Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = anchor layout

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9408 KB  
Article
Pullout Behaviour of Snakeskin-Inspired Sustainable Geosynthetic Reinforcements in Sand: An Experimental Study
by Xin Huang, Fengyuan Yan and Jia He
Sustainability 2025, 17(14), 6502; https://doi.org/10.3390/su17146502 - 16 Jul 2025
Viewed by 415
Abstract
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study [...] Read more.
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study first investigated the frictional properties and surface morphologies of the ventral scales of Cantor’s rat snakes (Ptyas dhumnades). Based on the findings on the snake scales, a novel snakeskin-inspired geosynthetic reinforcement (SIGR) is developed using 3D-printed polylactic acid (PLA). A series of pullout tests under different normal loads (25 kPa, 50 kPa, and 75 kPa) were performed to analyze the pullout behavior of SIGR in sandy soil. Soil deformation and shear band thickness were measured using Particle Image Velocimetry (PIV). The results revealed that the ventral scales of Ptyas dhumnades have distinct thorn-like micro-protrusions pointing towards the tail, which exhibit frictional anisotropy. A SIGR with a unilateral (one-sided) layout scales (each scale 1 mm in height and 12 mm in length) could increase the peak pullout force relative to a smooth-surface reinforcement by 29% to 67%. Moreover, the peak pullout force in the cranial direction (soil moving against the scales) was found to be 13% to 20% greater than that in the caudal direction (soil moving along the scales). The pullout resistance, cohesion, and friction angle of SIGR all showed significant anisotropy. The soil deformation around the SIGR during pullout was more pronounced than that observed with smooth-surface reinforcement, which suggests that SIGR can mobilize a larger volume of soil to resist external loads. This study demonstrates that SIGR is able to enhance the pullout resistance of reinforcements, thereby improving the stability of reinforced soil structures, reducing materials and energy consumption, and is important for the sustainability of geotechnical engineering. Full article
Show Figures

Figure 1

14 pages, 3260 KB  
Article
Performance of Hybrid Strengthening System for Reinforced Concrete Member Using CFRP Composites Inside and over Transverse Groove Technique
by Ahmed H. Al-Abdwais and Adil K. Al-Tamimi
Fibers 2025, 13(7), 93; https://doi.org/10.3390/fib13070093 - 8 Jul 2025
Viewed by 464
Abstract
The use of a carbon-fiber-reinforced polymer (CFRP) for structural strengthening has been widely adopted in recent decades. Early studies focused on externally bonded (EB) techniques, but premature delamination of CFRP from concrete surfaces often limited their efficiency. To address this, alternative methods, such [...] Read more.
The use of a carbon-fiber-reinforced polymer (CFRP) for structural strengthening has been widely adopted in recent decades. Early studies focused on externally bonded (EB) techniques, but premature delamination of CFRP from concrete surfaces often limited their efficiency. To address this, alternative methods, such as Externally Bonded Reinforcement Over Grooves (EBROG) and Externally Bonded Reinforcement Inside Grooves (EBRIG), were developed to enhance the bond strength and delay delamination. While most research has examined longitudinal groove layouts, this study investigates a hybrid system combining a CFRP fabric bonded inside transverse grooves (EBRITG) with externally bonded layers over the grooves (EBROTG). The system leverages the grooves’ surface area to anchor the CFRP and improve the bonding strength. Seven RC beams were tested in two stages: five beams with varied strengthening methods (EBROG, EBRIG, and hybrid) in the first stage and two beams with a hybrid system and concrete cover anchorage in the second stage. Results demonstrated significant flexural capacity improvement—57% and 72.5% increase with two and three CFRP layers, respectively—compared to the EBROG method, confirming the hybrid system’s superior bonding efficiency. Full article
Show Figures

