Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = bio-HDPE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3006 KiB  
Article
Evaluation of Thermal Aging Susceptibility of Recycled Waste Plastic Aggregates (Low-Density Polyethylene, High-Density Polyethylene, and Polypropylene) in Recycled Asphalt Pavement Mixtures
by Yeong-Min Kim and Kyungnam Kim
Polymers 2025, 17(6), 731; https://doi.org/10.3390/polym17060731 - 10 Mar 2025
Viewed by 657
Abstract
The increasing demand for sustainable road construction materials necessitates innovative solutions to overcome the challenges of Recycled Asphalt Pavement (RAP), including aged binder brittleness, reduced flexibility, and durability concerns. Waste Plastic Aggregates (WPA) offer a promising alternative; however, their thermal aging behavior and [...] Read more.
The increasing demand for sustainable road construction materials necessitates innovative solutions to overcome the challenges of Recycled Asphalt Pavement (RAP), including aged binder brittleness, reduced flexibility, and durability concerns. Waste Plastic Aggregates (WPA) offer a promising alternative; however, their thermal aging behavior and interactions with RAP remain insufficiently understood. This study evaluates the performance of RAP-based asphalt mixtures, incorporating three types of WPA—Low-Density Polyethylene (LDPE), High-Density Polyethylene (HDPE), and Polypropylene (PP)—under three thermal aging conditions: mild (60 °C for 7 days), moderate (80 °C for 14 days), and severe (100 °C for 30 days). The mixtures were designed with 30% RAP content, 10% and 20% WPA by aggregate weight, and SBS-modified binder rejuvenated with 2% and 4% sewage sludge bio-oil by binder weight. It is considered that thermal aging may impact the performance of WPA in RAP mixtures; therefore, this study evaluates the durability and mechanical properties of RAP mixtures incorporating LDPE, HDPE, and PP under varying thermal aging conditions to address these challenges. The results showed that incorporating WPA and bio-oil significantly enhanced the mechanical performance, durability, and sustainability of asphalt mixtures. Marshall Stability increased by 12–23%, with values ranging from 12.6 to 13.2 kN for WPA-enhanced mixtures compared to 12.7 kN for the control. ITS improved by 15–20% in dry conditions (1.34–1.44 MPa) and 12–18% in wet conditions (1.15–1.19 MPa), with TSR values reaching up to 82.64%. Fatigue life was extended by 28–43%, with load cycles increasing from 295,600 for the control to 352,310 for PP mixtures. High-temperature performance showed a 12–18% improvement in softening point (57.3 °C to 61.2 °C) and a 23% increase in rutting resistance, with rut depths decreasing from 7.1 mm for the control to 5.45 mm for PP mixtures after 20,000 passes. These results demonstrate that combining RAP, WPA, and bio-oil produces sustainable asphalt mixtures with superior performance under aging and environmental stressors, offering robust solutions for high-demand applications in modern infrastructure. Full article
(This article belongs to the Special Issue Progress in Recycling of (Bio)Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

19 pages, 4968 KiB  
Article
Co-Pyrolysis of Plastic Waste and Lignin: A Pathway for Enhanced Hydrocarbon Recovery
by Vilmantė Kudelytė, Justas Eimontas, Rolandas Paulauskas and Nerijus Striūgas
Energies 2025, 18(2), 275; https://doi.org/10.3390/en18020275 - 9 Jan 2025
Viewed by 834
Abstract
Various plastics and biomass wastes, such as polypropylene (PP), low- or high-density polyethylene (LDPE/HDPE), and lignin, have become some of the most concerning wastes nowadays. In this context, this study aimed to investigate the possibility of applying thermochemical processes for the valorization of [...] Read more.
Various plastics and biomass wastes, such as polypropylene (PP), low- or high-density polyethylene (LDPE/HDPE), and lignin, have become some of the most concerning wastes nowadays. In this context, this study aimed to investigate the possibility of applying thermochemical processes for the valorization of these materials. The experiments were carried out using a thermogravimetric analyzer on individual plastic and lignin samples and their mixtures at different mass ratios of 1:1, 1:2, 1:3, and 1:4. The gaseous products evolved during the pyrolysis process were analyzed by combined thermogravimetric and Fourier-transform infrared spectroscopy (TG-FTIR) and chromatography-mass spectrometry (Py-GC/MS) to analyze the functional groups and chemical composition of the obtained pyrolysis products. The results showed that the main functional groups of lignin monitored by TG-FTIR were aromatic and aliphatic hydrocarbons, while all plastics showed the same results for hydrocarbons. The investigation confirmed that mixing these types of plastics with lignin at different mass ratios led to increased recovery of higher-value-added products. Py-GC/MS analysis showed that the greatest results of compound recovery were achieved with lignin and LDPE/HDPE mixtures at 600 °C. At this temperature and with a mass ratio of 1:3, the plastic’s radicals enhanced the depolymerization of lignin, encouraging its wider decomposition to hydrocarbons that can be applied for the production of value-added chemicals and bio-based energy. Full article
Show Figures

