Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (86,209)

Search Parameters:
Keywords = ability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 641 KiB  
Article
Addressing Humanities Pre-Service and In-Service Teachers’ Concerns in Integrating STEM Education—A Case Study of Geography Education
by Sung Ho Cheuk and Yun Fat Lam
Educ. Sci. 2025, 15(4), 446; https://doi.org/10.3390/educsci15040446 (registering DOI) - 1 Apr 2025
Abstract
STEAM education has become a global agenda to integrate humanities subjects with STEM elements. With a lack of science-related teacher training, promoting STEM education under humanities curriculums faces challenges. However, limited research has been conducted to understand the concerns of humanities teachers in [...] Read more.
STEAM education has become a global agenda to integrate humanities subjects with STEM elements. With a lack of science-related teacher training, promoting STEM education under humanities curriculums faces challenges. However, limited research has been conducted to understand the concerns of humanities teachers in applying STEM education in their classrooms. In this study, we examined the concerns of pre-service and in-service geography (GEOG) teachers (N = 49) in Hong Kong (HK) secondary schools and evaluated the effectiveness of trainer workshops in alleviating their concerns. We applied an in-depth questionnaire analysis based on a 5-point Likert scale under a “Stages of Concern” model. The ordinal regression and t-test results suggested that (1) the pre-service and in-service GEOG teachers were highly concerned in most of the stages of concerns (Mean = 4.06/5); (2) unique yet different concerns about GEOG STEM education were identified from the pre-service teachers and in-service teachers; (3) teacher training workshops that offer scientific and STEM training could be effective in addressing the concerns of in-service teachers. As such, this study supports the development of geography STEM education and promotes the education community’s ability to address teachers’ concerns in embracing STEM education. Full article
20 pages, 749 KiB  
Article
Direction of Arrival (DOA) Estimation Using a Deep Unfolded Learned Iterative Shrinkage Thresholding Algorithm (LISTA) Network in a Non-Uniform Metasurface
by Xinyi Niu, Xiaolong Su, Lida He and Guanchao Chen
Remote Sens. 2025, 17(7), 1253; https://doi.org/10.3390/rs17071253 (registering DOI) - 1 Apr 2025
Abstract
This paper proposes a novel method for Direction of Arrival (DOA) estimation using a deep unfolded LISTA network in a non-uniform metasurface. Traditional DOA estimation methods often face challenges such as limited accuracy, high computational complexity, and poor adaptability to complex signal environments. [...] Read more.
This paper proposes a novel method for Direction of Arrival (DOA) estimation using a deep unfolded LISTA network in a non-uniform metasurface. Traditional DOA estimation methods often face challenges such as limited accuracy, high computational complexity, and poor adaptability to complex signal environments. To address these issues, we optimize a non-uniform metasurface array to reduce hardware costs and mutual coupling effects while enhancing resolution. Additionally, a deep unfolded Learned Iterative Shrinkage Thresholding Algorithm (LISTA) network is constructed by transforming Iterative Shrinkage Thresholding Algorithm (ISTA) iterative steps into trainable neural network layers, combining model-driven logic with data-driven parameter optimization. Simulation results prove that this method enhances higher precision and reduces computational complexity in comparison with traditional algorithms, especially under low SNR conditions. Furthermore, the method exhibits greater generalization ability, making it a reliable approach for high-precision DOA estimation in practical applications. Full article
(This article belongs to the Special Issue Array and Signal Processing for Radar)
20 pages, 576 KiB  
Review
Plantain (Plantago lanceolata L.) as an Alternative Forage to Build Resilience and Reduce the Environmental Footprint of Grazing Dairy Systems in Temperate Northern Climates: A Review
by Lauren E. Chesney, Francesca Carnovale, Kathryn M. Huson, Naomi Rutherford and David Patterson
Sustainability 2025, 17(7), 3131; https://doi.org/10.3390/su17073131 (registering DOI) - 1 Apr 2025
Abstract
The agriculture sector is responsible for the largest proportion of greenhouse gas emissions in Northern Ireland and mitigation strategies must be introduced if the industry is to achieve the ‘Net Zero’ targets set for 2050 by the United Kingdom government. Dairy farming is [...] Read more.