Figure 1

16 pages, 4197 KB  
Article
Optimization of Reinforcement Schemes for Stabilizing the Working Floor in Coal Mines Based on an Assessment of Its Deformation State
by Denis Akhmatnurov, Nail Zamaliyev, Ravil Mussin, Vladimir Demin, Nikita Ganyukov, Krzysztof Zagórski, Krzysztof Skrzypkowski, Waldemar Korzeniowski and Jerzy Stasica
Materials 2025, 18(13), 3094; https://doi.org/10.3390/ma18133094 - 30 Jun 2025
Cited by 1 | Viewed by 434
Abstract
In the Karaganda coal basin, deteriorating geomechanical conditions have been observed, including seam disturbances, diminished strength of argillite–aleurolite strata, water ingress, and pronounced floor heave, all of which markedly increase the labor intensity of maintaining developmental headings. The maintenance and operation of these [...] Read more.
In the Karaganda coal basin, deteriorating geomechanical conditions have been observed, including seam disturbances, diminished strength of argillite–aleurolite strata, water ingress, and pronounced floor heave, all of which markedly increase the labor intensity of maintaining developmental headings. The maintenance and operation of these entries for a reference coal yield of 1000 t necessitate 72–75 man-shifts, of which 90–95% are expended on mitigating ground pressure effects and restoring support integrity. Conventional heave control measures—such as relief drifts, slotting, drainage, secondary blasting, and the application of concrete or rock–bolt systems—deliver either transient efficacy or incur prohibitive labor and material expenditures while lacking unified methodologies for predictive forecasting and support parameter design. This study therefore advocates for an integrated framework that synergizes geomechanical characterization, deformation prognosis, and the tailored selection of reinforcement schemes (incorporating both sidewall and floor-anchoring systems with directed preloading), calibrated to seam depth, geometry, and lithological properties. Employing deformation state assessments to optimize reinforcement layouts for floor stabilization in coal mine workings is projected to curtail repair volumes by 30–40% whilst significantly enhancing operational safety, efficiency, and the punctuality of face preparation. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

20 pages, 12338 KB  
Article
Study on the Evolution Characteristics of Surrounding Rock and Differentiated Support Design of Dynamic Pressure Roadway with Double-Roadway Arrangement
by Linjun Peng, Shixuan Wang, Wei Zhang, Weidong Liu and Dazhi Hui
Appl. Sci. 2025, 15(13), 7315; https://doi.org/10.3390/app15137315 - 29 Jun 2025
Viewed by 405
Abstract
To elucidate evolutionary characteristics of the surrounding rock failure mechanism in a double-roadway layout, this work is grounded on in the research context of the Jinjitan Coal Mine, focusing on the deformation and failure mechanisms of double roadways. This paper addresses the issue [...] Read more.
To elucidate evolutionary characteristics of the surrounding rock failure mechanism in a double-roadway layout, this work is grounded on in the research context of the Jinjitan Coal Mine, focusing on the deformation and failure mechanisms of double roadways. This paper addresses the issue of resource wastage resulting from the excessive dimensions of coal pillars in prior periods by employing a research methodology that integrates theoretical analysis, numerical simulation, and field monitoring to systematically examine the movement characteristics of overlying rock in the working face. On that basis, the size of coal pillar is optimized. The advance’s stress transfer law and deformation distribution characteristics of the return air roadway and transport roadway are studied. The cause of the asymmetric deformation of roadway retention is explained. A differentiated design is conducted on the support parameters of double-roadway bolts and cables under strong dynamic pressure conditions. The study indicates that a 16 m coal pillar results in an 8 m elastic zone at its center, balancing stability with optimal resource extraction. In the basic top-sloping double-block conjugate masonry beam structure, the differing stress levels between the top working face’s transport roadway and the lower working face’s return air roadway are primarily due to the varied placements of key blocks. In the return air roadway, floor heave deformation is managed using locking anchor rods, while roof subsidence is controlled with a constant group of large deformation anchor cables. The displacement of surrounding rock increases under the influence of both leading and lagging pressures from the previous working face, although the change is minimal. There is a significant correlation between roadway deformation and support parameters and coal pillar size. With a 16 m coal pillar, differential support of the double roadway lowers the return air roadway deformation by 30%, which improves the mining rate and effectively controls the deformation of the roadway. Full article
Show Figures