Figure 1

21 pages, 4146 KiB  
Article
How Reducing Fossil-Based Plastic Use Can Help the Overall Sustainability of Oyster Farming: The Case of the Gulf of La Spezia
by Daniela Summa, Elena Tamisari, Mattia Lanzoni, Giuseppe Castaldelli and Elena Tamburini
Resources 2025, 14(1), 10; https://doi.org/10.3390/resources14010010 - 8 Jan 2025
Viewed by 989
Abstract
Oyster farming plays a crucial role in sustainable food production due to its high nutritional value and relatively low environmental impact. However, in a scenario of increasing production, it is necessary to consider the issue of plastic use as a limitation to be [...] Read more.
Oyster farming plays a crucial role in sustainable food production due to its high nutritional value and relatively low environmental impact. However, in a scenario of increasing production, it is necessary to consider the issue of plastic use as a limitation to be addressed. A life cycle assessment (LCA) was conducted on oyster farming in La Spezia (Italy) as a case study, utilizing 1 kg of packaged oysters as the functional unit. Fossil-based plastics and wooden packaging were identified as the primary environmental concerns. To analyze potential strategies for reducing the environmental impact of oyster farming, alternative scenarios were considered wherein fossil-based materials were replaced with bio-based materials. Specifically, this study examined the substitution of the current packaging, consisting of a wooden box and a polypropylene (PP) film, with a fully recyclable PP net. Additionally, polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and bio-based polyethylene terephthalate (Bio-PET) were proposed as alternatives to virgin high-density polyethylene (HDPE) and PP for buoys, oyster bags, and boxes. Among the scenarios analyzed, the sole effective strategy to reduce the impact of plastics on the process is to replace them with PHA. In the other cases, the high energy consumption of their non-optimized production renders them disadvantageous options. However, the assessment must include the effects of degradation that traditional plastics can have in the marine environment, an aspect that potentially renders natural fibers more advantageous. The use of PP net packaging has demonstrated high efficacy in reducing impacts and provides a foundation for considering the need to combine sustainability and marketing with current legislation regarding food packaging. Full article
Show Figures

Figure 1

20 pages, 4462 KiB  
Article
Effective Removal of Microplastic Particles from Wastewater Using Hydrophobic Bio-Substrates
by Kalyani Prasad Bhagwat, Denis Rodrigue and Laura Romero-Zerón
Pollutants 2024, 4(2), 231-250; https://doi.org/10.3390/pollutants4020015 - 6 May 2024
Cited by 3 | Viewed by 4801
Abstract
The rapid increase in soil and water pollution is primarily attributed to anthropogenic factors, notably the mismanagement of post-consumer plastics on a global scale. This exploratory research design evaluated the effectiveness of natural hydrophobic cattail (Typha Latifolia) fibres (CFs) as bio-adsorbents [...] Read more.
The rapid increase in soil and water pollution is primarily attributed to anthropogenic factors, notably the mismanagement of post-consumer plastics on a global scale. This exploratory research design evaluated the effectiveness of natural hydrophobic cattail (Typha Latifolia) fibres (CFs) as bio-adsorbents of microplastic particles (MPPs) from wastewater. The study investigates how the composition of the adsorption environment affects the adsorption rate. Straightforward batch adsorption tests were conducted to evaluate the “spontaneous” sorption of MPPs onto CFs. Five MPP materials (PVC, PP, LDPE, HDPE, and Nylon 6) were evaluated. Industrial wastewater (PW) and Type II Distilled Water (DW) were employed as adsorption environments. The batch test results show that CFs are effective in removing five MPP materials from DW and PW. However, a higher removal percentage of MPPs was observed in PW, ranging from 89% to 100% for PVC, PP, LDPE, and HDPE, while the adsorption of Nylon 6 increased to 29.9%, a removal increase of 50%. These findings indicate that hydrophobic interactions drive the “spontaneous and instantaneous” adsorption process and that adjusting the adsorption environment can effectively enhance the MPP removal rate. This research highlights the significant role that bio-substrates can play in mitigating environmental pollution, serving as efficient, sustainable, non-toxic, biodegradable, low-cost, and reliable adsorbents for the removal of MPPs from wastewaters. Full article
(This article belongs to the Special Issue The Effects of Global Anthropogenic Trends on Ecosystems)
Show Figures

