Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = adrenergic β2-receptor antibody

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1306 KB  
Article
The Effect on Quality of Life of Therapeutic Plasmapheresis and Intravenous Immunoglobulins on a Population of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with Elevated β-Adrenergic and M3-Muscarinic Receptor Antibodies—A Pilot Study
by Boglárka Oesch-Régeni, Nicolas Germann, Georg Hafer, Dagmar Schmid and Norbert Arn
J. Clin. Med. 2025, 14(11), 3802; https://doi.org/10.3390/jcm14113802 - 29 May 2025
Viewed by 3301
Abstract
Background/Objectives: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition with not fully understood causes, though evidence points to immune system involvement and possible autoimmunity. ME/CFS could be triggered by various infectious pathogens, like SARS-CoV-2; furthermore, a subset of the post-COVID-19 condition (PCC) [...] Read more.
Background/Objectives: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition with not fully understood causes, though evidence points to immune system involvement and possible autoimmunity. ME/CFS could be triggered by various infectious pathogens, like SARS-CoV-2; furthermore, a subset of the post-COVID-19 condition (PCC) patients fulfill the diagnostic criteria of ME/CFS. According to the Canadian Consensus Criteria (CCC), the presence of specific symptoms such as fatigue, post-exertional malaise, sleep dysfunction, pain, neurological/cognitive manifestations, and symptoms from at least two of the following categories lead to the diagnosis of ME/CFS: autonomic, neuroendocrine, and immune manifestation. In this study, the patient selection was based on the identification of ME/CFS patients with elevated autoantibodies, regardless of the triggering factor of their condition. Methods: The aim of this study was to identify ME/CFS patients among long COVID patients with elevated autoantibodies. In seven cases, plasmapheresis (PE) and intravenous immunoglobulins (IVIGs) with repetitive autoantibody measurements were applied: four PE sessions on days 1, 5, 30, and 60, and a low-dose IVIG therapy after each treatment. Antibodies were measured before the first PE and two weeks after the last PE session. To monitor clinical outcomes, the following somatic and psychometric follow-up assessments were conducted before the first PE, 2 weeks after the second, and 2 weeks after the last PE: the Schellong test, ISI (insomnia), FSS (fatigue), HADS (depression and anxiety), and EQ-5D-5L (quality of life) questionnaires. Results: There was a negative association between both the β2-adrenergic and M3-muscarinic receptor autoantibody concentration and the quality of life measurements assessed with the EQ-5D-5L questionnaire. Per 1 U/mL increase in the concentration levels of β2-adrenergic receptor antibodies or M3-muscarinic acetylcholine receptor antibodies, the EQ-5D-5L index score [−0.59 to 1] decreased by 0.01 (0.63%) or 0.02 (1.26%), respectively. There were no significant associations between the ISI, HADS, and FSS questionnaires and the β1-adrenergic and M4-muscarinic receptor antibodies titers. Conclusions: After a thorough selection of patients with present autoantibodies, this pilot study found negative associations concerning autoantibody concentration and somatic, as well as psychological wellbeing. To validate these promising feasibility study results—indicating the potential therapeutic potential of antibody-lowering methods—further investigation with larger sample sizes is needed. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