Figure 1

31 pages, 2735 KB  
Article
An Optimization Method for Indoor Pseudolites Anchor Layout Based on MG-MOPSO
by Xiaohu Liang, Shuguo Pan, Shitong Du, Baoguo Yu and Shuang Li
Remote Sens. 2025, 17(11), 1909; https://doi.org/10.3390/rs17111909 - 30 May 2025
Viewed by 432
Abstract
To address the challenge of optimizing the layout of pseudolite anchor points in complex indoor environments with significant occlusions, this paper proposes a multi-objective particle swarm optimization algorithm (MG-MOPSO). The algorithm leverages a minimum geometric dilution of precision (GDOP) configuration to optimize anchor [...] Read more.
To address the challenge of optimizing the layout of pseudolite anchor points in complex indoor environments with significant occlusions, this paper proposes a multi-objective particle swarm optimization algorithm (MG-MOPSO). The algorithm leverages a minimum geometric dilution of precision (GDOP) configuration to optimize anchor deployment, aiming to meet the high-precision requirements of indoor pseudolite positioning systems. Experimental results show that compared to the standard MOPSO, MG-MOPSO improves the convergence speed of two objective functions by 21.43% and 25.81%, respectively, and enhances optimization accuracy by 29.41% and 10%. Compared to the non-dominated sorting genetic algorithm II (NSGA-II), the convergence speed increases by 33.33% and 36.99%, while optimization accuracy improves by 36.84% and 29.41%. Moreover, MG-MOPSO outperforms both standard MOPSO and NSGA-II in terms of the Pareto front’s convergence and diversity, with improvements of 16.8% and 14.7%, respectively. Additionally, significant reductions are observed in average positioning error, maximum positioning error, and standard deviation across multiple test points. These results validate the effectiveness of the minimum-GDOP-based initialization and segmented weighting strategy, demonstrating the superior performance and broad applicability of the proposed MG-MOPSO algorithm in optimizing pseudolite layouts under complex indoor occlusion conditions. Full article
Show Figures

Figure 1

15 pages, 10968 KB  
Article
An Experimental Evaluation of Indoor Localization in Autonomous Mobile Robots
by Mina Khoshrangbaf, Vahid Khalilpour Akram, Moharram Challenger and Orhan Dagdeviren
Sensors 2025, 25(7), 2209; https://doi.org/10.3390/s25072209 - 31 Mar 2025
Cited by 5 | Viewed by 1615
Abstract
High-precision indoor localization and tracking are essential requirements for the safe navigation and task execution of autonomous mobile robots. Despite the growing importance of mobile robots in various areas, achieving precise indoor localization remains challenging due to signal interference, multipath propagation, and complex [...] Read more.
High-precision indoor localization and tracking are essential requirements for the safe navigation and task execution of autonomous mobile robots. Despite the growing importance of mobile robots in various areas, achieving precise indoor localization remains challenging due to signal interference, multipath propagation, and complex indoor layouts. In this work, we present the first comprehensive study comparing the accuracy of Bluetooth low energy (BLE), WiFi, and ultra wideband (UWB) technologies for the indoor localization of mobile robots under various circumstances. In the performed experiments, the error margin of the WiFi-based systems reached 608.7 cm, which is not tolerable for most applications. As a commonly used technology in the existing tracking systems, the accuracy of BLE-based systems is at least 44.12% better than that of WiFi-based systems. The error margin of the BLE-based system in tracking static and mobile robots was 191.7 cm and 340.1 cm, respectively. The experiments showed that even with a limited number of UWB anchors, the system provides acceptable accuracy for tracking the mobile robots. Using only four UWB beacons in an environment of about 431 m2 area, the maximum error margin of detected positions by the UWB-based tracking system remained below 13.1 cm and 28.9 cm on average for the static and mobile robots, respectively. This error margin is 88.05% lower than that of the BLE-based system and 93.27% lower than that of the WiFi-based system on average. The high tracking precision, the need for a lower number of anchors, and the decreasing hardware costs point out that UWB will be the dominating technology in indoor tracking systems in the near future. Full article
(This article belongs to the Special Issue Multi‐sensors for Indoor Localization and Tracking: 2nd Edition)
Show Figures