Figure 1

15 pages, 1819 KiB  
Article
Municipal Solid Waste Composition and Generation with Emphasis on Plastics in Nablus City, Palestine
by Issam A. Al-Khatib, Jinyang Guo, Kerstin Kuchta, Anas A. Draidi, Sawsan Y. Abu Amara and Ayah Alassali
Sustainability 2023, 15(19), 14640; https://doi.org/10.3390/su151914640 - 9 Oct 2023
Cited by 2 | Viewed by 2497
Abstract
The aim of this study was to characterize the municipal solid waste (MSW) in Nablus city in Palestine, while focusing on the plastic waste fraction. The plastic fraction—an environmentally problematic waste stream—was further characterized into the different polymer types and formats with the [...] Read more.
The aim of this study was to characterize the municipal solid waste (MSW) in Nablus city in Palestine, while focusing on the plastic waste fraction. The plastic fraction—an environmentally problematic waste stream—was further characterized into the different polymer types and formats with the aim of suggesting feasible recovery and recycling solutions. Locally generated studies lack data about the recyclable fractions in the MSW and a thorough characterization of the plastic waste stream, although there is global action to minimize and optimally treat this waste fraction. The composition analysis was conducted by collecting 60 samples from five districts with different characteristics (e.g., income, density, level of education, building formats). The fraction of bio- and organic waste is significant in the collected MSW in Nablus, representing about 68% of the total MSW. The recyclables (paper and cardboard, glass, metals and plastics) amount to 27.4% of the generated MSW in the city. The plastic fraction (10.1%) is mainly composed of low-density polyethylene (LDPE) films (39.8%), polyethylene terephthalate (PET) bottles (21.9%), high-density polyethylene (HDPE) rigids (19.0%), and polypropylene (PP) rigids (11.5%), all of which are technologically recyclable. The polymer types and container formats indicated that the collected plastics originate mostly from packaging. The outcomes of this research indicate the need to implement a separate collection system for the organic waste fraction, which could be used to produce compost for the agricultural activities in the region. By having such a system, the dry recyclables (including plastics) can be easily recovered with less degree of contamination for recycling, helping the local recyclers to access cleaner materials. Furthermore, the state of Palestine lacks strict regulations for the end-of-life treatment of the different waste fractions; therefore, having clear guidelines and incentive systems will result in the minimization of the generated waste as well as better achievement of recovery and recycling targets. In addition, expertise, funding, public awareness, facilities, equipment and other provisions are currently lacking or inappropriate. In future, these factors must be addressed to enhance sustainable solid waste management. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

