Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = biocide polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3345 KB  
Article
Hydrogel Beads Loaded with Glucosinolate-Rich Brassicaceae Extract as a Controlled-Release Alternative to Biofumigation
by Michele Baglioni, Ilaria Clemente, Raffaello Nardin, Flavia Bisozzi, Sara Costantini, Giacomo Fattori, Gabriella Tamasi and Claudio Rossi
Molecules 2025, 30(18), 3660; https://doi.org/10.3390/molecules30183660 - 9 Sep 2025
Viewed by 504
Abstract
Biofumigation was originally proposed as an alternative to toxic fumigants for the treatment of agricultural soils, owing to the biocidal effect of isothiocyanates (ITCs) released by some plant species like Brassicaceae. However, biofumigation also presents limitations; thus, an advanced and viable alternative [...] Read more.
Biofumigation was originally proposed as an alternative to toxic fumigants for the treatment of agricultural soils, owing to the biocidal effect of isothiocyanates (ITCs) released by some plant species like Brassicaceae. However, biofumigation also presents limitations; thus, an advanced and viable alternative could be the use of controlled-release systems such as gelled polymer networks. In the present work, we explore the use of biocompatible hydrogels based on sodium alginate (ALG) and sodium carboxymethylcellulose (CMC), conveniently loaded with a Brassicaceae extract for this purpose. The extract was characterized by means of HPLC-MS, showing its high glucosinolate content, especially glucoraphanin, a secondary metabolite produced by several species of this family. The physicochemical properties of the synthesized gels were investigated by means of differential scanning calorimetry (DSC), rheometry, and scanning electron microscopy (SEM), both in the presence and absence of the loaded extract. Loading and release kinetics (in water) were studied by means of HPLC-DAD, and the Weibull model was employed to interpret the results. It was found that both hydrogels can effectively confine the Brassicaceae extract’s active principle, slowly releasing it in an aqueous environment. Both systems possess excellent properties for real applications, with the CMC-based hydrogels being slightly preferable over the ALG ones due to their higher encapsulation efficiency, mechanical properties, and overall features. These systems are promising tools for combating harmful microorganisms due to the biocidal properties of glucosinolates, but their potential goes beyond their use in agriculture, as they could be applied as antifouling or antimicrobial agents in cultural heritage cleaning or other fields. Full article
Show Figures

Graphical abstract

18 pages, 24780 KB  
Article
Performance of Polystyrene-Impregnated and CCA-Preserved Tropical Woods Against Subterranean Termites in PNG Field and Treatment-Induced Color Change
by Yusuf Sudo Hadi, Cossey Yosi, Paul Marai, Mahdi Mubarok, Imam Busyra Abdillah, Rohmah Pari, Gustan Pari, Abdus Syukur, Lukmanul Hakim Zaini, Dede Hermawan and Jingjing Liao
Polymers 2025, 17(14), 1945; https://doi.org/10.3390/polym17141945 - 16 Jul 2025
Viewed by 499
Abstract
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood [...] Read more.
Logs supplied in Papua New Guinea and Indonesia are predominantly sourced from fast-growing tree species of plantation forests. The timber primarily consists of sapwood, which is highly susceptible to biodeterioration. At a training center, CCA (chromated copper arsenate) is still used for wood preservation, while in the wood industry, ACQ (alkaline copper quaternary) is commonly applied to enhance the service life of timber. In the future, polystyrene impregnation or other non-biocidal treatments could potentially serve this purpose. This study aimed to determine the discoloration and resistance of polystyrene-impregnated and CCA-preserved woods. Wood samples, Anisoptera thurifera and Octomeles sumatrana from Papua New Guinea, and Anthocephalus cadamba and Falcataria moluccana from Indonesia, were used. The wood samples were treated with polystyrene impregnation, CCA preservation, or left untreated, then exposed at the PNG Forest Research Institute site for four months. After treatment, the color change in polystyrene-impregnated wood was minor, whereas CCA-preserved wood exhibited a noticeably different color compared to untreated wood. The average polymer loading for polystyrene-impregnated wood reached 147%, while the average CCA retention was 8.4 kg/m3. Densities of untreated-, polystyrene-, and CCA-wood were 0.42, 0.64, and 0.45 g/cm3, respectively, and moisture contents were 15.8%, 9.4%, and 13.4%, respectively. CCA preservation proved highly effective in preventing termite attacks; however, CCA is hazardous to living organisms, including humans. Polystyrene impregnation also significantly improved wood resistance to subterranean termites, as indicated by lower weight loss and a higher protection level compared to untreated wood. Additionally, polystyrene treatment is nonhazardous and safe for living organisms, making it a promising option for enhancing wood resistance to termite attacks in the future as an alternative to the biocides currently in use. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