Figure 1

22 pages, 12104 KB  
Article
Dual-Branch Diffusion Detection Model for Photovoltaic Array and Hotspot Defect Detection in Infrared Images
by Ruide Li, Wenjun Yan and Chaoqun Xia
Remote Sens. 2025, 17(6), 1084; https://doi.org/10.3390/rs17061084 - 19 Mar 2025
Cited by 1 | Viewed by 718
Abstract
Failures in solar photovoltaic (PV) modules generate heat, leading to various hotspots observable in infrared images. Automated hotspot detection technology enables rapid fault identification in PV systems, while PV array detection, leveraging geometric cues from infrared images, facilitates the precise localization of defects. [...] Read more.
Failures in solar photovoltaic (PV) modules generate heat, leading to various hotspots observable in infrared images. Automated hotspot detection technology enables rapid fault identification in PV systems, while PV array detection, leveraging geometric cues from infrared images, facilitates the precise localization of defects. This study tackles the complexities of detecting PV array regions and diverse hotspot defects in infrared imaging, particularly under the conditions of complex backgrounds, varied rotation angles, and the small scale of defects. The proposed model encodes infrared images to extract semantic features, which are then processed through an PV array detection branch and a hotspot detection branch. The array branch employs a diffusion-based anchor-free mechanism with rotated bounding box regression, enabling the robust detection of arrays with diverse rotational angles and irregular layouts. The defect branch incorporates a novel inside-awareness loss function designed to enhance the detection of small-scale objects. By explicitly modeling the dependency distribution between arrays and defects, this loss function effectively reduces false positives in hotspot detection. Experimental validation on a comprehensive PV dataset demonstrates the superiority of the proposed method, achieving a mean average precision (mAP) of 71.64% for hotspot detection and 97.73% for PV array detection. Full article
Show Figures

Figure 1

18 pages, 8981 KB  
Article
Numerical Simulation Study on Through-Anchor Cable Reinforcement Control of Inter-Roadway Coal Pillars in Double-Roadway Layouts
by Linjun Peng, Shunyu Xu and Manchao He
Sustainability 2025, 17(6), 2416; https://doi.org/10.3390/su17062416 - 10 Mar 2025
Cited by 1 | Viewed by 610
Abstract
This study investigates the traditional coal pillar support methods employed in double-roadway excavation of high-mining-height longwall faces, specifically those with widths ranging from 20 m to 30 m. It highlights that these methods not only result in substantial coal pillar loss and low [...] Read more.
This study investigates the traditional coal pillar support methods employed in double-roadway excavation of high-mining-height longwall faces, specifically those with widths ranging from 20 m to 30 m. It highlights that these methods not only result in substantial coal pillar loss and low recovery rates but also create conditions for stress concentration due to inadequate dimensions, thereby increasing the risk of accidents. Based on the engineering context of the Jinjitan Coal Mine’s 113 and 111 working faces, this paper optimizes coal pillar dimensions through theoretical calculations and Flac3D numerical simulations, with the results indicating that the optimal coal pillar width is 12 m. Analysis of a 12 m inter-roadway coal pillar focuses on the bearing characteristics of auxiliary transport roadways and coal transportation roadways. Five different reinforcement schemes are examined, including (no support, conventional anchor reinforcement, presser anchor cable through reinforcement, constant-resistance large-deformation anchor cable through reinforcement, and a combination of presser with negative Poisson’s ratio (NPR) constant-resistance large-deformation anchor cable support). The findings reveal that in the investigation of the reinforcement mechanism for the 12 m wide coal pillar, employing NPR constant-resistance large-deformation anchor cables alongside presser anchor cables effectively mitigates the compression deformation caused by dynamic loading disturbances from the overlying rock layers. This approach not only dissipates energy but also transforms the coal pillar from a biaxial stress state to a triaxial stress state. The reinforcement scheme successfully reduces the peak stress of the coal pillar from 68.5 MPa to 35.3 MPa, significantly enhancing both the peak strength and residual strength of the coal pillar, thereby ensuring the stability of the inter-roadway coal pillar and the safe recovery of the working face. Full article
Show Figures