9 pages, 3277 KiB  
Article
Characterization and Design of Circular Binders
by Hans C. Hendrikse, Hamza El Khallabi, Thomas Hartog, Aikaterini Varveri and Anthon Tolboom
Sustainability 2023, 15(17), 12853; https://doi.org/10.3390/su151712853 - 25 Aug 2023
Cited by 1 | Viewed by 1637
Abstract
The concept of a circular economy, where waste materials are transformed into valuable resources, is gaining increasing attention. However, many waste streams are difficult to recycle due to their mixed composition and broad molecular distribution. This paper explores the potential of repurposing mixed [...] Read more.
The concept of a circular economy, where waste materials are transformed into valuable resources, is gaining increasing attention. However, many waste streams are difficult to recycle due to their mixed composition and broad molecular distribution. This paper explores the potential of repurposing mixed materials, specifically focusing on creating a circular alternative to bitumen, a fossil-based binder used in road construction. The molecular weight and composition of bitumen are analyzed using gas chromatography (GC) and infrared spectroscopy (IR). This study proposes using waste plastics and bio-based oils to develop a paving binder with similar molecular distribution. Various plastic types, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE), isotactic polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET), are examined for their compatibility with different oils. It is observed that the compatibility of both the molecular weight and composition between the plastic and oil is crucial for the successful dissolution and homogeneity of the binder. Additionally, the crystallinity of the plastic plays a role in the flexibility and durability of the resulting binder. It is demonstrated that by carefully selecting waste materials and understanding their molecular characteristics, it is possible to create circular alternatives to fossil-based materials like bitumen. This approach has the potential to reduce waste, lower dependence on fossil resources, and contribute to sustainable and circular construction materials. Full article
(This article belongs to the Special Issue Pavement Materials and Sustainability)
Show Figures

Figure 1

19 pages, 4229 KiB  
Article
Methodologies to Evaluate the Micromechanics Flexural Strength Properties of Natural-Fiber-Reinforced Composites: The Case of Abaca-Fiber-Reinforced Bio Polyethylene Composites
by Faust Seculi, Fernando Julián, Joan Llorens, Francisco X. Espinach, Pere Mutjé and Quim Tarrés
Polymers 2023, 15(14), 3137; https://doi.org/10.3390/polym15143137 - 24 Jul 2023
Cited by 8 | Viewed by 2635
Abstract
There is growing emphasis on developing green composites as a substitute for oil-based materials. In the pursuit of studying and enhancing the mechanical properties of these composites, tensile tests are predominantly employed, often overlooking the flexural properties. This study focuses on researching the [...] Read more.
There is growing emphasis on developing green composites as a substitute for oil-based materials. In the pursuit of studying and enhancing the mechanical properties of these composites, tensile tests are predominantly employed, often overlooking the flexural properties. This study focuses on researching the flexural properties of abaca-fiber-reinforced bio-based high-density polyethylene (BioPE) composites. Specifically, composites containing 30 wt% of abaca fiber (AF) were treated with a coupling agent based on polyethylene functionalized with maleic acid (MAPE). The test results indicate that incorporating 8 wt% of the coupling agent significantly improved the flexural strength of the composites. Thereafter, composites with AF content ranging from 20 to 50 wt% were produced and subjected to flexural testing. It was observed that flexural strength was positively correlated with AF content. A micromechanics analysis was conducted to evaluate the contributions of the phases. This analysis involved assessing the mechanical properties of both the reinforcement and matrix to facilitate the modeling of flexural strength. The findings of this study demonstrate the feasibility of replacing oil-based matrices, such as high-density polyethylene (HDPE), with fully bio-based composites that exhibit comparable flexural properties to their oil-based counterparts. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