31 pages, 5836 KB  
Article
Investigation of Corrosion and Fouling in a Novel Biocide-Free Antifouling Coating on Steel
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Micro 2025, 5(3), 34; https://doi.org/10.3390/micro5030034 - 15 Jul 2025
Cited by 1 | Viewed by 565
Abstract
Antifouling coatings are integral to the maritime economy. The efficacy of the applied painting system is closely correlated with susceptibility to fouling and the adhesion strength of contaminants. A fouled hull might result in an elevated fuel consumption and journey expenses. Biofouling on [...] Read more.
Antifouling coatings are integral to the maritime economy. The efficacy of the applied painting system is closely correlated with susceptibility to fouling and the adhesion strength of contaminants. A fouled hull might result in an elevated fuel consumption and journey expenses. Biofouling on ship hulls also has detrimental environmental consequences due to the release of biocides during maritime travel. Therefore, it is imperative to develop eco-friendly antifouling paints that inhibit the robust adhesion of marine organisms. This study aimed to assess a biocide-free antifouling coating formulated with polymers intended to diminish molecular adhesion interactions between marine species’ adhesives and the coating. The evaluation included laboratory corrosion experiments in artificial seawater and the immersion of samples in a marine environment in Attica, Greece, for varying durations. The research indicates that an antifouling coating applied to naval steel in an artificial seawater solution improves corrosion resistance by more than 60%. The conductive polymer covering, comprising polyaniline and graphene oxide, diminishes corrosion current values, lowers the corrosion rate, and enhances corrosion potentials. The impedance parameters exhibit analogous behavior, with the coating preventing water absorption and displaying corrosion resistance. The coating serves as a low-permeability barrier, exhibiting exceptional durability for naval steel over time, with an operational performance up to 98%. Full article
Show Figures

Figure 1

26 pages, 3391 KB  
Article
Poly(hydromethylsiloxane) Networks Functionalized by N-allylaniline
by Anita Wysopal, Maria Owińska, Ewa Stodolak-Zych, Mariusz Gackowski and Magdalena Hasik
Int. J. Mol. Sci. 2025, 26(14), 6700; https://doi.org/10.3390/ijms26146700 - 12 Jul 2025
Viewed by 395
Abstract
Polymers containing biocidal moieties (e.g., amino or ammonium groups) are considered promising materials that can help combat the growing resistance of pathogens to commonly used antimicrobials. Searching for new polymeric biocides, in this work, non-porous and porous poly(hydromethylsiloxane) (PHMS) networks were prepared and [...] Read more.
Polymers containing biocidal moieties (e.g., amino or ammonium groups) are considered promising materials that can help combat the growing resistance of pathogens to commonly used antimicrobials. Searching for new polymeric biocides, in this work, non-porous and porous poly(hydromethylsiloxane) (PHMS) networks were prepared and post-functionalized by N-allylaniline (Naa). Non-porous networks were obtained by cross-linking PHMS in the bulk and porous—in W/O high-internal-phase emulsion (HIPE). Linear divinyldisiloxane (M2Vi) or cyclic tetravinyltetrasiloxane (D4Vi) were used as cross-linkers. Studies confirmed the expected non-porous and open macroporous microstructure of the initial networks. They also showed that functionalization by Naa was more efficient for the non-porous networks that swelled to lower extents in toluene and contained higher amounts of Si-H groups than the porous ones. In the reactions with benzyl chloride or 1-bromoctane, some amino groups present in these materials were transformed to ammonium groups. It was found that activity against Gram-positive S. aureus and Gram-negative E. coli bacteria depended on the functionalization degree, cross-linking level and the microstructure of the modified materials. Full article
Show Figures