17 pages, 2733 KB  
Article
HMGB1 Regulates Adipocyte Lipolysis via Caveolin-1 Signaling: Implications for Metabolic and Cardiovascular Diseases
by Julia Chu-Ning Hsu, Kuan-Ting Chiu, Chia-Hui Chen, Chih-Hsien Wang, Song-Kun Shyue and Tzong-Shyuan Lee
Int. J. Mol. Sci. 2025, 26(9), 4222; https://doi.org/10.3390/ijms26094222 - 29 Apr 2025
Viewed by 1030
Abstract
High-mobility group box 1 (HMGB1) is a nuclear protein that can be secreted or released into the extracellular environment during cellular stress, functioning as a damage-associated molecular pattern molecule. This study investigates the role of HMGB1 in adipocyte development and metabolism, explicitly examining [...] Read more.
High-mobility group box 1 (HMGB1) is a nuclear protein that can be secreted or released into the extracellular environment during cellular stress, functioning as a damage-associated molecular pattern molecule. This study investigates the role of HMGB1 in adipocyte development and metabolism, explicitly examining its interaction with β3-adrenergic receptor-mediated lipolysis and caveolin-1 (CAV1) regulation, which may influence cardiovascular risk factors. Using 3T3-L1 preadipocytes and mouse embryonic fibroblasts, we demonstrated that HMGB1 expression increases progressively during adipogenesis, reaching peak levels in mature adipocytes. While exogenous HMGB1 treatment did not affect preadipocyte proliferation or differentiation, it inhibited lipolysis in mature adipocytes. Mechanistically, HMGB1 suppressed β3-adrenergic receptor agonist CL-316,243-induced hormone-sensitive lipase activation by reducing protein kinase A-mediated phosphorylation and attenuating extracellular signal-regulated kinase signaling without affecting upstream cyclic AMP levels. We discovered a novel regulatory mechanism wherein CAV1 physically interacts with HMGB1 in mature adipocytes, with c-Src-dependent CAV1 phosphorylation functioning as a negative regulator of HMGB1 secretion. This finding was confirmed in CAV1-deficient models, which displayed increased HMGB1 secretion and diminished lipolytic activity both in vitro and in vivo. Furthermore, administering HMGB1-neutralizing antibodies to wild-type mice enhanced fasting-induced lipolysis, establishing circulating HMGB1 as a crucial antilipolytic factor. These findings reveal HMGB1’s previously uncharacterized role in adipose tissue metabolism as a negative regulator of lipolysis through CAV1-dependent mechanisms. This work provides new insights into adipose tissue metabolism regulation and identifies potential therapeutic targets for obesity-related metabolic disorders and cardiovascular diseases. Full article
Show Figures

Figure 1

16 pages, 2849 KB  
Article
An In-Depth Exploration of the Autoantibody Immune Profile in ME/CFS Using Novel Antigen Profiling Techniques
by Arnaud Germain, Jillian R. Jaycox, Christopher J. Emig, Aaron M. Ring and Maureen R. Hanson
Int. J. Mol. Sci. 2025, 26(6), 2799; https://doi.org/10.3390/ijms26062799 - 20 Mar 2025
Cited by 1 | Viewed by 6119
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder characterized by serious physical and cognitive impairments. Recent research underscores the role of immune dysfunction, including the role of autoantibodies, in ME/CFS pathophysiology. Expanding on previous studies, we analyzed 7542 antibody–antigen interactions in ME/CFS [...] Read more.
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder characterized by serious physical and cognitive impairments. Recent research underscores the role of immune dysfunction, including the role of autoantibodies, in ME/CFS pathophysiology. Expanding on previous studies, we analyzed 7542 antibody–antigen interactions in ME/CFS patients using two advanced platforms: a 1134 autoantibody Luminex panel from Oncimmune and Augmenta Bioworks, along with Rapid Extracellular Antigen Profiling (REAP), a validated high-throughput method that measures autoantibody reactivity against 6183 extracellular human proteins and 225 human viral pathogen proteins. Unlike earlier reports, our analysis of 172 participants revealed no significant differences in autoantibody reactivities between ME/CFS patients and controls, including against GPCRs such as β-adrenergic receptors. However, subtle trends in autoantibody ratios between male and female ME/CFS subgroups, along with patterns of herpesvirus reactivation, suggest the need for broader and more detailed exploration. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Autoimmune Disorders)
Show Figures