15 pages, 4982 KiB  
Article
Unveiling the Potential of Rice Straw Nanofiber-Reinforced HDPE for Biomedical Applications: Investigating Mechanical and Tribological Characteristics
by Mohamed Taha, Ahmed Fouly, Hany S. Abdo, Ibrahim A. Alnaser, Ragab Abouzeid and Ahmed Nabhan
J. Funct. Biomater. 2023, 14(7), 366; https://doi.org/10.3390/jfb14070366 - 12 Jul 2023
Cited by 13 | Viewed by 1847
Abstract
The efficient utilization of rice waste has the potential to significantly contribute to environmental sustainability by minimizing the waste impact on the environment. Through repurposing such waste, novel materials can be developed for various biomedical applications. This approach not only mitigates waste, but [...] Read more.
The efficient utilization of rice waste has the potential to significantly contribute to environmental sustainability by minimizing the waste impact on the environment. Through repurposing such waste, novel materials can be developed for various biomedical applications. This approach not only mitigates waste, but it also promotes the adoption of sustainable materials within the industry. In this research, rice-straw-derived nanofibers (RSNFs) were utilized as a reinforcement material for high-density polyethylene (HDPE). The rice-straw-derived nanofibers were incorporated at different concentrations (1, 2, 3, and 4 wt.%) into the HDPE. The composites were fabricated using twin-screw extrusion (to ensure homogenous distribution) and the injection-molding process (to crease the test samples). Then, the mechanical strengths and frictional performances of the bio-composites were assessed. Different characterization techniques were utilized to investigate the morphology of the RSNFs. Thermal analyses (TGA/DTG/DSC), the contact angle, and XRD were utilized to study the performances of the HDPE/RSNF composites. The study findings demonstrated that the addition of RSNFs as a reinforcement to the HDPE improved the hydrophilicity, strength, hardness, and wear resistance of the proposed bio-composites. Full article
(This article belongs to the Special Issue Nanoparticles: Fabrication, Properties and Biomedical Application)
Show Figures

Figure 1

16 pages, 2553 KiB  
Article
Synergistic Effects and Mechanistic Insights into the Co-Hydropyrolysis of Chilean Oak and Polyethylene: Unlocking the Potential of Biomass–Plastic Valorisation
by Bastián Puentes, Fidel Vallejo and Serguei Alejandro-Martín
Polymers 2023, 15(12), 2747; https://doi.org/10.3390/polym15122747 - 20 Jun 2023
Cited by 6 | Viewed by 2414
Abstract
This study employed a hydrogen atmosphere in an analytical reactor to investigate the thermochemical transformation of Chilean Oak (ChO) and polyethylene. Thermogravimetric assays and compositional analyses of the evolved gaseous chemicals provided valuable insights regarding the synergistic effects during the co-hydropyrolysis of biomass [...] Read more.
This study employed a hydrogen atmosphere in an analytical reactor to investigate the thermochemical transformation of Chilean Oak (ChO) and polyethylene. Thermogravimetric assays and compositional analyses of the evolved gaseous chemicals provided valuable insights regarding the synergistic effects during the co-hydropyrolysis of biomass and plastics. A systematic experimental design approach assessed the contributions of different variables, revealing the significant influence of the biomass/plastic ratio and hydrogen pressure. Analysis of the gas phase composition showed that co-hydropyrolysis with LDPE resulted in lower levels of alcohols, ketones, phenols, and oxygenated compounds. ChO exhibited an average oxygenated compound content of 70.13%, while LDPE and HDPE had 5.9% and 1.4%, respectively. Experimental assays under specific conditions reduced ketones and phenols to 2–3%. Including a hydrogen atmosphere during co-hydropyrolysis contributes to enhanced reaction kinetics and reduced formation of oxygenated compounds, indicating its beneficial role in improving reactions and diminishing the production of undesired by-products. Synergistic effects were observed, with reductions of up to 350% for HDPE and 200% for LDPE compared to the expected values, achieving higher synergistic coefficients with HDPE. The proposed reaction mechanism provides a comprehensive understanding of the simultaneous decomposition of biomass and polyethylene polymer chains, forming valuable bio-oil products and demonstrating the how the hydrogen atmosphere modulates and influences the reaction pathways and product distribution. For this reason, the co-hydropyrolysis of biomass–plastic blends is a technique with great potential to achieve lower levels of oxygenated compounds, which should be further explored in subsequent studies to address scalability and efficiency at pilot and industrial levels. Full article
Show Figures