Figure 1

20 pages, 2317 KB  
Article
Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO2-Sensitivity
by Maria Filomeni Koutsougera, Spyridoula Adamopoulou, Denisa Druvari, Alexios Vlamis-Gardikas, Zacharoula Iatridi and Georgios Bokias
Polymers 2025, 17(14), 1896; https://doi.org/10.3390/polym17141896 - 9 Jul 2025
Viewed by 729
Abstract
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the [...] Read more.
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the homopolymer PDMAPMA and copolymers P(DMAPMA-co-MMAx) of DMAPMA with the hydrophobic monomer methyl methacrylate, MMA, were explored. Two copolymers were prepared with a molar content x = 20% and 35%, as determined by Proton Nuclear Magnetic Resonance (1H NMR). Turbidimetry studies revealed that, in contrast to the homopolymer exhibiting a lower critical solution temperature (LCST) behavior only at pH 14 in the absence of salt, the LCST of the copolymers covers a wider pH range (pH > 8.5) and can be tuned within the whole temperature range studied (from room temperature up to ~70 °C) through the use of salt. The copolymers self-assemble in water above a critical aggregation Concentration (CAC), as determined by Nile Red probing, and form nanostructures with a size of ~15 nm (for P(DMAPMA-co-MMA35)), as revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The combination of turbidimetry with 1H NMR and automatic total organic carbon/total nitrogen (TOC/TN) results revealed the potential of the copolymers as visual CO2 sensors. Finally, the alkylation of the copolymers with dodecyl groups lead to cationic amphiphilic materials with an order of magnitude lower CAC (as compared to the unmodified precursor), effectively stabilized in water as larger aggregates (~200 nm) over a wide temperature range, due to their increased ζ potential (+15 mV). Such alkylated products show promising biocidal properties against microorganisms such as Escherichia coli and Staphylococcus aureus. Full article
(This article belongs to the Special Issue Development and Innovation of Stimuli-Responsive Polymers)
Show Figures

Figure 1

28 pages, 4435 KB  
Article
PLA/PCL Polymer Material for Food Packaging with Enhanced Antibacterial Properties
by Krzysztof Moraczewski, Magdalena Stepczyńska, Aneta Raszkowska-Kaczor, Lauren Szymańska and Piotr Rytlewski
Polymers 2025, 17(9), 1134; https://doi.org/10.3390/polym17091134 - 22 Apr 2025
Cited by 5 | Viewed by 1574
Abstract
Active food packaging is a significant trend in recent years in the food industry. This paper presents the results of studies on selected properties of a mixture of polylactide and polycaprolactone containing 1 or 5 wt.% of tannic acid. The function of tannic [...] Read more.
Active food packaging is a significant trend in recent years in the food industry. This paper presents the results of studies on selected properties of a mixture of polylactide and polycaprolactone containing 1 or 5 wt.% of tannic acid. The function of tannic acid was to improve the miscibility of the polymers used and to give the obtained composition antibacterial properties. Studies were carried out on color and transparency, microscopic analysis, water vapor permeability, mass flow rate, static tensile properties, impact strength, dynamic mechanical analysis, thermogravimetry and differential scanning calorimetry. The obtained results did not confirm the compatibilizing effect of tannic acid, because the obtained mechanical properties were slightly worse than those of materials without the addition of this compound. However, the obtained mixture was characterized as having biocidal properties against two strains of Escherichia coli (ATCC 8739) and Staphylococcus aureus (ATCC 6538P). Antibacterial properties together with acceptable processing, mechanical and thermal properties indicate that the presented polymer material may be a potential material for the production of active food packaging. Full article
Show Figures

