Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = aminophenol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4523 KiB  
Article
ZIF-67-Derived Co−N−C Supported Ni Nanoparticles as Efficient Recyclable Catalyst for Hydrogenation of 4-Nitrophenol
by Juti Rani Deka, Diganta Saikia, Jia-Cheng Lin, Wan-Yu Chen, Hsien-Ming Kao and Yung-Chin Yang
Catalysts 2025, 15(4), 343; https://doi.org/10.3390/catal15040343 - 1 Apr 2025
Viewed by 83
Abstract
In this study, a novel, highly efficient, environment friendly, and low-cost nanocatalyst, denoted as Ni(x)@Co−N−C, was successfully developed by encapsulating Ni nanoparticles into N-doped porous carbon derived from ZIF-67. A variety of techniques including powder X-ray diffraction (XRD), nitrogen adsorption/desorption, scanning electron microscopy [...] Read more.
In this study, a novel, highly efficient, environment friendly, and low-cost nanocatalyst, denoted as Ni(x)@Co−N−C, was successfully developed by encapsulating Ni nanoparticles into N-doped porous carbon derived from ZIF-67. A variety of techniques including powder X-ray diffraction (XRD), nitrogen adsorption/desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrometer (XPS) were used to characterize the prepared materials. The TEM images reveal that the nanoparticles were distributed homogeneously in the carbon support. The N atoms in the carbon support serve as the sites for the nucleation and uniform growth of Ni nanoparticles. The catalyst was used for the degradation of environmentally harmful 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Among all the catalysts investigated, Ni(10)@Co-N-C exhibited the highest catalytic activity for the hydrogenation of 4-NP, with a specific reaction rate of 6.1 × 10−3 s−1, activity parameter of 31 s−1g−1, and turn over frequency (TOF) of 1.78 × 1019 molecules gmetal−1s−1. On the other hand, the specific reaction rate and TOF value were 1.7 × 10−3 s−1 and 6.96 × 1018 molecules gmetal−1s−1, respectively, for Co−N−C. This suggests that Ni(10)@Co−N−C is about three times more catalytically active than the Co−N−C catalyst. The superb activity of Ni(10)@Co−N−C in comparison to Co−N−C can be ascribed to the homogeneous dispersion of small-sized Ni nanoparticles, the interconnected three-dimensional porous arrangement of the support Co−N−C, the presence of N atoms in the carbon framework that stabilize metal nanoparticles, and the synergistic electronic effect between Ni and Co. The Ni(10)@Co−N−C catalyst maintained consistent catalytic activity over multiple cycles, which suggests that porous N-containing carbon support can effectively prevent aggregation and leaching of metal nanoparticles. The ICP-AES analysis of the recycled Ni(10)@Co−N−C revealed a slight reduction in metal content compared to the fresh sample, suggesting almost negligible leaching of metal nanoparticles. Full article
Show Figures

Graphical abstract

13 pages, 1502 KiB  
Article
General Synthesis of 2-Substituted Benzoxazoles Based on Tf2O-Promoted Electrophilic Activation of Tertiary Amides
by Hongchen Li, Xingyong Wang, Fujun Zhao, Lu Wang and Songbao Fu
Molecules 2025, 30(7), 1510; https://doi.org/10.3390/molecules30071510 - 28 Mar 2025
Viewed by 87
Abstract
We report a method for the synthesis of 2-substituted benzoxazoles from tertiary amides and 2-aminophenols in the presence of triflic anhydride (Tf2O) and 2-Fluoropyridine (2-F-Pyr). The cascade reaction involves the activation of the amide carbonyl group by Tf2O, nucleophilic [...] Read more.
We report a method for the synthesis of 2-substituted benzoxazoles from tertiary amides and 2-aminophenols in the presence of triflic anhydride (Tf2O) and 2-Fluoropyridine (2-F-Pyr). The cascade reaction involves the activation of the amide carbonyl group by Tf2O, nucleophilic addition, intramolecular cyclization, and elimination. Furthermore, we explore the scope of this method by varying both the amide and 2-aminophenol substrates, highlighting its versatility in the synthesis of a wide range of functionalized benzoxazole derivatives. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Figure 1