Graphical abstract

33 pages, 6077 KB  
Article
Beta2-Adrenergic Suppression of Neuroinflammation in Treatment of Parkinsonism, with Relevance for Neurodegenerative and Neoplastic Disorders
by Mario A. Inchiosa
Biomedicines 2024, 12(8), 1720; https://doi.org/10.3390/biomedicines12081720 - 1 Aug 2024
Cited by 1 | Viewed by 2674
Abstract
There is a preliminary record suggesting that β2-adrenergic agonists may have therapeutic value in Parkinson’s disease; recent studies have proposed a possible role of these agents in suppressing the formation of α-synuclein protein, a component of Lewy bodies. The present study [...] Read more.
There is a preliminary record suggesting that β2-adrenergic agonists may have therapeutic value in Parkinson’s disease; recent studies have proposed a possible role of these agents in suppressing the formation of α-synuclein protein, a component of Lewy bodies. The present study focuses on the importance of the prototypical β2-adrenergic agonist epinephrine in relation to the incidence of Parkinson’s disease in humans, and its further investigation via synthetic selective β2-receptor agonists, such as levalbuterol. Levalbuterol exerts significant anti-inflammatory activity, a property that may suppress cytokine-mediated degeneration of dopaminergic neurons and progression of Parkinsonism. In a completely novel finding, epinephrine and certain other adrenergic agents modeled in the Harvard/MIT Broad Institute genomic database, CLUE, demonstrated strong associations with the gene-expression signatures of anti-inflammatory glucocorticoids. This prompted in vivo confirmation in mice engrafted with human peripheral blood mononuclear cells (PBMCs). Upon toxic activation with mononuclear antibodies, levalbuterol inhibited (1) the release of the eosinophil attractant chemokine eotaxin-1, which is implicated in CNS and peripheral inflammatory disorders, (2) elaboration of the tumor-promoting angiogenic factor VEGFa, and (3) release of the pro-inflammatory cytokine IL-13 from activated PBMCs. These observations suggest possible translation to Parkinson’s disease, other neurodegenerative syndromes, and malignancies, via several mechanisms. Full article
Show Figures

Figure 1

25 pages, 3749 KB  
Article
Regulation of Vascular Endothelial Growth Factor Signaling by Nicotine in a Manner Dependent on Acetylcholine-and/or β-Adrenergic-Receptors in Human Lung Cancer Cells
by Hind Al Khashali, Ban Darweesh, Ravel Ray, Ben Haddad, Caroline Wozniak, Robert Ranzenberger, Stuti Goel, Jeneen Khalil, Jeffrey Guthrie, Deborah Heyl and Hedeel Guy Evans
Cancers 2023, 15(23), 5500; https://doi.org/10.3390/cancers15235500 - 21 Nov 2023
Cited by 4 | Viewed by 2751
Abstract
In addition to binding to nicotinic acetylcholine receptors (nAChRs), nicotine is known to regulate the β-adrenergic receptors (β-ARs) promoting oncogenic signaling. Using A549 (p53 wild-type) and H1299 (p53-null) lung cancer cells, we show that nicotine treatment led to: increased adrenaline/noradrenaline levels, an effect [...] Read more.
In addition to binding to nicotinic acetylcholine receptors (nAChRs), nicotine is known to regulate the β-adrenergic receptors (β-ARs) promoting oncogenic signaling. Using A549 (p53 wild-type) and H1299 (p53-null) lung cancer cells, we show that nicotine treatment led to: increased adrenaline/noradrenaline levels, an effect blocked by treatment with the α7nAChR inhibitor (α-BTX) but not by the β-blocker (propranolol) or the α4β2nAChR antagonist (DhβE); decreased GABA levels in A549 and H1299 cell media, an effect blocked by treatment with DhβE; increased VEGF levels and PI3K/AKT activities, an effect diminished by cell co-treatment with α-BTX, propranolol, and/or DhβE; and inhibited p53 activity in A549 cells, that was reversed, upon cell co-treatment with α-BTX, propranolol, and/or DhβE or by VEGF immunodepletion. VEGF levels increased upon cell treatment with nicotine, adrenaline/noradrenaline, and decreased with GABA treatment. On the other hand, the p53 activity decreased in A549 cells treated with nicotine, adrenaline/noradrenaline and increased upon cell incubation with GABA. Knockdown of p53 led to increased VEGF levels in the media of A549 cells. The addition of anti-VEGF antibodies to A549 and H1299 cells decreased cell viability and increased apoptosis; blocked the activities of PI3K, AKT, and NFκB in the absence or presence of nicotine; and resulted in increased p53 activation in A549 cells. We conclude that VEGF can be upregulated via α7nAChR and/or β-ARs and downregulated via GABA and/or p53 in response to the nicotine treatment of NSCLC cells. Full article
(This article belongs to the Special Issue Growth Factors and Lung Cancer)
Show Figures