The agriculture sector is responsible for the largest proportion of greenhouse gas emissions in Northern Ireland and mitigation strategies must be introduced if the industry is to achieve the ‘Net Zero’ targets set for 2050 by the United Kingdom government. Dairy farming is a source of nitrous oxide emissions, a potent greenhouse gas with 256 times the warming potential of carbon dioxide. One potential mitigation measure is the use of alternative forage species such as Ribwort Plantain (Plantago lanceolata). Evidence would suggest that plantain has the ability to improve nitrogen use efficiency (NUE), leading to reductions in overall nitrogenous emissions from grazing dairy systems via three pathways: reducing urinary nitrogen concentration leading to lower rates of nitrogen leaching from urine patches; improving nitrogen utilisation efficiency within the dairy cow so that a lesser proportion of dietary nitrogen is excreted via the urine; and through the action of root exudates producing biological nitrification inhibition in the soil and improving soil nitrogen retention. This review summarises the current evidence supporting plantain as an alternative forage to support animal performance and forage production whilst lowering the environmental footprint of grazing dairy systems in temperate climates. This review also highlights outstanding research questions which must be addressed for farmers to confidently introduce these alternative species into their grazing platforms. Full article
(This article belongs to the Section Sustainable Agriculture)
31 pages, 5218 KiB  
Article
KAN-ResNet-Enhanced Radio Frequency Fingerprint Identification with Zero-Forcing Equalization
by Hongbo Chen, Ruohua Zhou, Qingsheng Yuan, Ziye Guo and Wei Fu
Sensors 2025, 25(7), 2222; https://doi.org/10.3390/s25072222 (registering DOI) - 1 Apr 2025
Abstract
Radio Frequency Fingerprint Identification (RFFI) is a promising device authentication technique that utilizes inherent hardware flaws in transmitters to achieve device identification, thus effectively maintaining the security of the Internet of Things (IoT). However, time-varying channels degrade accuracy due to factors like device [...] Read more.
Radio Frequency Fingerprint Identification (RFFI) is a promising device authentication technique that utilizes inherent hardware flaws in transmitters to achieve device identification, thus effectively maintaining the security of the Internet of Things (IoT). However, time-varying channels degrade accuracy due to factors like device aging and environmental changes. To address this, we propose an RFFI method integrating Zero-Forcing (ZF) equalization and KAN-ResNet. Firstly, the Wi-Fi preamble signals under the IEEE 802.11 standard are Zero-Forcing equalized, so as to effectively reduce the interference of time-varying channels on RFFI. We then design a novel residual network, KAN-ResNet, which adds a KAN module on top of the traditional fully connected layer. The module combines the B-spline basis function and the traditional activation function Sigmoid Linear Unit (SiLU) to realize the nonlinear mapping of the complex function, which enhance the classification ability of the network for RFF features. In addition, to improve the generalization of the model, the grid of B-splines is dynamically updated and L1 regularization is introduced. Experiments show that on datasets collected 20 days apart, our method achieves 99.4% accuracy, reducing the error rate from 6.3% to 0.6%, outperforming existing models. Full article
(This article belongs to the Special Issue Data Protection and Privacy in Industry 4.0 Era)
Show Figures

Figure 1

45 pages, 689 KiB  
Review
Artificial Intelligence in Inflammatory Bowel Disease Endoscopy
by Sabrina Gloria Giulia Testoni, Guglielmo Albertini Petroni, Maria Laura Annunziata, Giuseppe Dell’Anna, Michele Puricelli, Claudia Delogu and Vito Annese
Diagnostics 2025, 15(7), 905; https://doi.org/10.3390/diagnostics15070905 (registering DOI) - 1 Apr 2025
Abstract
Inflammatory bowel diseases (IBDs), comprising Crohn’s disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases of the gastrointestinal (GI) tract with still-elusive etiopathogeneses and an increasing prevalence worldwide. Despite the growing availability of more advanced therapies in the last two decades, [...] Read more.