Figure 1

37 pages, 31679 KB  
Article
Mooring Failure Analysis of Semisubmersible Floating Offshore Wind Turbines Considering Mooring Redundancy at Each Azimuth Angle
by Shuai Hao, Xuning Zhang, Yang Yu, Bin Wang and Xingdao Bo
J. Mar. Sci. Eng. 2025, 13(2), 360; https://doi.org/10.3390/jmse13020360 - 15 Feb 2025
Viewed by 1587
Abstract
Semisubmersible floating structures are becoming the predominant understructure type for floating offshore wind turbines (FOWTs) worldwide. As FOWTs are erected far away from land and in deep seas, they inevitably suffer violent and complicated sea conditions, including extreme waves and winds. Mooring lines [...] Read more.
Semisubmersible floating structures are becoming the predominant understructure type for floating offshore wind turbines (FOWTs) worldwide. As FOWTs are erected far away from land and in deep seas, they inevitably suffer violent and complicated sea conditions, including extreme waves and winds. Mooring lines are the representative flexible members of the whole structure and are likely to incur damage due to years of impact, corrosion, or fatigue. To improve mooring redundancy at each azimuth angle around a wind turbine, a group of mooring lines are configured in the same direction instead of just one mooring line. This study focuses on the mooring failure problems that would probably occur in a realistic redundant mooring system of a semisubmersible FOWT, and the worst residual mooring layout is considered. An FOWT numerical model with a 3 × 3 mooring system is established in terms of 3D potential flow and BEM (blade element momentum) theories, and aero-hydro floating-body mooring coupled analyses are performed to discuss the subsequent time histories of dynamic responses after different types of mooring failure. As under extreme failure conditions, the final horizontal offsets of the structure and the layout of the residual mooring system are evaluated under still water, design, and extreme environmental conditions. The results show that the transient tension in up-wave mooring lines can reach more than 12,000 kN under extreme environmental conditions, inducing further failure of the whole chain group. Then, a deflection angle of 60° may occur on the residual laid chain, which may bring about dangerous anchor dragging. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

20 pages, 7163 KB  
Article
Laboratory Investigation of the Uplift Resistance of a New Winged H-Pile Anchor Developed for Offshore Marine Aquaculture
by Xu Yang, Lianghao Tang, Lili Mei, Tianyuan Zhang, Shuai Niu, Zhefei Sun, Zhenliang Wang, Dejun Feng and Fukun Gui
J. Mar. Sci. Eng. 2025, 13(2), 342; https://doi.org/10.3390/jmse13020342 - 13 Feb 2025
Viewed by 867
Abstract
To enhance the stability and safety of marine aquaculture facilities by addressing the limited uplift resistance capacity and susceptibility to deflection of conventional straight-shafted piles, this study introduces an improved H-pile anchor and conducted laboratory experiments. The new anchor incorporates resized H-piles with [...] Read more.
To enhance the stability and safety of marine aquaculture facilities by addressing the limited uplift resistance capacity and susceptibility to deflection of conventional straight-shafted piles, this study introduces an improved H-pile anchor and conducted laboratory experiments. The new anchor incorporates resized H-piles with wing plates added to both sides, optimized for area and placement, as well as an adjusted loading angle. The findings demonstrate a positive correlation between the uplift resistance capacity of the H-pile anchor and its length and width, indicating that while increased pile length significantly enhances resistance, widening has a minimal impact. Additionally, enlarging the wing plate area improves the resistance; however, efficiency (δ) decreases with the increase in the area, suggesting the existence of an optimal size. The optimal wing plate dimensions (L = 80 mm, W = 25 mm) improve uplift resistance by at least 10.6% compared to non-wing pile anchors. Furthermore, positioning the wing plates at the base of the pile anchor rather than the top enhances resistance by approximately 13.8%. Setting the anchor layout angle to 45° reduced the displacement under inclined loads. This research provides essential theoretical support and practical guidance for strengthening the safety and stability of marine aquaculture facilities. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