Figure 1

15 pages, 1863 KB  
Review
β1 Adrenergic Receptor Autoantibodies and IgG Subclasses: Current Status and Unsolved Issues
by Akane Kawai, Yuji Nagatomo, Midori Yukino-Iwashita, Ryota Nakazawa, Akira Taruoka, Yusuke Yumita, Asako Takefuji, Risako Yasuda, Takumi Toya, Yukinori Ikegami, Nobuyuki Masaki, Yasuo Ido and Takeshi Adachi
J. Cardiovasc. Dev. Dis. 2023, 10(9), 390; https://doi.org/10.3390/jcdd10090390 - 10 Sep 2023
Cited by 4 | Viewed by 3339
Abstract
A wide range of anti-myocardial autoantibodies have been reported since the 1970s. Among them, autoantibodies against the β1-adrenergic receptor (β1AR-AAb) have been the most thoroughly investigated, especially in dilated cardiomyopathy (DCM). Β1AR-Aabs have agonist effects inducing desensitization [...] Read more.
A wide range of anti-myocardial autoantibodies have been reported since the 1970s. Among them, autoantibodies against the β1-adrenergic receptor (β1AR-AAb) have been the most thoroughly investigated, especially in dilated cardiomyopathy (DCM). Β1AR-Aabs have agonist effects inducing desensitization of β1AR, cardiomyocyte apoptosis, and sustained calcium influx which lead to cardiac dysfunction and arrhythmias. Β1AR-Aab has been reported to be detected in approximately 40% of patients with DCM, and the presence of the antibody has been associated with worse clinical outcomes. The removal of anti-myocardial autoantibodies including β1AR-AAb by immunoadsorption is beneficial for the improvement of cardiac function for DCM patients. However, several studies have suggested that its efficacy depended on the removal of AAbs belonging to the IgG3 subclass, not total IgG. IgG subclasses differ in the structure of the Fc region, suggesting that the mechanism of action of β1AR-AAb differs depending on the IgG subclasses. Our previous clinical research demonstrated that the patients with β1AR-AAb better responded to β-blocker therapy, but the following studies found that its response also differed among IgG subclasses. Further studies are needed to elucidate the possible pathogenic role of IgG subclasses of β1AR-AAbs in DCM, and the broad spectrum of cardiovascular diseases including HF with preserved ejection fraction. Full article
Show Figures

Figure 1

18 pages, 1446 KB  
Review
Propranolol: A “Pick and Roll” Team Player in Benign Tumors and Cancer Therapies
by Virginia Albiñana, Eunate Gallardo-Vara, Juan Casado-Vela, Lucía Recio-Poveda, Luisa María Botella and Angel M Cuesta
J. Clin. Med. 2022, 11(15), 4539; https://doi.org/10.3390/jcm11154539 - 4 Aug 2022
Cited by 14 | Viewed by 5340
Abstract
Research on cancer therapies focuses on processes such as angiogenesis, cell signaling, stemness, metastasis, and drug resistance and inflammation, all of which are influenced by the cellular and molecular microenvironment of the tumor. Different strategies, such as antibodies, small chemicals, hormones, cytokines, and, [...] Read more.
Research on cancer therapies focuses on processes such as angiogenesis, cell signaling, stemness, metastasis, and drug resistance and inflammation, all of which are influenced by the cellular and molecular microenvironment of the tumor. Different strategies, such as antibodies, small chemicals, hormones, cytokines, and, recently, gene editing techniques, have been tested to reduce the malignancy and generate a harmful microenvironment for the tumor. Few therapeutic agents have shown benefits when administered alone, but a few more have demonstrated clear improvement when administered in combination with other therapeutic molecules. In 2008 (and for the first time in the clinic), the therapeutic benefits of the β-adrenergic receptor antagonist, propranolol, were described in benign tumors, such as infantile hemangioma. Propranolol, initially prescribed for high blood pressure, irregular heart rate, essential tremor, and anxiety, has shown, in the last decade, increasing evidence of its antitumoral properties in more than a dozen different types of cancer. Moreover, the use of propranolol in combination therapies with other drugs has shown synergistic antitumor effects. This review highlights the clinical trials in which propranolol is taking part as adjuvant therapy at single administration or in combinatorial human trials, arising as a good pick and roll partner in anticancer strategies. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

