech (67%) delays; dysmorphic ears (46%) and palatal anomalies (46%); writing (60%) and reading (57%) difficulties, memory problems (60%) and verbal IQ scores ≤75 (50%); general behavioral problems, unspecified (55%) and abnormal brain imaging (43%). Other clinical features noted but not considered as common were seizures/epilepsy (26%), autism spectrum disorder (27%), attention deficit disorder (ADD)/attention deficit hyperactivity disorder (ADHD) (35%), schizophrenia/paranoid psychosis (20%) and motor delay (42%). Not all individuals with the deletion are clinically affected, yet the collection of findings appear to share biological pathways and presumed genetic mechanisms. Neuropsychiatric and behavior disturbances and mild dysmorphic features are associated with genomic imbalances of the 15q11.2 BP1–BP2 region, including microdeletions, but with an apparent incomplete penetrance and variable expressivity. Full article
Show Figures

Graphical abstract

Back to TopTop