27 pages, 6014 KiB  
Article
Utilizing Nanoparticles of Hesperidin Loaded on Layered Double Hydroxide to Reduce Hepatotoxicity Caused by Paracetamol in Rats: Controlling of Biotransformation, Oxidative Stress, Inflammation, and Apoptosis
by Deyaa A. Shaban, Ahmed A. G. El-Shahawy, Mohamed I. Zanaty, Zienab E. Eldin, Mohamed Abd-Elbaset, Anwar Shams, Shadi Tamur and Osama M. Ahmed
Pharmaceutics 2025, 17(4), 429; https://doi.org/10.3390/pharmaceutics17040429 - 27 Mar 2025
Viewed by 222
Abstract
Background/Objectives: The most used antipyretic and pain relief treatment is paracetamol (acetaminophen), also known as N-acetyl-para-aminophenol (APAP). However, it is considered potentially hazardous if consumed repeatedly in large doses or over prolonged periods. This investigation explores the effectiveness of hesperidin (Hesp) and [...] Read more.
Background/Objectives: The most used antipyretic and pain relief treatment is paracetamol (acetaminophen), also known as N-acetyl-para-aminophenol (APAP). However, it is considered potentially hazardous if consumed repeatedly in large doses or over prolonged periods. This investigation explores the effectiveness of hesperidin (Hesp) and Hesp loaded on layered double hydroxide nanoparticles (Hesp-NPs) in inhibiting the progression of acute hepatotoxicity in rats induced by APAP. Methods: LDH-Hesp-NPs were prepared and characterized. Male Wistar rats were orally treated with Hesp and Hesp-NPs at the same adjusted dose (100 mg/kg) every other day for six weeks. After 2 h of the first doses of Hesp and Hesp-NPs, the rats received one oral dose of APAP (750 mg/kg). Results: Administering of Hesp and Hesp-NPs to APAP-treated rats significantly reduced oxidant parameter (malondialdehyde) and serum enzymes (ALT, AST, LDH, and ALP) associated with liver function. Antioxidant markers in the liver, such as catalase and glutathione, also increased notably. Moreover, Hesp and Hesp-NPs enhanced the mRNA expression of liver UGT1A6, IL-10, and HO-1. Conversely, the mRNA expressions of liver CYP1A1, KEAP1, TGF-β, P53, and BAX decreased. These improvements in biochemical and molecular markers were corroborated by liver histopathology. Conclusions: Hesp and Hesp-NPs protect significantly against APAP-induced hepatotoxicity in male Wistar rats. Hesp-NPs treatment was more potent. The protective effects may be mediated via modulation of APAP biotransformation, oxidative stress, inflammation and apoptosis. Full article
Show Figures

Graphical abstract

13 pages, 1893 KiB  
Article
Catalytic Activity of Water-Soluble Palladium Nanoparticles with Anionic and Cationic Capping Ligands for Reduction, Oxidation, and C-C Coupling Reactions in Water
by Jan W. Farag, Ragaa Khalil, Edwin Avila and Young-Seok Shon
Nanomaterials 2025, 15(5), 405; https://doi.org/10.3390/nano15050405 - 6 Mar 2025
Viewed by 254
Abstract
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, [...] Read more.
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H2) and H2O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H2O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography–mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

22 pages, 4072 KiB  
Article
Dinuclear Copper(II) Complexes of 2,6-Bis[(N-Methylpiperazine-1-yl)methyl]-4-Formyl Phenol Ligand: Promising Biomimetic Catalysts for Dye Residue Degradation and Drug Synthesis
by Michaela Bártová, Alan Liška, Vendula Studená, Pavel Vojtíšek, Michal Kašpar, Tomáš Mikysek, Lenka Česlová, Ivan Švancara and Milan Sýs
Int. J. Mol. Sci. 2025, 26(4), 1603; https://doi.org/10.3390/ijms26041603 - 13 Feb 2025
Viewed by 469
Abstract
In this study, three dinuclear copper(II) complexes of ligand 2,6-bis[(N-methyl-piperazine-1-yl)methyl]-4-formyl phenol (L1) and one of 2,6-bis[(N-methylpiperazine-1-yl)methyl]-4-formyl phenol dimethylacetal (L2) with copper(II) ions have been investigated as new types of biomimetic catalysts for the oxidative transformation of different aminophenols and [...] Read more.
In this study, three dinuclear copper(II) complexes of ligand 2,6-bis[(N-methyl-piperazine-1-yl)methyl]-4-formyl phenol (L1) and one of 2,6-bis[(N-methylpiperazine-1-yl)methyl]-4-formyl phenol dimethylacetal (L2) with copper(II) ions have been investigated as new types of biomimetic catalysts for the oxidative transformation of different aminophenols and phenyldiamines. All the complexes of interest were newly synthesized and further characterized by IR spectroscopy, UV-Vis and mass spectrometry, X-ray diffraction, and selected electrochemical measurements. Crystal structures of these dinuclear copper(II) complexes have revealed that the coordination-shell geometry of copper atoms is close to a tetragonal pyramid. Catecholase, phenoxazinone synthase, and horseradish peroxidase-like activities were observed in pure methanol and water–methanol mixtures in the presence of molecular oxygen. The potential applicability of the complexes under study is discussed with respect to their possibilities and limitations in the replacement of natural copper-containing oxidoreductases in the oxidative degradation of water-insoluble chlorinated aminophenols in the dye industry or in the production of phenoxazine-based drugs. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