23 pages, 15633 KB  
Article
Control Study on Surrounding Rock of Gob-Side Entry Retaining below near Distance Goaf
by Shengrong Xie, Zaisheng Jiang, Dongdong Chen, Liwei Zhai and Zhiqiang Yan
Processes 2024, 12(9), 1966; https://doi.org/10.3390/pr12091966 - 12 Sep 2024
Cited by 3 | Viewed by 921
Abstract
To explore the control technology on surrounding rock of gob-side entry retaining (GSER) below a goaf in a near distance coal seam (NDCS), research was conducted on the floor ruin range, the floor stress distribution features, the layout of the GSER below near [...] Read more.
To explore the control technology on surrounding rock of gob-side entry retaining (GSER) below a goaf in a near distance coal seam (NDCS), research was conducted on the floor ruin range, the floor stress distribution features, the layout of the GSER below near distance goaf, the width of the roadside filling wall (RFW), and the control technology of the GSER surrounding rock below the near distance goaf after upper coal seam (UCS) mining. The results show that (1) the stress of the goaf floor has obvious regional features, being divided into stress high value zone (Zone A), stress extremely low zone (Zone B), stress rebound zone (Zone C), stress transition zone (Zone D), and stress recovery zone (Zone E) according to different stress states. The stress distribution features at different depths below the goaf floor in each zone also have differences. (2) Arranging the roadway in Zone A below a coal pillar, the roadway is at high stress levels, which is not conducive to the stability of the surrounding rock. Arranging the roadway in Zone B below the goaf floor, the bearing capacity of the surrounding rock itself is weak, making it difficult to control the surrounding rock. Arranging the roadway in Zone C, the mechanical properties of the surrounding rock are good, and the difficulty of controlling the surrounding rock is relatively low. Arranging the roadway in Zone D and Zone E, there is a relatively small degree of stress concentration in the roadway rib. (3) When the RFW width is 0.5–1.5 m, stress concentration is more pronounced on the solid coal rib, and the overlying rock pressure is mainly borne by the solid coal rib, with less stress on the RFW. When the RFW width is 2~3 m, the stress on the RFW is enhanced, and the bearing capacity is significantly increased compared to RFW of 0.5–1.5 m width. The RFW contributes to supporting the overlying rock layers. (4) A comprehensive control technology for GSER surrounding rock in lower coal seam (LCS) has been proposed, which includes the grouting modification of coal and rock mass on the GSER roof, establishing a composite anchoring structure formed by utilizing bolts (cables); the strong support roof and control floor by one beam + three columns, reinforcing the RFW utilizing tie rods pre-tightening; and the hydraulic prop protection RFW and bolts (cables) protection roof at roadside. This technology has been successfully applied in field practice. Full article
Show Figures