Figure 1

29 pages, 3981 KB  
Review
Recent Advances in Polysaccharide-Based Nanocomposite Films for Fruit Preservation: Construction, Applications, and Challenges
by Xin Chen, Xin Ding, Yanyan Huang, Yiming Zhao, Ge Chen, Xiaomin Xu, Donghui Xu, Bining Jiao, Xijuan Zhao and Guangyang Liu
Foods 2025, 14(6), 1012; https://doi.org/10.3390/foods14061012 - 17 Mar 2025
Cited by 1 | Viewed by 2158
Abstract
With the constantly escalating demand for safe food packaging, the utilization of biodegradable polysaccharide-based nanocomposite films is being explored as an alternative to traditional petrochemical polymer films (polyvinyl alcohol, polybutylene succinate, etc.). Polysaccharide-based films have excellent mechanical properties, water vapor transmission rates, and [...] Read more.
With the constantly escalating demand for safe food packaging, the utilization of biodegradable polysaccharide-based nanocomposite films is being explored as an alternative to traditional petrochemical polymer films (polyvinyl alcohol, polybutylene succinate, etc.). Polysaccharide-based films have excellent mechanical properties, water vapor transmission rates, and other physical characteristics. Films can fulfill numerous demands for fruit packaging in daily life. Additionally, they can be loaded with various types of non-toxic and non-biocidal materials such as bioactive substances and metal nanomaterials. These materials enhance bacterial inhibition and reduce oxidation in fruits while maintaining fundamental packaging functionality. The article discusses the design and preparation strategies of polysaccharide-based nanocomposite films and their application in fruit preservation. The types of films, the addition of materials, and their mechanisms of action are further discussed. In addition, this research is crucial for fruit preservation efforts and for the preparation of polysaccharide-based films in both scientific research and industrial applications. Full article
(This article belongs to the Special Issue New Perspectives on Food Contact Materials)
Show Figures

Figure 1

11 pages, 1405 KB  
Article
Enhancing Biocide Safety of Milk Using Biosensors Based on Cholinesterase Inhibition
by Lynn Mouawad, Georges Istamboulie, Gaëlle Catanante and Thierry Noguer
Biosensors 2025, 15(1), 26; https://doi.org/10.3390/bios15010026 - 6 Jan 2025
Cited by 3 | Viewed by 1454
Abstract
A sensitive and reliable electrochemical biosensor for the detection of benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC), the most commonly used disinfectant biocides in the agri-food industry, is described. Acetylcholinesterase from Drosophila melanogaster (DM AChE) and butyrylcholinesterase from horse serum (BChE) were immobilized [...] Read more.
A sensitive and reliable electrochemical biosensor for the detection of benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC), the most commonly used disinfectant biocides in the agri-food industry, is described. Acetylcholinesterase from Drosophila melanogaster (DM AChE) and butyrylcholinesterase from horse serum (BChE) were immobilized by entrapment in a photocrosslinkable polymer on the surface of carbon screen-printed electrodes. Preliminary tests conducted in phosphate buffer showed limits of detection (LODs) of 0.26 µM for BAC using the BChE-based sensor and 0.04 µM for DDAC using the DM AChE sensor. These performances comply with the European regulation for dairy products, which sets a maximum allowable concentration of 0.28 µM for biocides. However, when tested directly in milk samples, a dramatic decrease in the sensitivity of both sensors towards BAC and DDAC biocides was reported. To overcome this problem, a simple liquid–liquid extraction was necessary prior to biosensor measurements, ensuring that the biosensors met European regulatory standards and provided an unbiased response. Full article
Show Figures

Graphical abstract

24 pages, 7867 KB  
Article
A Novel Hydrogel Sponge for Three-Dimensional Cell Culture
by Sara Baldassari, Mengying Yan, Giorgia Ailuno, Guendalina Zuccari, Anna Maria Bassi, Stefania Vernazza, Sara Tirendi, Sara Ferrando, Antonio Comite, Giuliana Drava and Gabriele Caviglioli
Pharmaceutics 2024, 16(10), 1341; https://doi.org/10.3390/pharmaceutics16101341 - 19 Oct 2024
Viewed by 1911
Abstract
Background/Objectives: Three-dimensional (3D) cell culture technologies allow us to overcome the constraints of two-dimensional methods in different fields like biochemistry and cell biology and in pharmaceutical in vitro tests. In this study, a novel 3D hydrogel sponge scaffold, composed of a crosslinked polyacrylic [...] Read more.
Background/Objectives: Three-dimensional (3D) cell culture technologies allow us to overcome the constraints of two-dimensional methods in different fields like biochemistry and cell biology and in pharmaceutical in vitro tests. In this study, a novel 3D hydrogel sponge scaffold, composed of a crosslinked polyacrylic acid forming a porous matrix, has been developed and characterized. Methods: The scaffold was obtained via an innovative procedure involving thermal treatment followed by a salt-leaching step on a matrix-containing polymer along with a gas-forming agent. Based on experimental design for mixtures, a series of formulations were prepared to study the effect of the three components (polyacrylic acid, NaHCO3 and NaCl) on the scaffold mechanical properties, density, swelling behavior and morphological changes. Physical appearance, surface morphology, porosity, molecular diffusion, transparency, biocompatibility and cytocompatibility were also evaluated. Results: The hydrogel scaffolds obtained show high porosity and good optical transparency and mechanical resistance. The scaffolds were successfully employed to culture several cell lines for more than 20 days. Conclusions: The developed scaffolds could be an important tool, as such or with a specific coating, to obtain a more predictive cellular response to evaluate drugs in preclinical studies or for testing chemical compounds, biocides and cosmetics, thus reducing animal testing. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