Graphical abstract

19 pages, 2585 KiB  
Article
Evaluation of the Interface Strength in the Abaca-Fiber-Reinforced Bio-Polyethylene Composites
by Faust Seculi, Francesc X. Espinach, Fernando Julián, Marc Delgado-Aguilar, Pere Mutjé and Quim Tarrés
Polymers 2023, 15(12), 2686; https://doi.org/10.3390/polym15122686 - 15 Jun 2023
Cited by 5 | Viewed by 2754
Abstract
Bio-based polymers, with any of their constituents based on nonrenewable sources, can answer the demands of society and regulations regarding minimizing the environmental impact. The more similar such biocomposites are to oil-based composites, the easier the transition, especially for companies that do not [...] Read more.
Bio-based polymers, with any of their constituents based on nonrenewable sources, can answer the demands of society and regulations regarding minimizing the environmental impact. The more similar such biocomposites are to oil-based composites, the easier the transition, especially for companies that do not like the uncertainty. A BioPE matrix, with a structure similar to that of a high-density polyethylene (HDPE), was used to obtain abaca-fiber-reinforced composites. The tensile properties of these composites are displayed and compared with commercial glass-fiber-reinforced HDPE. Since the strength of the interface between the reinforcements and the matrix is responsible for the exploitation of the strengthening abilities of the reinforcements, several micromechanical models were used to obtain an estimation of the strength of the interface and the intrinsic tensile strength of the reinforcements. Biocomposites require the use of a coupling agent to strengthen their interface, and once an 8 wt.% of such coupling agent was added to the composites, these materials returned tensile properties in line with commercial glass-fiber-reinforced HDPE composites. Full article
(This article belongs to the Topic Polymers from Renewable Resources, 2nd Volume)
Show Figures

Figure 1

19 pages, 1738 KiB  
Article
Evaluation of the Strength of the Interface for Abaca Fiber Reinforced Hdpe and Biope Composite Materials, and Its Influence over Tensile Properties
by Faust Seculi, Francesc X. Espinach, Fernando Julián, Marc Delgado-Aguilar, Pere Mutjé and Quim Tarrés
Polymers 2022, 14(24), 5412; https://doi.org/10.3390/polym14245412 - 10 Dec 2022
Cited by 14 | Viewed by 2969
Abstract
In this study, tensile properties of abaca-reinforced HDPE and BioPE composites have been researched. The strength of the interface between the matrix and the reinforcement of a composite material noticeably impacts its mechanical properties. Thus, the strength of the interface between the reinforcements [...] Read more.
In this study, tensile properties of abaca-reinforced HDPE and BioPE composites have been researched. The strength of the interface between the matrix and the reinforcement of a composite material noticeably impacts its mechanical properties. Thus, the strength of the interface between the reinforcements and the matrices has been studied using micromechanics models. Natural fibers are hydrophilic and the matrices are hydrophobic, resulting in weak interfaces. In the study, a coupling agent based on polyethylene functionalised with maleic acid was used, to increase the strength of the interface. The results show that 8 wt% coupling agent contents noticeably increased the tensile strength of the composites and the interface. Tensile properties obtained for HDPE and BioPE-based coupled composites were statistically similar or better for BioPE-based materials. The use of bio-based matrices increases the possibility of decreasing the environmental impact of the materials, obtaining fully bio-based composites. The article shows the ability of fully bio-based composites to replace others using oil-based matrices. Full article
(This article belongs to the Collection Advances in Polymeric Composites)
Show Figures

Figure 1

17 pages, 6739 KiB  
Article
Production and 3D Printing of a Nanocellulose-Based Composite Filament Composed of Polymer-Modified Cellulose Nanofibrils and High-Density Polyethylene (HDPE) for the Fabrication of 3D Complex Shapes
by Feras Dalloul, Jakob Benedikt Mietner and Julien R. G. Navarro
Fibers 2022, 10(10), 91; https://doi.org/10.3390/fib10100091 - 21 Oct 2022
Cited by 18 | Viewed by 4055
Abstract
This work aims to produce a 3D-printable bio-based filament composed of high-density polyethylene (HDPE) and chemically modified cellulose nanofibrils. Printing using HDPE as a raw material is challenging due to its massive shrinkage and warping problems. This paper presents a new method to [...] Read more.
This work aims to produce a 3D-printable bio-based filament composed of high-density polyethylene (HDPE) and chemically modified cellulose nanofibrils. Printing using HDPE as a raw material is challenging due to its massive shrinkage and warping problems. This paper presents a new method to overcome those difficulties by enhancing the mechanical properties and achieving better print quality. This was achieved using modified cellulose nanofibrils (CNFs) as fillers. Firstly, CNF was converted to a CNF-based macroinitiator through an esterification reaction, followed by a surface-initiated single-electron transfer living radical polymerization (SI-SET-LRP) of the hydrophobic monomer stearyl acrylate. Poly stearyl acrylate-grafted cellulose nanofibrils, CNF-PSAs, were synthesized, purified and characterized with ATR-FTIR, 13C CP-MAS NMR, FE-SEM and water contact angle measurements. A composite was successfully produced using a twin-screw extruder with a CNF-PSA content of 10 wt.%. Mechanical tests were carried out with tensile testing. An increase in the mechanical properties, up to 23% for the Young’s modulus, was observed. A morphologic analysis also revealed the good matrix/CNF compatibility, as no CNF aggregates could be observed. A reduction in the warping behavior for the composite filament compared to HDPE was assessed using a circular arc method. The 3D printing of complex objects using the CNF-PSA/HDPE filament resulted in better print quality when compared to the object printed with neat HDPE. Therefore, it could be concluded that CNF-PSA was a suitable filler for the reinforcement of HDPE, thus, rendering it suitable for 3D printing. Full article
(This article belongs to the Topic Cellulose and Cellulose Derivatives)
Show Figures