Figure 1

16 pages, 6503 KB  
Article
A Study on the Influence of Anchor Rods’ Layout on the Uplift Resistance Characteristics of Inclined Anchor Short-Pile Foundations Based on FEA
by Yiran Gao, Yiqing Zhang, Qiang Xie, Quan Liu, Tinglei Liu, Ting You, Xiang Fu, Jun Duan, Peiyuan Qin, Tao Yang and Yucheng Chen
Buildings 2024, 14(8), 2580; https://doi.org/10.3390/buildings14082580 - 22 Aug 2024
Cited by 3 | Viewed by 1305
Abstract
In the steep terrain of southwestern China, there are numerous complex strata characterized by thin overburden layers and well-behaved underlying bedrock, yet excavation poses significant challenges. This situation is unfavorable for the construction of transmission towers’ foundations. To address this issue, inclined anchor [...] Read more.
In the steep terrain of southwestern China, there are numerous complex strata characterized by thin overburden layers and well-behaved underlying bedrock, yet excavation poses significant challenges. This situation is unfavorable for the construction of transmission towers’ foundations. To address this issue, inclined anchor short-pile foundations have been proposed as foundations for transmission towers. These foundations not only reduce the depth and construction difficulty of excavation but also make full use of the load-bearing capacity of the bedrock. To investigate the influence of the anchor rods’ layout on the uplift resistance characteristics of inclined anchor short-pile foundations, numerical models were established using FLAC3D. The effects of the anchor rods’ position and the length of the free segment on the uplift resistance characteristics of inclined anchor short-pile foundations were explored. The results indicated that variations in the anchor rods’ position and the length of the free segment had minimal impact on the uplift resistance characteristics of inclined anchor short-pile foundations. The pile head displacements of short piles with different anchor rod positions were similar under both loading conditions. Under pure uplift loads, the maximum displacement before failure was approximately 13 mm, while under combined uplift and horizontal loads, the maximum displacement before failure was around 15 mm. Placing the anchor rod too low increased the difficulty of construction, while positioning it too high resulted in a shorter embedment length of the anchor rod in the pile’s body, leading to potential failure at the pile–anchor node. Therefore, it is recommended to position the anchor rod near the center of the short pile’s body. As the length of the free segment of the anchor rod decreased, there was a slight reduction in the displacement under the same uplift loading conditions, with an overall difference of less than 5%. However, if full-length anchoring was adopted, the anchor rod was prone to tensile shear failure. Compared with short-pile foundations of the same size, inclined anchor short-pile foundations demonstrated enhanced ultimate bearing capacity under uplift and combined uplift and horizontal loading. The improvement was more significant when horizontal loads were present. Under horizontal loading, the ultimate uplift bearing capacity of inclined anchor short-pile foundations decreased by only 14%, whereas that of single-pile foundations decreased by 24%. Full article
Show Figures

Figure 1

26 pages, 9865 KB  
Article
Numerical Simulation Analysis of the Bending Performance of T-Beams Strengthened with Ultra-High-Performance Concrete Based on the CDP Model
by Yu Long, Zhimei Jiang, Kongru Zou, Jiang Du and Jun Yang
Buildings 2024, 14(5), 1284; https://doi.org/10.3390/buildings14051284 - 1 May 2024
Cited by 3 | Viewed by 2468
Abstract
In bridge reinforcement projects, damaged T-beams are the most common objects for reinforcement, yet the interface bonding and bending performance of UHPC reinforcement on T-beams have hardly been studied. To ensure the reliability and stability of UHPC-strengthened T-beams in practical applications, this study [...] Read more.
In bridge reinforcement projects, damaged T-beams are the most common objects for reinforcement, yet the interface bonding and bending performance of UHPC reinforcement on T-beams have hardly been studied. To ensure the reliability and stability of UHPC-strengthened T-beams in practical applications, this study introduced a post-installed rebar bonding technique to efficiently connect T-beams with UHPC layers. Initially, using ABAQUS software [2020 version] for finite element simulation, this study investigated the effects of various post-installed rebar parameters (horizontal spacing, yield strength, diameter, and matrix concrete strength) on the shear performance of the UHPC and RC interface, obtaining the optimal connection parameters. Subsequently, by comparing shear formulas in domestic and international standards, a new UHPC-RC steel bar interface shear strength theoretical formula with 93.6% accuracy was derived. Finally, finite element simulations analyzed the impact of different post-installed reinforcing bar layout forms and longitudinal spacing, as well as UHPC-strengthened location and layer thickness, on the bending performance of damaged T-beams. The results showed a good match between simulation outcomes and experimental results, applicable for further reinforcement analysis of T-beams. When the horizontal spacing of post-installed rebars is 12d, with diameters ranging from 10 mm to 14 mm, their anchoring capability is efficiently utilized. A square form of a post-installed rebar with a longitudinal spacing of 300 mm effectively improves the ultimate bending load capacity of the strengthened beam. The simulation analysis and theoretical results help in the design and application of post-installed steel connections and UHPC-strengthened structures in UHPC-strengthened reinforced concrete T-beam structures. Full article
Show Figures