19 pages, 5042 KiB  
Article
Reduction of 4-Nitrophenol to 4-Aminophenol by Reusable CuFe5O8-Based Catalysts Synthesized by Co-Precipitation Method
by Patompong Siri-apai, Sila Yaemphutchong, Natapol Suetrong, Arunthip Suesuwan, Nicha Choophun, Suttipong Wannapaiboon, Aphichart Rodchanarowan, Kantapat Chansaenpak, Nidcha Aroonrote, Yuranan Hanlumyuang and Worawat Wattanathana
Molecules 2025, 30(4), 777; https://doi.org/10.3390/molecules30040777 - 7 Feb 2025
Viewed by 604
Abstract
The reduction of unfriendly 4-nitrophenol to make it unimpactful with the environment (4-aminophenol) was carried out using the metastable form of copper ferrite (CuFe5O8) synthesized by the co-precipitation of metal nitrate salts, an efficient method with inexpensive and abundant [...] Read more.
The reduction of unfriendly 4-nitrophenol to make it unimpactful with the environment (4-aminophenol) was carried out using the metastable form of copper ferrite (CuFe5O8) synthesized by the co-precipitation of metal nitrate salts, an efficient method with inexpensive and abundant starting materials. The samples were obtained by calcination at various temperatures ranging from 600 °C to 900 °C. The material characterizations, including X-ray diffraction, N2 adsorption/desorption, scanning electron microscope, X-ray absorption spectroscopy, and ultraviolet–visible spectrometry, were employed to identify the detailed structures and describe their correlations with catalytic activities. The X-ray diffraction and X-ray absorption spectroscopy analyses revealed the presence of mixed CuFe5O8 and copper oxide phases, where the formers are rich in Cu2+, Fe2+, and Fe3+ ions. The electron transfer between Cu2+, Fe2+, and Fe3+ led to the high efficiency of the catalytic reaction of the synthesized copper ferrites. Especially for the sample calcined at 600 °C, the apparent kinetic constant (k) for a reduction of 4-nitrophenol was equal to 0.25 min−1, illustrating nearly 100% conversion of 4-nitrophenol to 4-aminophenol within less than 9 min. Regarding the N2 adsorption/desorption isotherms, the samples calcined at 600 °C have the highest specific Brunauer–Emmett–Teller (BET) surface area (15.93 m2 g−1) among the others in the series, which may imply the most effective catalytic performance investigated herein. The post-catalytic X-ray diffraction investigation indicated the stability of the prepared catalysts. Furthermore, the chemical stability of the prepared catalysts was confirmed by its reusability in five consecutive cycles. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