Graphical abstract

14 pages, 4353 KiB  
Article
Effects of Blending Tobacco Lignin with HDPE on Thermal and Mechanical Properties
by Venkata Gireesh K. Menta, Irfan Tahir and Abdulaziz Abutunis
Materials 2022, 15(13), 4437; https://doi.org/10.3390/ma15134437 - 23 Jun 2022
Cited by 3 | Viewed by 4467
Abstract
Depletion of fossil fuels and the detrimental environmental impacts of synthetic plastics have prompted a global interest in bio-based polymers. Lignin is an abundant, unused, and low-value byproduct of pulping and biochemical operations that has the potential to decrease the need for plastics [...] Read more.
Depletion of fossil fuels and the detrimental environmental impacts of synthetic plastics have prompted a global interest in bio-based polymers. Lignin is an abundant, unused, and low-value byproduct of pulping and biochemical operations that has the potential to decrease the need for plastics derived from petroleum. Melt blending is one of the easiest strategies for expanding the commercial applications of lignin. Concerns remain, however, regarding the negative effects of lignin on the final composite material’s performance, and the increase in manufacturing costs. This study investigates the effects of blending lignin extracted from tobacco using a novel one-step processing technique on injection molding parameters, and the mechanical, physical, and thermal properties of high-density polyethylene (HDPE). By extruding HDPE pellets and lignin powder, varying blend concentrations (0, 5, 10, 15, and 30% wt.) were produced. Scanning electron microscopy (SEM) and optical microscopy were used to investigate the compatibility of the blend morphology. Results indicated that interfacial interactions were achieved as particles of tobacco lignin were well dispersed and uniformly distributed throughout HDPE. Intermolecular interactions between HDPE and lignin were also discovered through Fourier-transform infrared (FTIR) spectral analyses. The tensile test results showed that increase in lignin content up to 15% wt. had little effect on tensile strength, but at 30% wt., a 19% reduction was observed. With the addition of 5, 10, 15, and 30% wt. of lignin, the tensile modulus increased by 4%, 29%, 25%, and 8%, respectively. TGA results demonstrated that at 15% and 30% wt., tobacco lignin acted as a thermal stabilizer. The processability study revealed that tobacco lignin could be processed easily using injection molding without requiring significant changes to the process parameters. Overall, tobacco lignin showed great promise as a biodegradable HDPE filler. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