20 pages, 2160 KB  
Article
Functional Autoreactive Anti-β2 Adrenergic Antibodies May Contribute to Insulin Resistance Profile in Patients with Chronic Chagas Disease
by Luz María Rodeles, Miguel Hernán Vicco, Álvaro Siano, Leonardo Andrés Fuchs, Luz María Peverengo, Silvia Sanchez Puch, Cora Beatriz Cymeryng, Iván Sergio Marcipar and Pablo Arias
Pathogens 2021, 10(3), 378; https://doi.org/10.3390/pathogens10030378 - 21 Mar 2021
Viewed by 3518
Abstract
Potential activation of β2 adrenergic receptors (β2AR) by specific autoreactive antibodies (Abs) that arise during the host reaction to Trypanosoma cruzi, could contribute to the elevated prevalence of metabolic disturbances described in patients with chronic Chagas disease (CCD). This study aimed to [...] Read more.
Potential activation of β2 adrenergic receptors (β2AR) by specific autoreactive antibodies (Abs) that arise during the host reaction to Trypanosoma cruzi, could contribute to the elevated prevalence of metabolic disturbances described in patients with chronic Chagas disease (CCD). This study aimed to determine the prevalence of anti-β2AR Abs in patients with CCD, as well as the correlation of these Abs with the presence of glucose and lipid metabolism disturbances, in order to explore their association with an insulin resistance profile. Additionally, we tested the functional effects of anti-β2AR Abs employing an in vitro bioassay with neuroendocrine cells expressing β2AR. A clinical and metabolic evaluation including an OGTT was performed in 80 CCD patients and 40 controls. Anti-β2AR Abs were measured by an in-house-developed ELISA, and the β2 adrenergic activity of affinity-purified IgG fractions from patient’ sera were assayed in CRE-Luc and POMCLuc transfected AtT-20 cells. A higher proportion of dysglycemia (72.5% vs. 37.5%; p = 0.001) was observed in the CCD group, accompanied by increased HOMA2-IR (p = 0.019), especially in subjects with Abs (+). Anti-β2AR Abs reactivity (7.01 (2.39–20.5); p = 0.0004) and age >50 years (3.83 (1.30–11.25); p = 0.014) resulted as relevant for IR prediction (AUC: 0.786). Concordantly, Abs (+) CCD patients showed elevated metabolic risk scores and an increased prevalence of atherogenic dyslipidemia (p = 0.040), as compared to Abs (−) patients and controls. On functional bioassays, Abs exerted specific and dose-dependent β2-agonist effects. Our findings suggest that anti-β2AR Abs may induce the activation of β2AR in other tissues besides the heart; furthermore, we show that in patients with CCD these Abs are associated with an insulin resistance profile and atherogenic dyslipidemia, providing biological plausibility to the hypothesis that adrenergic activation by anti-β2AR Abs could contribute to the pathogenesis of metabolic disturbances described in CCD patients, increasing their cardiovascular risk. Full article
(This article belongs to the Special Issue Metabolic Dysfunction in Chagas Cardiomyopathy)
Show Figures

Graphical abstract

12 pages, 2862 KB  
Article
Post-Mortem Immunohistochemical Evidence of β2-Adrenergic Receptor Expression in the Adrenal Gland
by Elvira Ventura Spagnolo, Cristina Mondello, Luigi Cardia, Letteria Minutoli, Domenico Puzzolo, Alessio Asmundo, Vincenzo Macaione, Angela Alibrandi, Consuelo Malta, Gennaro Baldino and Antonio Micali
Int. J. Mol. Sci. 2019, 20(12), 3065; https://doi.org/10.3390/ijms20123065 - 23 Jun 2019
Cited by 15 | Viewed by 3470
Abstract
The evidence from post-mortem biochemical studies conducted on cortisol and catecholamines suggest that analysis of the adrenal gland could provide useful information about its role in human pathophysiology and the stress response. Authors designed an immunohistochemical study on the expression of the adrenal [...] Read more.
The evidence from post-mortem biochemical studies conducted on cortisol and catecholamines suggest that analysis of the adrenal gland could provide useful information about its role in human pathophysiology and the stress response. Authors designed an immunohistochemical study on the expression of the adrenal β2-adrenergic receptor (β2-AR), a receptor with high-affinity for catecholamines, with the aim to show which zones it is expressed in and how its expression differs in relation to the cause of death. The immunohistochemical study was performed on adrenal glands obtained from 48 forensic autopsies of subjects that died as a result of different pathogenic mechanisms using a mouse monoclonal β2-AR antibody. The results show that immunoreactivity for β2-AR was observed in all adrenal zones. Furthermore, immunoreactivity for β2-AR has shown variation in the localization and intensity of different patterns in relation to the original cause of death. To the best of our knowledge, this is the first study that demonstrates β2-AR expression in the human cortex and provides suggestions on the possible involvement of β2-AR in human cortex hormonal stimulation. In conclusion, the authors provide a possible explanation for the observed differences in expression in relation to the cause of death. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