9 pages, 1769 KB  
Communication
Preparation of Antimicrobial Agents: From Interpolyelectrolyte Complexes to Silver-Containing Metal–Polymer Complexes and Nanocomposites
by Dmitry I. Klimov, Alexey A. Zharikov, Elena A. Zezina, Elena A. Kotenkova, Elena V. Zaiko, Dagmara S. Bataeva, Anastasia A. Semenova, Yulia K. Yushina, Aleksander A. Yaroslavov and Alexey A. Zezin
Polymers 2024, 16(19), 2842; https://doi.org/10.3390/polym16192842 - 8 Oct 2024
Cited by 2 | Viewed by 1361
Abstract
In order to control pathogenic microorganisms, three polymer compositions were prepared and tested. First, a water-soluble positively charged polycomplex was synthesized via the electrostatic binding of anionic polyacrylic acid to an excess of polyethylenimine to enhance the biocidal activity of the polycation. Second, [...] Read more.
In order to control pathogenic microorganisms, three polymer compositions were prepared and tested. First, a water-soluble positively charged polycomplex was synthesized via the electrostatic binding of anionic polyacrylic acid to an excess of polyethylenimine to enhance the biocidal activity of the polycation. Second, an aqueous solution of AgNO3 was added to the polycomplex, thus forming a ternary polycation-polyanion-Ag1+ complex with an additional antimicrobial effect. Third, the resulting ternary complex was subjected to UV irradiation, which ensured the conversion of Ag1+ ions into Ag nanoparticles ranging in size mainly from 10 to 20 nm. Aqueous solutions of the polymer compositions were added to suspensions of the Gram-positive bacteria S. aureus and the Gram-negative bacteria P. aeruginosa, with the following main results: (a) Upon the addition of the binary polycomplex, 30% or more of the cells survived after 20 h. (b) The ternary complex killed S. aureus bacteria but was ineffective against P. aeruginosa bacteria. (c) When the ternary complex with Ag nanoparticles was added, the percentage of surviving cells of both types did not exceed 0.03%. The obtained results are valuable for the development of antibacterial formulations. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Figure 1