23 pages, 5473 KiB  
Article
The Effect of Varying the Amount of Short Hemp Fibers on Mechanical and Thermal Properties of Wood–Plastic Composites from Biobased Polyethylene Processed by Injection Molding
by Celia Dolçà, Eduardo Fages, Eloi Gonga, David Garcia-Sanoguera, Rafael Balart and Luis Quiles-Carrillo
Polymers 2022, 14(1), 138; https://doi.org/10.3390/polym14010138 - 30 Dec 2021
Cited by 19 | Viewed by 3126
Abstract
Biobased HDPE (bioHDPE) was melt-compounded with different percentages (2.5 to 40.0 wt.%) of short hemp fibers (HF) as a natural reinforcement to obtain environmentally friendly wood plastic composites (WPC). These WPC were melt-compounded using a twin-screw extrusion and shaped into standard samples by [...] Read more.
Biobased HDPE (bioHDPE) was melt-compounded with different percentages (2.5 to 40.0 wt.%) of short hemp fibers (HF) as a natural reinforcement to obtain environmentally friendly wood plastic composites (WPC). These WPC were melt-compounded using a twin-screw extrusion and shaped into standard samples by injection molding. To improve the poor compatibility between the high non-polar BioHDPE matrix and the highly hydrophilic lignocellulosic fibers, a malleated copolymer, namely, polyethylene-graft-maleic anhydride (PE-g-MA), was used. The addition of short hemp fibers provided a remarkable increase in the stiffness that, in combination with PE-g-MA, led to good mechanical performance. In particular, 40 wt.% HF drastically increased the Young’s modulus and impact strength of BioHDPE, reaching values of 5275 MPa and 3.6 kJ/m2, respectively, which are very interesting values compared to neat bioHDPE of 826 MPa and 2.0 kJ/m2. These results were corroborated by dynamic mechanical thermal analysis (DMTA) results, which revealed a clear increasing tendency on stiffness with increasing the fiber loading over the whole temperature range. The crystal structure was not altered by the introduction of the natural fibers as could be seen in the XRD patterns in which mainly the heights of the main peaks changed, and only small peaks associated with the presence of the fiber appeared. Analysis of the thermal properties of the composites showed that no differences in melting temperature occurred and the non-isothermal crystallization process was satisfactorily described from the combined Avrami and Ozawa model. As for the thermal degradation, the introduction of HF resulted in the polymer degradation taking place at a higher temperature. As for the change in color of the injected samples, it was observed that the increase in fiber generated a clear modification in the final shades of the pieces, reaching colors very similar to dark woods for percentages higher than 20% HF. Finally, the incorporation of an increasing percentage of fibers also increased water absorption due to its lignocellulosic nature in a linear way, which drastically improved the polarity of the composite. Full article
(This article belongs to the Collection Wood Composites)
Show Figures

Figure 1

16 pages, 3817 KiB  
Article
Manufacturing and Characterization of Environmentally Friendly Wood Plastic Composites Using Pinecone as a Filler into a Bio-Based High-Density Polyethylene Matrix
by Maria del Carmen Morcillo, Ramón Tejada, Diego Lascano, Daniel Garcia-Garcia and David Garcia-Sanoguera
Polymers 2021, 13(24), 4462; https://doi.org/10.3390/polym13244462 - 20 Dec 2021
Cited by 9 | Viewed by 4781
Abstract
The use of wood plastic composites (WPC) is growing very rapidly in recent years, in addition, the use of plastics of renewable origin is increasingly implemented because it allows to reduce the carbon footprint. In this context, this work reports on the development [...] Read more.
The use of wood plastic composites (WPC) is growing very rapidly in recent years, in addition, the use of plastics of renewable origin is increasingly implemented because it allows to reduce the carbon footprint. In this context, this work reports on the development of composites of bio-based high density polyethylene (BioHDPE) with different contents of pinecone (5, 10, and 30 wt.%). The blends were produced by extrusion and injection-molded processes. With the objective of improving the properties of the materials, a compatibilizer has been used, namely polyethylene grafted with maleic anhydride (PE-g-MA 2 phr). The effect of the compatibilizer in the blend with 5 wt.% has been compared with the same blend without compatibilization. Mechanical, thermal, morphological, colorimetric, and wettability properties have been analyzed for each blend. The results showed that the compatibilizer improved the filler–matrix interaction, increasing the ductile mechanical properties in terms of elongation and tensile strength. Regarding thermal properties, the compatibilizer increased thermal stability and improved the behavior of the materials against moisture. In general, the pinecone materials obtained exhibited reddish-brown colors, allowing their use as wood plastic composites with a wide range of properties depending on the filler content in the blend. Full article
(This article belongs to the Collection Sustainable Plastics)
Show Figures

Figure 1

Back to TopTop