Inflammatory bowel diseases (IBDs), comprising Crohn’s disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases of the gastrointestinal (GI) tract with still-elusive etiopathogeneses and an increasing prevalence worldwide. Despite the growing availability of more advanced therapies in the last two decades, there are still a number of unmet needs. For example, the achievement of mucosal healing has been widely demonstrated as a prognostic marker for better outcomes and a reduced risk of dysplasia and cancer; however, the accuracy of endoscopy is crucial for both this aim and the precise and reproducible evaluation of endoscopic activity and the detection of dysplasia. Artificial intelligence (AI) has drastically altered the field of GI studies and is being extensively applied to medical imaging. The utilization of deep learning and pattern recognition can help the operator optimize image classification and lesion segmentation, detect early mucosal abnormalities, and eventually reveal and uncover novel biomarkers with biologic and prognostic value. The role of AI in endoscopy—and potentially also in histology and imaging in the context of IBD—is still at its initial stages but shows promising characteristics that could lead to a better understanding of the complexity and heterogeneity of IBDs, with potential improvements in patient care and outcomes. The initial experience with AI in IBDs has shown its potential value in the differentiation of UC and CD when there is no ileal involvement, reducing the significant amount of time it takes to review videos of capsule endoscopy and improving the inter- and intra-observer variability in endoscopy reports and scoring. In addition, these initial experiences revealed the ability to predict the histologic score index and the presence of dysplasia. Thus, the purpose of this review was to summarize recent advances regarding the application of AI in IBD endoscopy as there is, indeed, increasing evidence suggesting that the integration of AI-based clinical tools will play a crucial role in paving the road to precision medicine in IBDs. Full article
(This article belongs to the Special Issue Advances in Endoscopy)
25 pages, 17455 KiB  
Article
Development of a Low-NOx Fuel-Flexible and Scalable Burner for Gas Turbines
by Antonio Di Nardo, Eugenio Giacomazzi, Matteo Cimini, Guido Troiani, Silvera Scaccia, Giorgio Calchetti and Donato Cecere
Energies 2025, 18(7), 1768; https://doi.org/10.3390/en18071768 (registering DOI) - 1 Apr 2025
Abstract
To reduce dependence on fossil fuels, gas turbine plants using hydrogen/methane blends provide a crucial solution for decarbonizing thermal power generation and promoting a sustainable energy transition. In this context, the development of fuel-flexible burners is fundamental. This work reports the development of [...] Read more.
To reduce dependence on fossil fuels, gas turbine plants using hydrogen/methane blends provide a crucial solution for decarbonizing thermal power generation and promoting a sustainable energy transition. In this context, the development of fuel-flexible burners is fundamental. This work reports the development of a novel burner geometry for gas turbines that can operate with natural gas and hydrogen mixtures (HENG, hydrogen-enriched natural gas) over a wide range of hydrogen content while maintaining low NOx emissions. The methodology used in this work is multidisciplinary, incorporating (i) CFD numerical simulations to determine the burner’s geometry, (ii) mechanical design for prototype construction (not discussed in the article), and (iii) experimental tests to assess its hydrogen content capacity, stabilization, and pollutant emission characteristics. The geometry was initially optimized through several RANS simulations to enhance reactant mixing and minimize flashback risks. Additionally, some LES simulations were conducted under specific conditions to achieve more accurate predictions and investigate potential combustion dynamics issues. The proposed solution was then transferred into a prototype. Through experimental testing, the burner prototype was characterized in terms of four key performance indicators: (1) the ability to operate with HENG mixtures with more than 20% H2 content, showing a technological trend exceeding 50%; (2) the ability to operate with low NOx (<25 ppm) and CO emissions within the 30–70% hydrogen volume range; (3) the ability to ignite HENG mixtures with H2 in the 30–70% hydrogen volume range; and (4) the ability to operate with a fluctuating hydrogen content, ±15% over time, while still complying with NOx and CO emission limits. Full article
28 pages, 1103 KiB  
Systematic Review
Orthodontic Ceramic Bracket Removal Using Lasers: A Systematic Review
by Mateusz Michalak, Sylwia Kiryk, Agnieszka Kotela, Kamila Wiśniewska, Jan Kiryk, Jacek Zbigniew Zborowski, Jacek Matys and Maciej Dobrzyński
J. Funct. Biomater. 2025, 16(4), 123; https://doi.org/10.3390/jfb16040123 (registering DOI) - 1 Apr 2025
Abstract
Objective: The aim of this systematic review was to evaluate the effectiveness and safety of various laser systems for debonding ceramic orthodontic brackets compared to conventional mechanical removal methods. The primary outcomes assessed included enamel damage, pulp temperature changes, adhesive remnant index (ARI), [...] Read more.
Objective: The aim of this systematic review was to evaluate the effectiveness and safety of various laser systems for debonding ceramic orthodontic brackets compared to conventional mechanical removal methods. The primary outcomes assessed included enamel damage, pulp temperature changes, adhesive remnant index (ARI), and shear bond strength (SBS). Materials and Methods: A systematic search was conducted in November 2024 across the PubMed, Scopus, and Web of Science (WoS) databases following PRISMA guidelines. The initial search yielded 453 records, of which 41 studies met the inclusion criteria for qualitative and quantitative analysis. The risk of bias was assessed using a standardized scoring system, and only studies with accessible full texts were included. Results: The review highlighted significant heterogeneity in laser parameters, measurement protocols, and study methodologies. Among the evaluated lasers, CO2 and Er:YAG were the most frequently studied and demonstrated high efficacy in debonding ceramic brackets while maintaining enamel integrity. Sixteen studies assessing SBS reported a reduction from baseline values of 13–23 MPa to clinically acceptable ranges of 7–12 MPa following laser application. ARI was analyzed in 25 studies, with laser-treated groups exhibiting higher scores (2–3), indicating safer debonding with more adhesive remaining on the tooth surface, thereby reducing enamel damage. Pulpal temperature increases were examined in 23 studies, revealing that most laser types, when used within optimal parameters, did not exceed the 5.5 °C threshold considered safe for pulpal health. However, diode and Tm:YAP lasers showed potential risks of overheating in some studies. Conclusions: Laser-assisted debonding of ceramic orthodontic brackets is an effective and safe technique when applied with appropriate laser parameters. CO2 and Er:YAG lasers were the most effective in reducing SBS while preserving enamel integrity. However, variations in laser settings, study methodologies, and the predominance of in vitro studies limit the ability to establish standardized clinical guidelines. Further randomized controlled trials (RCTs) are necessary to develop evidence-based protocols for safe and efficient laser-assisted bracket removal in orthodontic practice. Full article
(This article belongs to the Special Issue New Trends in Biomaterials and Implants for Dentistry (2nd Edition))
Show Figures

Figure 1

22 pages, 1448 KiB  
Article
Detection of Cereibacter azotoformans-YS02 as a Novel Source of Coenzyme Q10 and Its Metabolic Analysis
by Meijie Song, Qianqian Xu, Rifat Nowshin Raka, Chunhua Yin, Xiaolu Liu and Hai Yan
Antioxidants 2025, 14(4), 429; https://doi.org/10.3390/antiox14040429 (registering DOI) - 1 Apr 2025
Abstract
Coenzyme Q10 (CoQ10), a high-value-added nutraceutical antioxidant, exhibits an excellent ability to prevent cardiovascular disease. Here, a novel Cereibacter azotoformans strain, designated YS02, was isolated for its ability to produce CoQ10 and genetically characterized by whole genome sequencing (WGS). The CoQ10 biosynthesis and [...] Read more.
Coenzyme Q10 (CoQ10), a high-value-added nutraceutical antioxidant, exhibits an excellent ability to prevent cardiovascular disease. Here, a novel Cereibacter azotoformans strain, designated YS02, was isolated for its ability to produce CoQ10 and genetically characterized by whole genome sequencing (WGS). The CoQ10 biosynthesis and metabolism differences of YS02 under various culture conditions were also systematically investigated. Phylogenetic analysis based on 16 S rRNA genes, along with taxonomic verification using average nucleotide identity (ANI) analysis, confirmed its classification as C. azotoformans. Enzymatic genes dxs, dxr, idi, ubiA, and ubiG were annotated in YS02, which are critical genetic hallmarks for CoQ10 biosynthesis. Under aerobic–dark cultivation, YS02 grows well, and CoQ10 production can reach 201 mg/kg. A total of 542 small-molecule metabolites were identified from YS02 in aerobic–dark and anaerobic–light cultivation via ultra-high performance liquid chromatography–coupled quadrupole orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive Orbitrap MS). Additionally, 40 differential metabolites were screened through multivariate statistical analysis. Metabolic pathway analysis revealed that the biosynthesis of phenylalanine, tyrosine, and tryptophan might be latent factors influencing CoQ10 production discrepancies within YS02 under both cultural modes. These findings represent new insights into the metabolic mechanism of YS02 and underscore its potential as an alternative strain source for industrial CoQ10 production, enriching the existing resources. Full article
12 pages, 588 KiB  
Article
An Integrated Cognitive Remediation and Recovery-Oriented Program for Individuals with Bipolar Disorder Using a Virtual Reality-Based Intervention: 6- and 12-Month Cognitive Outcomes from a Randomized Feasibility Trial
by Alessandra Perra, Mauro Giovanni Carta, Diego Primavera, Giulia Cossu, Aurora Locci, Rosanna Zaccheddu, Federica Piludu, Alessia Galetti, Antonio Preti, Valerio De Lorenzo, Lorenzo Di Natale, Sergio Machado, Antonio Egidio Nardi and Federica Sancassiani
Behav. Sci. 2025, 15(4), 452; https://doi.org/10.3390/bs15040452 (registering DOI) - 1 Apr 2025
Abstract
Introduction: Achieving long-term impacts from cognitive remediation (CR) interventions is a key goal in rehabilitative care. Integrating virtual reality (VR) with psychoeducational approaches within CR programs has shown promise in enhancing user engagement and addressing the complex needs of individuals with bipolar [...] Read more.
Introduction: Achieving long-term impacts from cognitive remediation (CR) interventions is a key goal in rehabilitative care. Integrating virtual reality (VR) with psychoeducational approaches within CR programs has shown promise in enhancing user engagement and addressing the complex needs of individuals with bipolar disorder (BD). A previous randomized controlled crossover feasibility trial demonstrated the viability of a fully immersive VR-CR intervention for BD, reporting low dropout rates, high acceptability, and significant cognitive improvements. This secondary analysis aimed to evaluate the stability of these outcomes over time. Methods: This paper presents a 6- to 12-month follow-up of the initial trial. Secondary cognitive outcomes were assessed, including visuospatial abilities, memory, attention, verbal fluency, and executive function, using validated assessment tools. Statistical analyses were conducted using Friedman’s test. Results: A total of 36 participants completed the 6- to 12-month follow-up. Overall, cognitive functions showed a trend toward stability or improvement over time, except for visuospatial and executive functions, which demonstrated inconsistent trajectories. Significant improvements were observed in language (p = 0.02). Conclusion: This study highlights the overall stability of cognitive functions 12 months after a fully immersive VR-CR program for individuals with BD. To sustain long-term clinical benefits, an integrated approach, such as incorporating psychoeducational strategies within cognitive remediation interventions, may be essential. Further follow-up studies with control groups and larger sample sizes are needed to validate these findings. Full article
(This article belongs to the Special Issue Psychoeducation and Early Intervention)
15 pages, 1572 KiB  
Article
Development of a High-Cell-Density Production Process for a Biotherapeutic Yeast, Saccharomyces cerevisiae var. boulardii, for Use as a Human Probiotic
by Ghaneshree Moonsamy, Sarisha Singh, Yrielle Roets-Dlamini, Koketso Kenneth Baikgaki and Santosh Omrajah Ramchuran
Fermentation 2025, 11(4), 186; https://doi.org/10.3390/fermentation11040186 (registering DOI) - 1 Apr 2025
Abstract
Saccharomyces cerevisiae var. boulardii is a probiotic yeast widely recognized for its ability to enhance gut health and modulate a host’s microbiome. However, there are limited data on its large-scale cultivation in stirred tank bioreactors and subsequent downstream processing into a functional probiotic [...] Read more.
Saccharomyces cerevisiae var. boulardii is a probiotic yeast widely recognized for its ability to enhance gut health and modulate a host’s microbiome. However, there are limited data on its large-scale cultivation in stirred tank bioreactors and subsequent downstream processing into a functional probiotic product. Different recipe formulations were evaluated and the recipe with the highest biomass yield and lowest process time was selected. Once the optimised batch was validated in the replicate batches, the statistical analysis indicated a high level of reproducibility, with low variability across key performance indicators such as biomass concentration (unit), CFU production (CFU.mL−1), and substrate utilization efficiency (g.g−1). The mean growth age in the bioreactor was 25.33 ± 1.16 h, with a CV of 4.56%, indicating minimal deviation between batches. Similarly, the final viable concentration exhibited a mean of 1.46 × 108 CFU.mL−1 with a CV of 11.68%, remaining within an acceptable range for biological processes, while the final biomass concentration had the lowest variability (CV of 3.94%) and a 95% CI of 12.134–13.266 g.L−1, highlighting the accuracy and consistency of the process. Productivity indicators, including cell productivity (growth time—biomass) and YPP (biomass), maintained low CV values (3.933% and 3.389%, respectively), reinforcing process efficiency and stability. The overlapping 95% confidence intervals across batches further confirmed that no statistically significant deviations existed, ensuring minimal batch-to-batch variability, and validating the scalability and robustness of the fermentation process. These findings provide strong evidence for the feasibility of large-scale probiotic yeast production that meets industrial production standards. The final freeze-dried product retained an 81% viability post-exposure to simulated gastrointestinal conditions, meeting WHO probiotic viability standards. These findings establish a scalable, optimized process for probiotic yeast production, with potential applications in biopharmaceutical manufacturing and functional food development, as confirmed by the techno-economic evaluations performed using SuperPro Designer®. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

16 pages, 2198 KiB  
Article
Lactobacillus plantarum-Derived Inorganic Polyphosphate Regulates Immune Function via Inhibiting M1 Polarization and Resisting Oxidative Stress in Macrophages
by Shuzhen Li, Aijuan Zheng, Zhimin Chen, Xiaoying Wang, Jiang Chen, Zhiheng Zou and Guohua Liu
Antioxidants 2025, 14(4), 428; https://doi.org/10.3390/antiox14040428 (registering DOI) - 1 Apr 2025
Abstract
Inorganic polyphosphate (PolyP) is a high-molecular-weight polymer that plays multiple roles in regulating immune responses. However, the specific anti-inflammatory mechanisms of bacteria-derived PolyP are unclear. In the present study, PolyP was extracted from Lactobacillus plantarum (L. plantarum), and the chain length [...] Read more.
Inorganic polyphosphate (PolyP) is a high-molecular-weight polymer that plays multiple roles in regulating immune responses. However, the specific anti-inflammatory mechanisms of bacteria-derived PolyP are unclear. In the present study, PolyP was extracted from Lactobacillus plantarum (L. plantarum), and the chain length was estimated to be approximately 250 Pi residues. The immune regulatory functions of PolyP were investigated using a lipopolysaccharide (LPS)-induced RAW264.7 cell oxidative stress model, and dexamethasone was used as a positive control. The result revealed that both dexamethasone and PolyP were protective against oxidative stress by inhibiting macrophage M1 polarization and the production of several markers, such as nitric oxide (NO), reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2. In addition, PolyP suppressed inflammation progression by regulating the production of several cytokines, such as interleukin (IL)-1β, interferon (INF)-γ, tumor necrosis factor (TNF)-α, and IL-6, and inhibited the expressions of inhibitory κB kinase (IKK) α, IKKβ, and extracellular regulated protein kinases 2 (ERK2). Conclusively, PolyP derived from L. plantarum has the ability to protect cells from oxidative stress damage by inhibiting M1 polarization in macrophages. These findings provide insights into the function of PolyP and offer support for the potential application of PolyP in immune-related diseases. Full article
25 pages, 1563 KiB  
Article
Orthogonal Experimental Study on Layout Parameters of Ventilation Equipment in Tunnel Construction Based on TOPSIS Theory
by Guofeng Wang, Fayi Deng, Kaifu Ren, Yongqiao Fang, Bo Wang and Heng Zhang
Buildings 2025, 15(7), 1151; https://doi.org/10.3390/buildings15071151 (registering DOI) - 1 Apr 2025
Abstract
Based on the Daozhen–Wulong Zimuyan tunnel, the distance from the outlet of the air duct to the tunnel face and the diameter of the air duct are studied through an orthogonal experimental design. Aiming at the influence of the position of the air [...] Read more.
Based on the Daozhen–Wulong Zimuyan tunnel, the distance from the outlet of the air duct to the tunnel face and the diameter of the air duct are studied through an orthogonal experimental design. Aiming at the influence of the position of the air duct of the axial flow fan in the tunnel on the ventilation flow field, the improved TOPSIS theory is adopted for detailed data analysis, and the flow field characteristics are thoroughly checked to identify the optimal working condition configuration. The results show that with the increase in the distance between the air duct and the tunnel face, the local CO concentration will first decrease and then increase, indicating that too large or too small a distance will weaken the effective CO emission ability of the tunnel face, and the distance between the air duct outlet and the tunnel face is the best scheme; by combining the TOPSIS theory, entropy weight method, and analytic hierarchy process, the optimization scheme is obtained. When the distance between the outlet of the air duct and the working face is 15 m, the side wall of the air duct is 4 m away from the air, the diameter of the air duct is 1.8 m, the flow field in the tunnel shows a high degree of stability, the wind speed is significantly increased, and the vortex area that may hinder the air flow is effectively eliminated. The ventilation efficiency is greatly improved and the overall stability of the tunnel is enhanced. Full article
20 pages, 6475 KiB  
Article
Copper Methacrylate Complexes with Benzimidazole Derivatives: Structural Characterization and Antimicrobial Assays
by Andra-Georgeta Andrei, Rodica Olar, Cătălin Maxim, Gina Vasile Scăețeanu, Ioana-Cristina Marinas, Madalina-Diana Gaboreanu and Mihaela Badea
Inorganics 2025, 13(4), 109; https://doi.org/10.3390/inorganics13040109 (registering DOI) - 1 Apr 2025
Abstract
In order to design antimicrobial species, a series of methacrylate (Macr) complexes, [Cu(HBzIm)2(Macr)2] (1), [Cu2(HBzIm)2(Macr)4] (2), [Cu(2-MeBzIm)2(Macr)2] (3), [Cu2(2-MeBzIm)2(Macr) [...] Read more.
In order to design antimicrobial species, a series of methacrylate (Macr) complexes, [Cu(HBzIm)2(Macr)2] (1), [Cu2(HBzIm)2(Macr)4] (2), [Cu(2-MeBzIm)2(Macr)2] (3), [Cu2(2-MeBzIm)2(Macr)4] (4), and [Cu(5,6-Me2BzIm)2(Macr)2] (5) (HBzIm = benzimidazole, 2-MeBzIm = 2-methylbenzimidazole, and 5,6-Me2BzIm = 5,6-dimethylbenzimidazole) were synthesized and characterized by several spectral techniques, as well as by single crystal X-ray diffraction. The mononuclear species exhibit a distorted octahedral stereochemistry, while the binuclear types, with a paddle-wheel structure, adopt a square pyramidal surrounding. The methacrylate acts either as a chelate or a bridge, while all benzimidazole derivatives are coordinated as unidentate. The supramolecular networks are developed by both intermolecular π–π stacking interactions and hydrogen bonds. The antimicrobial assays provided both complexes the ability to inhibit planktonic strain proliferation, as well as to adhere on inert substratum. All complexes exhibit a moderate antimicrobial activity, both in regards to standard and clinical isolate strains, the most active being compound 5 against Candida albicans, with a minimum inhibitory concentration (MIC) of 0.156 mg/mL. It is worth mentioning that complex 1 inhibited the microbial adhesion of the clinical Escherichia coli strain and complex 2 constrained that of the clinical C. albicans strain. Full article
(This article belongs to the Special Issue Metal Complexes with N-donor Ligands, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 16716 KiB  
Review
The Growing Role of Intracardiac Echo in Congenital Heart Disease Interventions
by Eihab Ghantous and Jamil A. Aboulhosn
J. Clin. Med. 2025, 14(7), 2414; https://doi.org/10.3390/jcm14072414 (registering DOI) - 1 Apr 2025
Abstract
Advancements in congenital heart disease (CHD) care have significantly improved survival, leading to a growing population of adults with congenital heart disease (ACHDs). Many of these patients require ongoing interventions for residual defects, conduit or valve dysfunction, and arrhythmia management, often performed using [...] Read more.