18 pages, 2425 KB  
Article
Isothiocyanate-Based Microemulsions Loaded into Biocompatible Hydrogels as Innovative Biofumigants for Agricultural Soils
by Michele Baglioni, Ilaria Clemente, Gabriella Tamasi, Flavia Bisozzi, Sara Costantini, Giacomo Fattori, Mariangela Gentile and Claudio Rossi
Molecules 2024, 29(16), 3935; https://doi.org/10.3390/molecules29163935 - 21 Aug 2024
Cited by 2 | Viewed by 1615
Abstract
Biofumigation was proposed as an alternative to synthetic pesticides for the disinfection of agricultural soils, in view of the biocidal effect of isothiocyanates (ITCs) released by some vegetal species, like Brassicaceae. However, biofumigation also presents limitations; thus, a novel and viable alternative [...] Read more.
Biofumigation was proposed as an alternative to synthetic pesticides for the disinfection of agricultural soils, in view of the biocidal effect of isothiocyanates (ITCs) released by some vegetal species, like Brassicaceae. However, biofumigation also presents limitations; thus, a novel and viable alternative could be the direct introduction of ITCs into agricultural soils as components loaded into biodegradable hydrogels. Thus, in this work, ITCs-based microemulsions were developed, which can be loaded into porous polymer-based hydrogel beads based on sodium alginate (ALG) or sodium carboxymethyl cellulose (CMC). Three ITCs (ethyl, phenyl, and allyl isothiocyanate) and three different surfactants (sodium dodecylsulfate, Brij 35, and Tween 80) were considered. The optimal system was characterized with attenuated ATR-FTIR spectroscopy and differential scanning calorimetry to study how the microemulsion/gels interaction affects the gel properties, such as the equilibrium water content or free water index. Finally, loading and release profiles were studied by means of UV–Vis spectrophotometry. It was found that CMC hydrogel beads showed a slightly more efficient profile of micelles’ release in water with respect to ALG beads. For this reason, and due to the enhanced contribution of Fe(III) to their biocidal properties, CMC-based hydrogels are the most promising in view of the application on real agricultural soils. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry: 3rd Edition)
Show Figures

Graphical abstract

26 pages, 5766 KB  
Review
Quaternary Ammonium Salts-Based Materials: A Review on Environmental Toxicity, Anti-Fouling Mechanisms and Applications in Marine and Water Treatment Industries
by Paola Marzullo, Michelangelo Gruttadauria and Francesca D’Anna
Biomolecules 2024, 14(8), 957; https://doi.org/10.3390/biom14080957 - 7 Aug 2024
Cited by 23 | Viewed by 6225
Abstract
The adherence of pathogenic microorganisms to surfaces and their association to form antibiotic-resistant biofilms threatens public health and affects several industrial sectors with significant economic losses. For this reason, the medical, pharmaceutical and materials science communities are exploring more effective anti-fouling approaches. This [...] Read more.
The adherence of pathogenic microorganisms to surfaces and their association to form antibiotic-resistant biofilms threatens public health and affects several industrial sectors with significant economic losses. For this reason, the medical, pharmaceutical and materials science communities are exploring more effective anti-fouling approaches. This review focuses on the anti-fouling properties, structure–activity relationships and environmental toxicity of quaternary ammonium salts (QAS) and, as a subclass, ionic liquid compounds. Greener alternatives such as QAS-based antimicrobial polymers with biocide release, non-fouling (i.e., PEG, zwitterions), fouling release (i.e., poly(dimethylsiloxanes), fluorocarbon) and contact killing properties are highlighted. We also report on dual-functional polymers and stimuli-responsive materials. Given the economic and environmental impacts of biofilms in submerged surfaces, we emphasize the importance of less explored QAS-based anti-fouling approaches in the marine industry and in developing efficient membranes for water treatment systems. Full article
Show Figures

Figure 1

20 pages, 2668 KB  
Review
Antimicrobial Polymer Surfaces Containing Quaternary Ammonium Centers (QACs): Synthesis and Mechanism of Action
by Orlando Santoro and Lorella Izzo
Int. J. Mol. Sci. 2024, 25(14), 7587; https://doi.org/10.3390/ijms25147587 - 10 Jul 2024
Cited by 12 | Viewed by 4322
Abstract
Synthetic polymer surfaces provide an excellent opportunity for developing materials with inherent antimicrobial and/or biocidal activity, therefore representing an answer to the increasing demand for antimicrobial active medical devices. So far, biologists and material scientists have identified a few features of bacterial cells [...] Read more.
Synthetic polymer surfaces provide an excellent opportunity for developing materials with inherent antimicrobial and/or biocidal activity, therefore representing an answer to the increasing demand for antimicrobial active medical devices. So far, biologists and material scientists have identified a few features of bacterial cells that can be strategically exploited to make polymers inherently antimicrobial. One of these is represented by the introduction of cationic charges that act by killing or deactivating bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). Among the possible cationic functionalities, the antimicrobial activity of polymers with quaternary ammonium centers (QACs) has been widely used for both soluble macromolecules and non-soluble materials. Unfortunately, most information is still unknown on the biological mechanism of action of QACs, a fundamental requirement for designing polymers with higher antimicrobial efficiency and possibly very low toxicity. This mini-review focuses on surfaces based on synthetic polymers with inherently antimicrobial activity due to QACs. It will discuss their synthesis, their antimicrobial activity, and studies carried out so far on their mechanism of action. Full article
(This article belongs to the Special Issue Polymer Materials for Application in Biomedical Fields)
Show Figures