23 pages, 2466 KB  
Article
Synergistic Effects of Weightlessness, Isoproterenol, and Radiation on DNA Damage Response and Cytokine Production in Immune Cells
by Maria Moreno-Villanueva, Alan H. Feiveson, Stephanie Krieger, AnneMarie Kay Brinda, Gudrun Von Scheven, Alexander Bürkle, Brian Crucian and Honglu Wu
Int. J. Mol. Sci. 2018, 19(11), 3689; https://doi.org/10.3390/ijms19113689 - 21 Nov 2018
Cited by 17 | Viewed by 5195
Abstract
The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, [...] Read more.
The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, cytokine responses, and antibody production. Interestingly, stress hormones influence cellular immune pathways affected by microgravity, such as cell proliferation, apoptosis, DNA repair, and T cell activation. These pathways are crucial defense mechanisms that protect the cell from toxins, pathogens, and radiation. Despite the importance of the adrenergic receptor in regulating the immune system, the effect of microgravity on the adrenergic system has been poorly studied. Thus, we elected to investigate the synergistic effects of isoproterenol (a sympathomimetic drug), radiation, and microgravity in nonstimulated immune cells. Peripheral blood mononuclear cells were treated with the sympathomimetic drug isoproterenol, exposed to 0.8 or 2 Gy γ-radiation, and incubated in RWVs. Mixed model regression analyses showed significant synergistic effects on the expression of the β2-adrenergic receptor gene (ADRB2). Radiation alone increased ADRB2 expression, and cells incubated in microgravity had more DNA strand breaks than cells incubated in normal gravity. We observed radiation-induced cytokine production only in microgravity. Prior treatment with isoproterenol clearly prevents most of the microgravity-mediated effects. RWVs may be a useful tool to provide insight into novel regulatory pathways, providing benefit not only to astronauts but also to patients suffering from immune disorders or undergoing radiotherapy. Full article
(This article belongs to the Special Issue Adaptation of Living Organisms in Space: From Mammals to Plants)
Show Figures

Figure 1

10 pages, 1605 KB  
Article
Strategy for Identification of Phosphorylation Levels of Low Abundance Proteins in Vivo for Which Antibodies Are not Available
by Kozo Hayashi, Ryo Yamashita, Ritsuko Takami, Toshikatsu Matsui, Masamitsu Gotou, Tomoyuki Nishimoto and Hiroyuki Kobayashi
J. Cardiovasc. Dev. Dis. 2017, 4(4), 17; https://doi.org/10.3390/jcdd4040017 - 8 Oct 2017
Viewed by 5228
Abstract
Protein function is mainly modulated by dynamic reversible or irreversible post-translational modifications. Among them, the identification of protein phosphorylation sites and changes in phosphorylation levels in vivo are of considerable interest for a better understanding of the protein function. Thus, effective strategies for [...] Read more.
Protein function is mainly modulated by dynamic reversible or irreversible post-translational modifications. Among them, the identification of protein phosphorylation sites and changes in phosphorylation levels in vivo are of considerable interest for a better understanding of the protein function. Thus, effective strategies for the quantitative determination of phosphorylation degrees for low abundant proteins, for which antibodies are not available, are required in order to evaluate the functional regulation of proteins attributed to phosphorylation. In this study, we used the heart β1-adrenergic receptor (Adrb1) as a model protein and developed FLAG-Adrb1 knock-in mice, in which the FLAG tag was inserted at the N-terminus of Adrb1. The phosphorylation sites and levels of Adrb1 in the heart were elucidated by immuno-affinity purification followed by quantitative mass spectrometry analysis using ion intensity ratio of the phosphorylated peptide versus corresponding unphosphorylated peptide. The phosphorylation levels at Ser274 and Ser462 of Adrb1 were approximately 0.25 and 0.0023. This effective strategy should be useful for not only analyzing site-specific phosphorylation levels of target proteins, but also quantifying the expression levels of proteins of interest when appropriate antibodies are not available. Full article
(This article belongs to the Special Issue Proteomics and Protein Post-Translational Modification)
Show Figures

Graphical abstract

Back to TopTop