Advancements in congenital heart disease (CHD) care have significantly improved survival, leading to a growing population of adults with congenital heart disease (ACHDs). Many of these patients require ongoing interventions for residual defects, conduit or valve dysfunction, and arrhythmia management, often performed using transcatheter techniques. Imaging plays a critical role in ensuring procedural success and safety. Intracardiac echocardiography (ICE) has emerged as an essential imaging modality in ACHD interventions. With continuous technological advancements, ICE offers several advantages over transesophageal echocardiography (TEE) and transthoracic echocardiography (TTE), including superior visualization, real-time guidance, and the ability to avoid general anesthesia. These benefits have made ICE the preferred imaging tool for many transcatheter procedures. This review explores the expanding role of ICE in ACHD interventions, highlighting its applications in structural and electrophysiological procedures. By enhancing procedural precision and reducing complications, ICE is transforming the management of ACHD patients, optimizing outcomes, and improving long-term care for this complex and growing population. Full article
Show Figures

Figure 1

16 pages, 2175 KiB  
Article
A New Class of BRCA1 Mimetics for ERα-Positive Breast Cancer Therapy: Design, Synthesis, In Silico Screening, In Vitro Assay, and Gene Expression Analysis
by Pottabathula Shyam Sundar, Jubie Selvaraj, Veerachamy Alagarsamy, Viswas Raja Solomon and Jawahar Natarajan
Life 2025, 15(4), 581; https://doi.org/10.3390/life15040581 (registering DOI) - 1 Apr 2025
Abstract
Breast Cancer Gene 1 (BRCA1) offers a potential approach for ERα repression by blocking cyclin D1’s interaction with ERα, which prevents cells from growing and dividing too rapidly or uncontrollably. When BRCA1 levels are low, BRCA1 mimetics fit into the BRCA1-binding pocket within [...] Read more.
Breast Cancer Gene 1 (BRCA1) offers a potential approach for ERα repression by blocking cyclin D1’s interaction with ERα, which prevents cells from growing and dividing too rapidly or uncontrollably. When BRCA1 levels are low, BRCA1 mimetics fit into the BRCA1-binding pocket within ERα, mimicking the ability of BRCA1 to inhibit ERα activity. This study aims to identify a novel class of lead molecules for BRCA1 mimetics for ER-positive breast cancer, distinct from conventional antiestrogen therapies in their mechanism of action. In this article, coumarin thiosemicarbazone hybrids were synthesized from 7-hydroxy 4-methyl coumarin/4-hydroxy coumarin and thiosemicarbazide with different aldehydes and evaluated for their ERα repression activity. The most active compounds in the series, 9b, 9l, and 9m, exhibited significant potency with an IC50 value of 14.49 µM, 35.08 µM and 42.12 µM, respectively, compared to raloxifene (reported) as the positive control with an IC50 value of 13.7 µM. The gene expression study confirmed the downregulation of the cyclin D1 gene for the compounds 9l (−0.217) and 9m (−0.214). Similarly, the downregulation of the BCL2 gene for the compounds 9b (−0.373), 9l (−0.320), and 9m (−0.376). Also, molecular docking studies and MMGBSA were performed to determine key interactions between compounds and ERα at the BRCA1 binding pocket (AA 338–387). In silico, ADMET properties were executed to illustrate the druggability and safety of the novel derivatives. In silico, in vitro, and gene expression studies revealed that among all the compounds, 9b, 9l, and 9m are promising candidates for the development of lead molecules targeting ERα inhibitors for breast cancer treatment. Moreover, the concept of ERα repression with small molecules as BRCA1 mimetics is novel. In general, it can be concluded that these compounds can serve as promising leads to the design of potential BRCA1 mimetics. Full article
Show Figures

Figure 1

Back to TopTop