17 pages, 4675 KiB  
Article
Piezoelectric-Driven Fenton System Based on Bismuth Ferrite Nanosheets for Removal of N-Acetyl-para-aminophenol in Aqueous Environments
by Chi Zhou, Shenglong Jing, Teng Miao, Nianlai Zhou, Hang Zhang, Yi Zhang, Lin Ge, Wencheng Liu and Zixin Yang
Catalysts 2025, 15(2), 126; https://doi.org/10.3390/catal15020126 - 27 Jan 2025
Viewed by 683
Abstract
Emerging pollutants, such as N-acetyl-para-aminophenol, pose significant challenges to environmental sustainability, and Bi2Fe2O2 (BFO) nanomaterials are an emerging class of piezoelectric materials. This study presents a novel piezoelectric-driven Fenton system based on Bi2Fe4O [...] Read more.
Emerging pollutants, such as N-acetyl-para-aminophenol, pose significant challenges to environmental sustainability, and Bi2Fe2O2 (BFO) nanomaterials are an emerging class of piezoelectric materials. This study presents a novel piezoelectric-driven Fenton system based on Bi2Fe4O9 nanosheets for the efficient degradation of organic pollutants. BFO nanosheets with varying thicknesses were synthesized, and their piezoelectric properties were confirmed through piezoresponse force microscopy and heavy metal ion reduction experiments. The piezoelectric electrons generated within the BFO nanosheets facilitate the in situ production of hydrogen peroxide, which in turn drives the Fenton-like reaction. Furthermore, the piezoelectric electrons enhance the redox cycling of iron in the Fenton process, boosting the overall catalytic efficiency. The energy band structure of BFO nanosheets is well-suited for this process, enabling efficient hydrogen peroxide generation and promoting Fe3+ reduction. The findings demonstrate that thinner BFO nanosheets exhibit superior piezoelectric activity, leading to enhanced catalytic performance. Additionally, the incorporation of gold nanodots onto BFO nanosheets further boosts their piezocatalytic efficiency, particularly in the reduction of Cr (VI). The system exhibited robust oxidative capacity, stability, and recyclability, with reactive oxygen species (ROS) verified via electron paramagnetic resonance spectroscopy. Overall, BFO nanosheets, with their optimal energy band structure, self-supplied hydrogen peroxide, and enhanced Fe3+ reduction, represent a promising, sustainable solution for advanced oxidation processes in wastewater treatment and other applications. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Graphical abstract

21 pages, 10225 KiB  
Article
Realization of Intermolecular Interactions as a Basis for Controlling Pervaporation Properties of Membranes Made of Aromatic Polyamide-Imides
by Svetlana V. Kononova, Galina N. Gubanova, Galina K. Lebedeva, Elena V. Kruchinina, Elena N. Vlasova, Elena N. Popova, Natalya V. Zakharova, Milana E. Vylegzhanina, Elena A. Novozhilova and Ksenia V. Danilova
Membranes 2025, 15(1), 23; https://doi.org/10.3390/membranes15010023 - 13 Jan 2025
Viewed by 745
Abstract
New aromatic co-polyamide-imides (coPAIs) containing both carboxyl and hydroxyl groups in the repeating units were synthesized for the first time. Transport, thermal and morphological properties of dense nonporous membranes from PAIs obtained using the diacid chloride of 2-(4-carboxyphenyl)-1,3-dioxoisoindoline-5-carboxylic acid and diamines 5,5′-methylene-bis (2-aminophenol)) [...] Read more.
New aromatic co-polyamide-imides (coPAIs) containing both carboxyl and hydroxyl groups in the repeating units were synthesized for the first time. Transport, thermal and morphological properties of dense nonporous membranes from PAIs obtained using the diacid chloride of 2-(4-carboxyphenyl)-1,3-dioxoisoindoline-5-carboxylic acid and diamines 5,5′-methylene-bis (2-aminophenol)) and 3,5-Diaminobenzoic acid, taken in molar ratios of 7:3, 1:1, and 3:7, have been studied. High levels of membrane permeability accompanied by high selectivity for mixtures of liquids with significantly different polarities were determined by realization of intra- and intermolecular interactions in polymer, which was proved by thermal analyses and hydrodynamic characteristics of coPAIs. This effect is discussed in the context of the effectiveness of intermolecular interactions between polymer chains containing carboxyl and hydroxyl functional groups. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

11 pages, 19864 KiB  
Article
An Aminobenzenethiol-Functionalized Gold Nanocolorimetric Sensor for Formaldehyde Detection
by Jing Xu, Liya Shen, Haining You and Yuanli Liu
Materials 2024, 17(24), 6087; https://doi.org/10.3390/ma17246087 - 13 Dec 2024
Viewed by 656
Abstract
The determination of formaldehyde is of paramount importance, as it is present in numerous locations throughout life. In this study, aminophenol-modified gold nanoparticles (ATP-AuNPs) with different relative positions of hydroxyl and amino groups were synthesized for the detection of formaldehyde. They were characterized [...] Read more.
The determination of formaldehyde is of paramount importance, as it is present in numerous locations throughout life. In this study, aminophenol-modified gold nanoparticles (ATP-AuNPs) with different relative positions of hydroxyl and amino groups were synthesized for the detection of formaldehyde. They were characterized by transmission electron microscopy (TEM), ultraviolet–visible (UV-Vis) spectroscopy and Fourier transform infrared (FTIR) spectroscopy tests. The results demonstrated that the position plays a crucial role in the composites, which exhibit good stability when the sulfhydryl group and amino group transition from the para position to the neighboring position. Furthermore, the para position was identified as the optimal configuration for formaldehyde detection. When it was used to detect formaldehyde in ultrapure and Li River water, the limit of detection (LOD) was calculated to be 1.03/1.15 mM, respectively. This work not only provides a novel ATP-AuNP sensor but also highlights its practical situations. Full article
Show Figures

Figure 1

17 pages, 2501 KiB  
Article
Evaluation of Quinazolin-2,4-Dione Derivatives as Promising Antibacterial Agents: Synthesis, In Vitro, In Silico ADMET and Molecular Docking Approaches
by Aboubakr H. Abdelmonsef, Mohamed El-Naggar, Amal O. A. Ibrahim, Asmaa S. Abdelgeliel, Ihsan A. Shehadi, Ahmed M. Mosallam and Ahmed Khodairy
Molecules 2024, 29(23), 5529; https://doi.org/10.3390/molecules29235529 - 22 Nov 2024
Viewed by 776
Abstract
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles 2ac, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one 3ad and 4ad. The starting compound 1 was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and [...] Read more.
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles 2ac, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one 3ad and 4ad. The starting compound 1 was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and cyanoacetic acid hydrazide. The reaction of 1 with strong electrophiles, namely, o-aminophenol, o-amino thiophenol, and/or o-phenylene diamine, resulted in corresponding quinazolin-2,4-dione derivatives incorporating eight-membered nitrogen-heterocycles 2ad. Compounds 3ad and 4ad were synthesized in good-to-excellent yield through a one-pot multi-component reaction (MCR) of 1 with carbon disulfide and/or phenyl isocyanate under mild alkaline conditions, followed by ethyl chloroacetate, ethyl iodide, methyl iodide, and/or concentrated HCl, respectively. The obtained products were physicochemically characterized by melting points, elemental analysis, and spectroscopic techniques, such as FT-IR, 1H-NMR, 13C-NMR, and MS. The antibacterial efficacy of the obtained eleven molecules was examined in vitro against two Gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus haemolyticus). Furthermore, Computer-Aided Drug Design (CADD) was performed on the synthesized derivatives, standard drug (Methotrexate), and reported antibacterial drug with the target enzymes of bacterial strains (S. aureus and S. haemolyticus) to explain their binding mode of actions. Notably, our findings highlight compounds 2b and 2c as showing both the best antibacterial activity and docking scores against the targets. Finally, according to ADMET predictions, compounds 2b and 2c possessed acceptable pharmacokinetics properties and drug-likeness properties. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

13 pages, 2332 KiB  
Article
Waste-Derived Caffeine for Green Synthesis of Rhenium Nanoparticles with Enhanced Catalytic Activity in the Hydrogenation of 4-Nitrophenol
by Alicja Kuś, Anna Leśniewicz, Anna Dzimitrowicz, Pawel Pohl and Piotr Cyganowski
Int. J. Mol. Sci. 2024, 25(20), 11319; https://doi.org/10.3390/ijms252011319 - 21 Oct 2024
Cited by 1 | Viewed by 1178
Abstract
Yearly, thousands of tons of wasted coffee grounds are produced according to high coffee consumption. Still, after the coffee brewing, wasted coffee grounds contain some amounts of caffeine (CAF). CAF, in turn, contains multiple O and N chelating atoms in its structure. These [...] Read more.
Yearly, thousands of tons of wasted coffee grounds are produced according to high coffee consumption. Still, after the coffee brewing, wasted coffee grounds contain some amounts of caffeine (CAF). CAF, in turn, contains multiple O and N chelating atoms in its structure. These have a potential to be reductors for complexes of metals. In this context, within the present study, a set of CAF extracts derived from coffee beans and coffee grounds were obtained and then used for the one-step reduction of ReO4 ions with no additional toxic chemicals. Within this approach, CAF was applied as a secondary, green resource for the synthesis of unique rhenium nanoparticles (ReNPs) containing Re species at 0 and +6 oxidation states. The obtained ReNPs were identified and characterized with the use of X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Further, the capping and stabilization of ReNPs by CAF were verified with the aid of Fourier transformation infrared spectroscopy (FT-IR). The so-obtained “green” ReNPs were then used as a homogenous catalyst in the catalytic hydrogenation of 4-nitrophenol (4-NP). This new nanomaterial revealed a superior catalytic activity, leading to the complete reduction of 4-NP to 4-aminophenol within 40–60 min with a first-order rate constant of 0.255 min−1. Full article
(This article belongs to the Special Issue Metal Nanoparticles: From Fundamental Studies to New Applications)
Show Figures

Figure 1

14 pages, 28964 KiB  
Article
The Contradicting Influences of Silica and Titania Supports on the Properties of Au0 Nanoparticles as Catalysts for Reductions by Borohydride
by Gifty Sara Rolly, Alina Sermiagin, Krishnamoorthy Sathiyan, Dan Meyerstein and Tomer Zidki
Catalysts 2024, 14(9), 606; https://doi.org/10.3390/catal14090606 - 9 Sep 2024
Cited by 1 | Viewed by 895
Abstract
This study investigates the significant impact of metal–support interactions on catalytic reaction mechanisms at the interface of oxide-supported metal nanoparticles. The distinct and contrasting effects of SiO2 and TiO2 supports on reaction dynamics using NaBD4 were studied and focused on [...] Read more.
This study investigates the significant impact of metal–support interactions on catalytic reaction mechanisms at the interface of oxide-supported metal nanoparticles. The distinct and contrasting effects of SiO2 and TiO2 supports on reaction dynamics using NaBD4 were studied and focused on the relative yields of [HD]/[H2] and [D2]/[H2]. The findings show a consistent increase in HD yields with rising [BD4] concentrations. Notably, the sequence of HD yield enhancement follows the order of TiO2-Au0-NPs < Au0-NPs < SiO2-Au0-NPs. Conversely, the rate of H2 evolution during BH4- hydrolysis exhibits an inverse trend, with TiO2-Au0-NPs outperforming the others, followed by Au0-NPs and SiO2-Au0-NPs, demonstrating the opposing effects exerted by the TiO2 and SiO2 supports on the catalytic processes. Further, the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) confirms the catalytic mechanism, with TiO2-Au0-NPs demonstrating superior activity. The catalytic activity observed aligns with the order of TiO2-Au0-NPs > Au0-NPs > SiO2-Au0-NPs, suggesting that SiO2 donates electrons to Au0-NPs, while TiO2 withdraws them. It is of interest to note that two very different processes, that clearly proceed via different mechanisms, are affected similarly by the supports. This study reveals that the choice of support material influences catalytic activity, impacting overall yield and efficiency. These findings underscore the importance of selecting appropriate support materials for tailored catalytic outcomes. Full article
(This article belongs to the Special Issue Novel Nanocatalysts for Sustainable and Green Chemistry)
Show Figures

Graphical abstract

19 pages, 4384 KiB  
Review
Recent Progress on Covalent Organic Frameworks Supporting Metal Nanoparticles as Promising Materials for Nitrophenol Reduction
by Mohammad Dinari, Zaynab Golshadi, Parvin Asadi, Amie E. Norton, Katelyn R. Reid and Benson Karimi
Nanomaterials 2024, 14(17), 1458; https://doi.org/10.3390/nano14171458 - 7 Sep 2024
Cited by 5 | Viewed by 2035
Abstract
With the utilization of nitrophenols in manufacturing various materials and the expansion of industry, nitrophenols have emerged as water pollutants that pose significant risks to both humans and the environment. Therefore, it is imperative to convert nitrophenols into aminophenols, which are less toxic. [...] Read more.
With the utilization of nitrophenols in manufacturing various materials and the expansion of industry, nitrophenols have emerged as water pollutants that pose significant risks to both humans and the environment. Therefore, it is imperative to convert nitrophenols into aminophenols, which are less toxic. This conversion process is achieved through the use of noble metal nanoparticles, such as gold, silver, copper, and palladium. The primary challenge with noble metal nanoparticles lies in their accumulation and deactivation, leading to a decrease in catalyst activity. Covalent organic frameworks (COFs) are materials characterized by a crystalline structure, good stability, and high porosity with active sites. These properties make them ideal substrates for noble metal nanoparticles, enhancing catalytic activity. This overview explores various articles that focus on the synthesis of catalysts containing noble metal nanoparticles attached to COFs as substrates to reduce nitrophenols to aminophenols. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

14 pages, 25410 KiB  
Article
Reduction of p-Nitrophenol with Modified Coal Fly Ash Supported by Palladium Catalysts
by Hao Zhang, Kaicheng Zhou, Tao Ye, Huajun Xu, Man Xie, Pengfei Sun and Xiaoping Dong
Catalysts 2024, 14(9), 600; https://doi.org/10.3390/catal14090600 - 6 Sep 2024
Cited by 1 | Viewed by 995
Abstract
The compound p-Nitrophenol (p-NP) is widely recognized as a highly toxic nitro-aromatic substance that urgently requires emission control. Reducing p-NP to p-aminophenol (p-AP) not only decreases its toxicity and mineralization properties in nature but also provides a key raw material for the chemical [...] Read more.
The compound p-Nitrophenol (p-NP) is widely recognized as a highly toxic nitro-aromatic substance that urgently requires emission control. Reducing p-NP to p-aminophenol (p-AP) not only decreases its toxicity and mineralization properties in nature but also provides a key raw material for the chemical and pharmaceutical industries. The study used coal fly ash (CFA) as a catalyst carrier for synthesizing the p-NP reduction catalyst. Using CFA as an alternative option not only reduces costs but also achieves the objective of treating waste with waste compared to utilizing commercial solid materials for synthesizing catalysts. By employing hydrochloric acid and sodium hydroxide pretreatment methods, the physicochemical properties of CFA are significantly improved, enhancing the dispersion of palladium (Pd) nanoparticles. The structural features of the prepared samples were characterized using various surface analysis techniques, and both intermittent and continuous modes were experimentally tested for the model catalytic reaction involving the sodium borohydride (NaBH4)-mediated reduction of p-NP. The results demonstrate that CFA has potential in wastewater treatment. Full article
(This article belongs to the Special Issue Novel Nano-Heterojunctions with Enhanced Catalytic Activity)
Show Figures

Figure 1

14 pages, 3808 KiB  
Article
Shaping Phenolic Resin-Coated ZIF-67 to Millimeter-Scale Co/N Carbon Beads for Efficient Peroxymonosulfate Activation
by Xin Yan, Yiyuan Yao, Chengming Xiao, Hao Zhang, Jia Xie, Shuai Zhang, Junwen Qi, Zhigao Zhu, Xiuyun Sun and Jiansheng Li
Molecules 2024, 29(17), 4059; https://doi.org/10.3390/molecules29174059 - 27 Aug 2024
Cited by 1 | Viewed by 1451
Abstract
Catalytic performance decline is a general issue when shaping fine powder into macroscale catalysts (e.g., beads, fiber, pellets). To address this challenge, a phenolic resin-assisted strategy was proposed to prepare porous Co/N carbon beads (ZACBs) at millimeter scale via the phase inversion method [...] Read more.
Catalytic performance decline is a general issue when shaping fine powder into macroscale catalysts (e.g., beads, fiber, pellets). To address this challenge, a phenolic resin-assisted strategy was proposed to prepare porous Co/N carbon beads (ZACBs) at millimeter scale via the phase inversion method followed by confined pyrolysis. Specially, p-aminophenol–formaldehyde (AF) resin-coated zeolitic imidazolate framework (ZIF-67) nanoparticles were introduced to polyacrylonitrile (PAN) solution before pyrolysis. The thermosetting of the coated AF improved the interface compatibility between the ZIF-67 and PAN matrix, inhibiting the shrinkage of ZIF-67 particles, thus significantly improving the void structure of ZIF-67 and the dispersion of active species. The obtained ZACBs exhibited a 99.9% removal rate of tetracycline (TC) within 120 min, with a rate constant of 0.069 min−1 (2.3 times of ZIF-67/PAN carbon beads). The quenching experiments and electron paramagnetic resonance (EPR) tests showed that radicals dominated the reaction. This work provides new insight into the fabrication of high-performance MOF catalysts with outstanding recycling properties, which may promote the use of MOF powder in more practical applications. Full article
(This article belongs to the Topic Application of Nanomaterials in Environmental Analysis)
Show Figures

Figure 1

Back to TopTop