Figure 1

7 pages, 4860 KB  
Proceeding Paper
Research on the Wearable Augmented Reality Seeking System for Rescue-Guidance in Buildings
by Chyi-Gang Kuo, Chi-Wei Lee, Benson P. C. Liu and Chien-Wei Chiu
Eng. Proc. 2023, 55(1), 77; https://doi.org/10.3390/engproc2023055077 - 14 Dec 2023
Cited by 1 | Viewed by 1197
Abstract
When a construction disaster occurs, the first-line rescue personnel often enter the disaster site immediately, and every second counts in rescuing the people who need help. However, the rescue personnel may not be familiar with the indoor layouts of different buildings. If the [...] Read more.
When a construction disaster occurs, the first-line rescue personnel often enter the disaster site immediately, and every second counts in rescuing the people who need help. However, the rescue personnel may not be familiar with the indoor layouts of different buildings. If the indoor paths are complicated, or when the fire smoke obstructs the line of sight, the rescue personnel are prone to spatial disorientation, which usually causes the rescue personnel to fall into danger. Therefore, we have developed the “Wearable Augmented reality Seeking System” (WASS) to assist rescue personnel in reading the information provided by the “Building Information Guiding System”. This system allows them to enter an unfamiliar space and reach the target rescue position, retreat to the entrance, or find an alternative escape route. The WASS is based on the HoloLens augmented reality system, which displays 3D digital information such as indoor layouts, one’s current location, spatial images captured by an infrared camera and a depth camera, and 3D virtual guiding symbols or text. The WASS includes two modules: First, the augmented reality gesture interaction module allows one to read the positioning anchor information of the “Building Information Guiding System” (BIGS). The rescue personnel can communicate via gestures, select the task target, and follow the 3D virtual guidance symbols in the air to reach the relay anchor points and finally arrive at the target position. Second, the service support module, including a lighting source and backup power, ensures that the QR code recognition process and long-term operation of the WASS are successful. Full article
Show Figures

Figure 1

27 pages, 1080 KB  
Article
Measuring Received Signal Strength of UWB Chaotic Radio Pulses for Ranging and Positioning
by Elena V. Efremova, Lev V. Kuzmin and Vadim V. Itskov
Electronics 2023, 12(21), 4425; https://doi.org/10.3390/electronics12214425 - 27 Oct 2023
Cited by 6 | Viewed by 2464
Abstract
The use of ultra-wideband (UWB) signals for local positioning is very attractive for practice, because such signals have the potential to provide centimeter precision. In this paper, we consider wireless ranging (distance measurement) and positioning, using one of the kinds of UWB signals, [...] Read more.
The use of ultra-wideband (UWB) signals for local positioning is very attractive for practice, because such signals have the potential to provide centimeter precision. In this paper, we consider wireless ranging (distance measurement) and positioning, using one of the kinds of UWB signals, i.e., chaotic radio pulses, which are noise-like signals with no constant shape. The distance measurement is based on an assessment in the receiver of the power of UWB chaotic radio pulses emitted by the transmitter. A new method for estimating their power and its experimental implementation is proposed and described. Experimental layouts of the transmitter and receiver and the principles of their operation are described. To determine the main features of this method under real signal propagation conditions, full-scale indoor measurements were carried out, and statistical estimates of the accuracy were made. We present the results of experimental testing of the proposed approach for positioning the emitter relative to a system of anchors in an office space 6 × 6.5 m2 in the mode of measuring object coordinates on a line and on a plane. The mean absolute error (MAE) of distance measurement (1D) was 25 cm, and the root mean squared error (RMSE) was 39 cm. When positioning on a plane (2D), the MAE of coordinate estimation was 34 cm and the RMSE was 42 cm. The proposed distance measurement method is intended for use in wireless UWB transceivers used in wireless sensor networks. Full article
(This article belongs to the Special Issue New Insights and Applications in Positioning Systems)
Show Figures

Figure 1

Back to TopTop