Figure 1

13 pages, 4131 KB  
Article
In Situ Preparation of Chlorine-Regenerable Antimicrobial Polymer Molecular Sieve Membranes
by Yu Zhang, Yiduo Qian, Yuheng Wen, Qiudi Gui, Yixin Xu, Xiuhong Lu, Li Zhang and Wenliang Song
Molecules 2024, 29(13), 2980; https://doi.org/10.3390/molecules29132980 - 23 Jun 2024
Cited by 1 | Viewed by 1509
Abstract
Microbial contamination has profoundly impacted human health, and the effective eradication of widespread microbial issues is essential for addressing serious hygiene concerns. Taking polystyrene (PS) membrane as an example, we herein developed report a robust strategy for the in situ preparation of chlorine-regenerable [...] Read more.
Microbial contamination has profoundly impacted human health, and the effective eradication of widespread microbial issues is essential for addressing serious hygiene concerns. Taking polystyrene (PS) membrane as an example, we herein developed report a robust strategy for the in situ preparation of chlorine-regenerable antimicrobial polymer molecular sieve membranes through combining post-crosslinking and nucleophilic substitution reaction. The cross-linking PS membranes underwent a reaction with 5,5-dimethylhydantoin (DMH), leading to the formation of polymeric N-halamine precursors (PS-DMH). These hydantoinyl groups within PS-DMH were then efficiently converted into biocidal N-halamine structures (PS-DMH-Cl) via a simple chlorination process. ATR-FTIR and XPS spectra were recorded to confirm the chemical composition of the as-prepared PS-DMH-Cl membranes. SEM analyses revealed that the chlorinated PS-DMH-Cl membranes displayed a rough surface with a multitude of humps. The effect of chlorination temperature and time on the oxidative chlorine content in the PS-DMH-Cl membranes was systematically studied. The antimicrobial assays demonstrated that the PS-DMH-Cl membranes could achieve a 6-log inactivation of E. coli and S. aureus within just 4 min of contact time. Additionally, the resulting PS-DMH-Cl membranes exhibited excellent stability and regenerability of the oxidative chlorine content. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

13 pages, 2756 KB  
Review
A Concise Review of the Components and Properties of Wood–Plastic Composites
by Zuzana Mitaľová, Dušan Mitaľ and Khrystyna Berladir
Polymers 2024, 16(11), 1556; https://doi.org/10.3390/polym16111556 - 31 May 2024
Cited by 17 | Viewed by 6091
Abstract
This article summarizes findings in the field of the history, composition, and mechanical properties of WPCs (wood–plastic composites) formed by combining two homogeneous substances, i.e., a polymer matrix with cellulose fibers in a certain ratio (with the addition of additives). In relation to [...] Read more.
This article summarizes findings in the field of the history, composition, and mechanical properties of WPCs (wood–plastic composites) formed by combining two homogeneous substances, i.e., a polymer matrix with cellulose fibers in a certain ratio (with the addition of additives). In relation to a wide range of applied natural reinforcements in composites, it focuses on wood as a fundamental representative of lignocellulosic fibers. It elucidates the concept of wood flour, the criteria for its selection, methods of storage, morphological characteristics, and similar aspects. The presence of wood in the plastic matrix reduces the material cost while increasing the stiffness. Matrix selection is influenced by the processing temperature (Tmax = 200 °C) due to the susceptibility of cellulose fibers to thermal degradation. Thermoplastics and selected biodegradable polymers can be applied as matrices. The article also includes information on applied additives such as coupling agents, lubricants, biocides, UV stabilizers, pigments, etc., and the mechanical/utility properties of WPC materials. The most common application of WPCs is in automotive sector, construction, aerospace, and structural applications. The potential biodegradability and lower cost of applications featuring composite materials with natural reinforcements motivated us to delve into this type of work. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop