Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = biocrust

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10097 KB  
Article
Biocrusts Alter the Pore Structure and Water Infiltration in the Top Layer of Rammed Soils at Weiyuan Section of the Great Wall in China
by Xiaoju Yang, Fasi Wu, Long Li, Ruihua Shang, Dandan Li, Lina Xu, Jing Cui and Xueyong Zhao
Coatings 2025, 15(8), 908; https://doi.org/10.3390/coatings15080908 - 3 Aug 2025
Viewed by 361
Abstract
The surface of the Great Wall harbors a large number of non-vascular plants dominated by cyanobacteria, lichens and mosses as well as microorganisms, and form biocrusts by cementing with the soils and greatly alters the pore structure of the soil and the ecohydrological [...] Read more.
The surface of the Great Wall harbors a large number of non-vascular plants dominated by cyanobacteria, lichens and mosses as well as microorganisms, and form biocrusts by cementing with the soils and greatly alters the pore structure of the soil and the ecohydrological processes associated with the soil pore space, and thus influences the soil resistance to erosion. However, the microscopic role of the biocrusts in influencing the pore structure of the surface of the Great Wall is not clear. This study chose the Warring States Qin Great Wall in Weiyuan, Gansu Province, China, as research site to quantify thepore structure characteristics of the three-dimensional of bare soil, cyanobacterial-lichen crusts, and moss crusts at the depth of 0–50 mm, by using optical microscopy, scanning electron microscopy, and X-ray computed tomography and image analysis, and the precipitation infiltration process. The results showed that the moss crust layer was dominated by large pores with long extension and good connectivity, which provided preferential seepage channels for precipitation infiltration, while the connectivity between the cyanobacterial-lichen crust voids was poor; The porosity of the cyanobacterial-lichen crust and the moss crust was 500% and 903.27% higher than that of the bare soil, respectively. The porosity of the subsurface layer of cyanobacterial-lichen crust and moss crust was significantly lower than that of the biocrusts layer by 92.54% and 97.96%, respectively, and the porosity of the moss crust was significantly higher than that of the cyanobacterial-lichen crust in the same layer; Cyanobacterial-lichen crusts increased the degree of anisotropy, mean tortuosity, moss crust reduced the degree of anisotropy, mean tortuosity. Biocrusts increased the fractal dimension and Euler number of pores. Compared with bare soil, moss crust and cyanobacterial-lichen crust increased the isolated porosity by 2555% and 4085%, respectively; Biocrusts increased the complexity of the pore network models; The initial infiltration rate, stable infiltration rate, average infiltration rate, and the total amount of infiltration of moss crusted soil was 2.26 and 3.12 times, 1.07 and 1.63 times, respectively, higher than that of the cyanobacterial-lichen crusts and the bare soil, by 1.53 and 2.33 times, and 1.13 and 2.08 times, respectively; CT porosity and clay content are significantly positively correlated with initial soil infiltration rate (|r| ≥ 0.85), while soil type and organic matter content are negatively correlated with initial soil infiltration rate. The soil type and bulk density are directly positively and negatively correlated with CT porosity, respectively (|r| ≥ 0.52). There is a significant negative correlation between soil clay content and porosity (|r| = 0.15, p < 0.001). Biocrusts alter the erosion resistance of rammed earth walls by affecting the soil microstructure of the earth’s great wall, altering precipitation infiltration, and promoting vascular plant colonisation, which in turn alters the erosion resistance of the wall. The research results have important reference for the development of disposal plans for biocrusts on the surface of archaeological sites. Full article
Show Figures

Figure 1

20 pages, 1478 KB  
Review
Cyanobacteria and Soil Restoration: Bridging Molecular Insights with Practical Solutions
by Matias Garcia, Pablo Bruna, Paola Duran and Michel Abanto
Microorganisms 2025, 13(7), 1468; https://doi.org/10.3390/microorganisms13071468 - 24 Jun 2025
Viewed by 976
Abstract
Soil degradation has been accelerating globally due to climate change, which threatens food production, biodiversity, and ecosystem balance. Traditional soil restoration strategies are often expensive, slow, or unsustainable in the long term. In this context, cyanobacteria have emerged as promising biotechnological alternatives, being [...] Read more.
Soil degradation has been accelerating globally due to climate change, which threatens food production, biodiversity, and ecosystem balance. Traditional soil restoration strategies are often expensive, slow, or unsustainable in the long term. In this context, cyanobacteria have emerged as promising biotechnological alternatives, being the only prokaryotes capable of performing oxygenic photosynthesis. Moreover, they can capture atmospheric carbon and nitrogen, release exopolysaccharides (EPSs) that stabilize the soil, and facilitate the development of biological soil crusts (biocrusts). In recent years, the convergence of multi-omics tools, such as metagenomics, metatranscriptomics, and metabolomics, has advanced our understanding of cyanobacterial dynamics, their metabolic potential, and symbiotic interactions with microbial consortia, as exemplified by the cyanosphere of Microcoleus vaginatus. In addition, recent advances in bioinformatics have enabled high-resolution taxonomic and functional profiling of environmental samples, facilitating the identification and prediction of resilient microorganisms suited to challenging degraded soils. These tools also allow for the prediction of biosynthetic gene clusters and the detection of prophages or cyanophages within microbiomes, offering a novel approach to enhance carbon sequestration in dry and nutrient-poor soils. This review synthesizes the latest findings and proposes a roadmap for the translation of molecular-level knowledge into scalable biotechnological strategies for soil restoration. We discuss approaches ranging from the use of native biocrust strains to the exploration of cyanophages with the potential to enhance cyanobacterial photosynthetic activity. By bridging ecological functions with cutting-edge omics technologies, this study highlights the critical role of cyanobacteria as a nature-based solution for climate-smart soil management in degraded and arid ecosystems. Full article
(This article belongs to the Special Issue Omics Research in Microbial Ecology)
Show Figures

Figure 1

17 pages, 1974 KB  
Article
The Community Structure of Aerobic Anoxygenic Photosynthetic Bacteria in Biocrusts on Tropical Coral Islands and Their Application in Ecological Restoration, South China Sea
by Jing Wen, Zhimao Mai, Jie Li, Lin Wang and Si Zhang
Microorganisms 2025, 13(6), 1265; https://doi.org/10.3390/microorganisms13061265 - 29 May 2025
Viewed by 376
Abstract
Biological soil crusts (referred to as biocrusts) constitute prominent components within the ecosystem of tropical coral islands in the South China Sea, covering approximately 6.25% of the island’s terrestrial surface. Biocrusts are the key to the restoration of the island ecosystem. It is [...] Read more.
Biological soil crusts (referred to as biocrusts) constitute prominent components within the ecosystem of tropical coral islands in the South China Sea, covering approximately 6.25% of the island’s terrestrial surface. Biocrusts are the key to the restoration of the island ecosystem. It is widely acknowledged that phototrophic microorganisms profoundly contribute to biocrust formation and development. They provide fixed carbon and nitrogen and produce exopolysaccharides for the BSC ecosystems. Although aerobic anoxygenic phototrophic bacteria (AAPB) are an important functional group of phototrophic microorganisms, the community characteristics of AAPB in coral island biocrusts and their role in the formation of biocrusts have rarely been reported. In this study, we employed amplifications of the pufM gene to characterize the AAPB communities of biocrusts on a tropical coral island. The outcomes revealed a discernible augmentation in both the abundance and richness of AAPB concurrent with the formation of biocrusts, concomitantly with a decrement in diversity. Within the AAPB communities, the Pseudomonadota (Proteobacteria) phylum emerges as the prevailing dominion, indicating marked differentiations in terms of family and genus compositions between the biocrust and bare soil. Canonical correlation analysis has unveiled a robust and meaningful correlation between the AAPB composition and the attributes of the soil, including total nitrogen, total organic carbon, total phosphorus, pH, and calcium content. Furthermore, co-occurrence network patterns shift with biocrust formation, enhancing stability. Meanwhile, keystone taxa analysis revealed specific OTUs associated with each soil type, with genus Brevundimonas as the main group. Furthermore, pure-culture AAPB strains isolated from biocrusts exhibited a panorama of diversity, predominantly belonging to Pseudomonadota. Particularly, the Skermanella and Erythrobacter genera demonstrated strong exopolysaccharide secretion and sand-binding capabilities. This study sheds light on the significant functional role of AAPB in tropical coral island biocrusts, expanding our understanding of their contribution to ecosystem services, and providing valuable insights for ecological restoration efforts on coral islands. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 49104 KB  
Article
Diversity and Key Organisms in the Biocrust of a Tropical Granite-Gneiss Rocky Outcrop
by Mateus Fernandes Oliveira, Cleber Cunha Figueredo and Adaíses Simone Maciel-Silva
Life 2025, 15(5), 759; https://doi.org/10.3390/life15050759 - 9 May 2025
Cited by 1 | Viewed by 699
Abstract
Rocky outcrops are harsh habitats that support specialized organisms and communities, including biocrusts, which play roles in soil stabilization, water retention, and nutrient cycling. Despite their importance, tropical biocrusts, particularly in granite-gneiss formations, remain underexplored. This study examines biocrust composition in a granite-gneiss [...] Read more.
Rocky outcrops are harsh habitats that support specialized organisms and communities, including biocrusts, which play roles in soil stabilization, water retention, and nutrient cycling. Despite their importance, tropical biocrusts, particularly in granite-gneiss formations, remain underexplored. This study examines biocrust composition in a granite-gneiss outcrop in a rural landscape in Southeastern Brazil, identifying microhabitats and analyzing co-occurrence patterns and community structure. We recorded eleven bryophyte species and one diatom species, while six cyanobacteria, three charophytes, and two chlorophytes were identified at the genus level. They were found in shallow depressions, though termite mounds also served as an important microhabitat. The cyanobacterium Scytonema was the most prevalent taxon. The liverwort Riccia weinionis had the highest number of positive co-occurrences, associating with cyanobacteria and algae. Network analysis based on co-occurrence revealed that Scytonema and the mosses Anomobryum conicum and Bryum argenteum were the most connected taxa, crucial for ecological network stability. The moss Bryum atenense acted as a key intermediary, with the highest betweenness centrality—a measure of its role in linking taxa. These findings provide insights into tropical rocky outcrop biocrusts, shedding light on their composition and interactions. Furthermore, the co-occurrence patterns and key taxa connectivity uncovered provide insights into ecosystem stability and can guide ecological restoration strategies. Full article
(This article belongs to the Section Diversity and Ecology)
Show Figures

Figure 1

13 pages, 11558 KB  
Article
Adaptation to Long-Term Nitrogen Starvation in a Biocrust-Derived Microalga Vischeria sp. WL1: Insights into Cell Wall Features and Desiccation Resistance
by Wensheng Liang, Xiang Gao, Yang She, Xin Jing, Xiaolong Yuan and Derui Zhu
Microorganisms 2025, 13(4), 903; https://doi.org/10.3390/microorganisms13040903 - 14 Apr 2025
Cited by 1 | Viewed by 510
Abstract
In drylands, microalgae dwelling in the biocrust are inevitably confronted with nitrogen deficiency and desiccation stress, despite the protection afforded by the soil biological complex. However, the environmental adaptive features and mechanisms of these microalgae remain largely unknown. In this study, we explored [...] Read more.
In drylands, microalgae dwelling in the biocrust are inevitably confronted with nitrogen deficiency and desiccation stress, despite the protection afforded by the soil biological complex. However, the environmental adaptive features and mechanisms of these microalgae remain largely unknown. In this study, we explored the adaptive changes of a biocrust-derived unicellular microalga, Vischeria sp. WL1 (Eustigmatophyceae), in the face of long-term nitrogen deficiency. Attention was focused on the alterations in cell wall properties and the associated desiccation resistance. After exposure to long-term nitrogen deficiency, the cell walls of Vischeria sp. WL1 thickened substantially, accompanied by enhanced rigidity and an improvement in desiccation resistance. In contrast, Vischeria sp. WL1 cells cultivated under nitrogen-replete conditions were highly vulnerable to desiccation stress. Additional cell wall alterations after nitrogen starvation included distinct surface sculpturing, variations in monosaccharide composition, and changes in functional groups. Collectively, this study provides valuable insights into the survival strategies of biocrust-derived microalgae in nitrogen-deficient dryland environments. Full article
(This article belongs to the Special Issue Molecular Ecology of Microalgae and Cyanobacteria)
Show Figures

Figure 1

13 pages, 3248 KB  
Article
Characteristics of Carbonatogenic Bacteria and Their Role in Enhancing the Stability of Biocrusts in Tropical Coral Islands
by Qiqi Chen, Lin Wang, Jie Li, Qiqi Li, Hongfei Su and Zhimao Mai
Microorganisms 2025, 13(3), 523; https://doi.org/10.3390/microorganisms13030523 - 27 Feb 2025
Viewed by 1009
Abstract
Soil erosion is a serious environmental problem that leads to land degradation and ecological imbalance, thereby eliciting extensive and profound worldwide concern. Biological soil crusts (biocrusts) play a crucial role in soil stabilization; however, the underlying microbial enzymatic mechanisms remain poorly understood. The [...] Read more.
Soil erosion is a serious environmental problem that leads to land degradation and ecological imbalance, thereby eliciting extensive and profound worldwide concern. Biological soil crusts (biocrusts) play a crucial role in soil stabilization; however, the underlying microbial enzymatic mechanisms remain poorly understood. The present study aimed to characterize carbonatogenic bacteria and investigate the role of their carbonic anhydrase-induced carbonate crystals in promoting soil shear strength within biocrusts. The results demonstrated a significant increase in the activity of carbonic anhydrase during biocrust formation and development (p < 0.05). A total of 35 strains exhibiting carbonic anhydrase activity were isolated from biocrusts, belonging to Actinomycetota, Bacillota, Pseudomonadota and Cyanobacteriota. The subsequent investigation revealed a positive correlation between the carbonic anhydrase activities of the strains and the shear strength during sand consolidation. Specifically, strain SCSIO19859, a type of cyanophyta, exhibited the highest carbonic anhydrase activity, of 1.50 U/mL. It produced 0.70 g/day of calcium carbonate and demonstrated a shear strength that was 6.09 times greater than that of the control group after sand consolidation for seven days of incubation under optimal conditions. X-ray diffraction and scanning electron microscope analysis revealed that SCSIO19859 produced calcite and vaterite carbonates, which significantly increased the shear strength of the sand grains (p < 0.05). This study provides evidence for the ecological function of biocrusts in promoting soil erosion resistance from the perspective of carbonatogenic bacteria-derived carbonic anhydrase. The functional strains with carbonic anhydrase obtained from this study have significant potential applications in enhancing soil erosion resistance. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 2924 KB  
Article
Visual Gradation of Biological Soil Crust Development: A Simple and Effective Recording Method
by Xinyu Zhang, Ping He and Jie Xu
Land 2025, 14(1), 180; https://doi.org/10.3390/land14010180 - 16 Jan 2025
Cited by 1 | Viewed by 807
Abstract
Biological soil crusts are important components of dryland ecosystems, showing variations in appearance, morphology, and function across developmental stages. However, the methods for recording biocrust developmental stages have not been simplified and standardized. In this study, three developmental grades for both cyanobacterial crust [...] Read more.
Biological soil crusts are important components of dryland ecosystems, showing variations in appearance, morphology, and function across developmental stages. However, the methods for recording biocrust developmental stages have not been simplified and standardized. In this study, three developmental grades for both cyanobacterial crust and moss crust were defined based on visual indicators such as color, thickness, and moss height. A field survey was conducted across three precipitation regions in northern China, during which the developmental grades of cyanobacterial and moss crusts were visually recorded. Key biocrust developmental indicators, including shear strength, penetration resistance, coverage, chlorophyll a content, and bulk density were measured for each grade. The results showed that both cyanobacterial and moss crusts could be effectively classified into three developmental grades based on these indicators, with a 90% concordance between the measured indicators and the defined grading method. This finding validated that the method could accurately reflect biocrust developmental stages while simplifying field recordings. Developmental indicators in various grades of cyanobacterial and moss crusts showed a moderate (30% < CV < 100%) to strong (CV > 100%) variation, highlighting the importance of environmental heterogeneity at the regional scale. Moreover, the grading method proved effective across varying spatial scales, highlighting its broad applicability. However, its validation across the comprehensiveness of target objects and the geographical scope remains limited. Future research should focus on expanding the grading method to include lichen crust, refining it across diverse ecosystems, and exploring the integration of advanced technologies such as hyperspectral imaging and machine learning to automate and improve the classification process. This study provides a simple and effective grading method for visually recording the developmental stages of biological soil crusts, which is useful for ecological research and field applications. Full article
Show Figures

Figure 1

22 pages, 2963 KB  
Review
Techniques for Evaluating Airborne Biocrust Diaspores: From Fundamentals to Advanced Approaches
by Mateus Fernandes Oliveira and Adaíses Simone Maciel-Silva
Aerobiology 2025, 3(1), 1; https://doi.org/10.3390/aerobiology3010001 - 15 Jan 2025
Viewed by 1231
Abstract
Biological soil crusts (biocrusts) are communities which thrive primarily in the upper soil layers of arid and semi-arid environments. Biocrusts produce soil-binding compounds, tolerate extreme conditions, and disperse through both sexual and asexual diaspores via wind, water, or animals. Despite their significance, dispersal [...] Read more.
Biological soil crusts (biocrusts) are communities which thrive primarily in the upper soil layers of arid and semi-arid environments. Biocrusts produce soil-binding compounds, tolerate extreme conditions, and disperse through both sexual and asexual diaspores via wind, water, or animals. Despite their significance, dispersal mechanisms involving airborne diaspores in biocrusts remain largely unexplored and poorly understood. This review provides an overview of techniques, from basic to advanced, to help researchers investigate these often-overlooked aspects of biocrust ecology. We discuss both passive and active methods for sampling airborne organisms, highlighting their potential in studies of biocrust organisms. We present traditional techniques, such as microscope glass slides coated with adhesive substances, as well as more advanced equipment like Rotorods. For organism identification, we explore traditional morphological methods, but also introduce more modern approaches, such as metabarcoding, which allow for the simultaneous study of multiple organism groups. This review underscores the potential of these methods to enhance our understanding of the aerobiology of biocrusts. By shedding light on these dispersal dynamics, this review aims to support future research and foster advancements in biogeography, ecosystem restoration, and conservation strategies. Full article
Show Figures

Figure 1

16 pages, 4811 KB  
Article
Discovery of a New Cyanobacterial Genus (Paludothrix gen. nov.) from the Sanyang Wetland in Eastern China, Reflecting the Latest Taxonomic Status in Coleofasciculaceae
by Yangyang Wu, Yao Cheng, He Zhang, Ruozhen Geng, Peng Xiao, Baiyu Cui and Renhui Li
Diversity 2025, 17(1), 15; https://doi.org/10.3390/d17010015 - 26 Dec 2024
Viewed by 1409
Abstract
As our comprehension of cyanobacterial classification in diverse ecosystems broadens, it becomes essential to explore the biodiversity of lesser-known areas for a thorough understanding of both global and local diversity. This research, which is part of a larger investigation into soil biocrust algae [...] Read more.
As our comprehension of cyanobacterial classification in diverse ecosystems broadens, it becomes essential to explore the biodiversity of lesser-known areas for a thorough understanding of both global and local diversity. This research, which is part of a larger investigation into soil biocrust algae diversity in the Sanyang Wetland located in Zhejiang Province, China, introduces a novel taxon of non-heterocystous filamentous cyanobacteria employing a polyphasic approach for cyanobacterial classification, integrating morphological, molecular, ecological, and biogeographical considerations. The findings from morphological analysis, 16S rRNA gene sequencing, and the identification of the 16S-23S ITS rRNA region have led to the discovery of a new genus, Paludothrix, which is categorized within the family Coleofasciculaceae. The proposed generic name and specific epithet of these new taxa adhere completely to the guidelines established by the International Code of Nomenclature for algae, fungi, and plants. The modern taxonomic system of cyanobacteria is constantly being updated and improved. The description of new taxa using the polyphasic approach can enrich the relevant knowledge in the field of cyanobacteria classification. The results of this study will increase our understanding of terrestrial cyanobacteria within wetland environments. Full article
(This article belongs to the Special Issue Studies on Biodiversity and Ecology of Algae in China—2nd Edition)
Show Figures

Figure 1

17 pages, 3153 KB  
Article
Role of Climate and Edaphic Factors on the Community Composition of Biocrusts Along an Elevation Gradient in the High Arctic
by Isabel Mas Martinez, Ekaterina Pushkareva, Leonie Agnes Keilholz, Karl-Heinz Linne von Berg, Ulf Karsten, Sandra Kammann and Burkhard Becker
Microorganisms 2024, 12(12), 2606; https://doi.org/10.3390/microorganisms12122606 - 17 Dec 2024
Viewed by 1009
Abstract
Biological soil crusts are integral to Arctic ecosystems, playing a crucial role in primary production, nitrogen fixation and nutrient cycling, as well as maintaining soil stability. However, the composition and complex relationships between the diverse organisms within these biocrusts are not well studied. [...] Read more.
Biological soil crusts are integral to Arctic ecosystems, playing a crucial role in primary production, nitrogen fixation and nutrient cycling, as well as maintaining soil stability. However, the composition and complex relationships between the diverse organisms within these biocrusts are not well studied. This study investigates how the microbial community composition within Arctic biocrusts is influenced by environmental factors along an altitudinal gradient (101 m to 314 m). Metagenomic analyses were used to provide insights into the community composition, revealing that temperature, pH, and nutrient availability significantly shaped the community. In contrast, altitude did not directly influence the microbial composition significantly. Eukaryotic communities were dominated by Chloroplastida and fungi, while Proteobacteria and Actinobacteria prevailed among prokaryotes. Cyanobacteria, particularly orders such as Pseudoanabaenales, Pleurocapsales, and Nostocales, emerged as the most abundant photoautotrophic organisms. Our findings highlight the impact of environmental gradients on microbial diversity and the functional dynamics of biocrusts, emphasizing their critical role in Arctic tundra ecosystems. Arctic biocrusts are intricate micro-ecosystems, whose structure is strongly shaped by local physicochemical parameters, likely affecting essential ecological functions. Full article
(This article belongs to the Special Issue Molecular Ecology of Microalgae and Cyanobacteria)
Show Figures

Figure 1

16 pages, 3941 KB  
Article
Effects of a Diatom–Bacillus megatherium Biocrust on Nutrient Limitation and Ryegrass Growth in Fluvo-Aquic Soil Along the Yellow River
by Xuejia Zheng, Jiachen Pan, Zhongjin Sun, Zhencui Jiang, Shiwei Chen, Yanhui Liu, Yuyang Li, Xin Li, Xiaoting Sun, Ning Ma, Chen Li, Yang Li, Jiaxin Wei, Congzhi Zhang, Zhi Dong and Qicong Wu
Agronomy 2024, 14(12), 2831; https://doi.org/10.3390/agronomy14122831 - 28 Nov 2024
Viewed by 964
Abstract
Biological soil crusts (biocrusts) promote plant growth by regulating soil nutrient dynamics and enhancing soil structure through the microorganisms they host. However, their impact on microbial nutrient limitation, a critical factor in nutrient cycling, remains underexplored. This study hypothesized that different types of [...] Read more.
Biological soil crusts (biocrusts) promote plant growth by regulating soil nutrient dynamics and enhancing soil structure through the microorganisms they host. However, their impact on microbial nutrient limitation, a critical factor in nutrient cycling, remains underexplored. This study hypothesized that different types of biocrusts modulate soil nutrient limitations, influencing plant growth. A pot experiment was conducted to evaluate the effects of four treatments—control, diatom, Bacillus megatherium, and diatom–B. megatherium biocrusts—on soil structure, nutrient availability, microbial nutrient limitation, and ryegrass growth after 40 days of cultivation. The results indicated that the B. megatherium treatment exacerbated microbial C and N limitations and reduced available phosphorus (by 41.80%) and ryegrass biomass (by 29.19%) compared to the control. The diatom-B. megatherium treatment alleviated nutrient limitations but increased nutrient competition between soil microbes and plants, impairing plant performance. In contrast, the diatom treatment enhanced soil structure, alleviated microbial nutrient limitations, and significantly improved total capillary porosity (by 10%), available phosphorus (by 22.91%), saturated water content (by 21.81%), and ryegrass biomass (by 76.05%) while reducing soil bulk density (by 9.63%). These findings provide practical insights and a theoretical foundation for utilizing biocrusts to improve fluvo-aquic soil quality and promote sustainable plant growth. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

14 pages, 840 KB  
Article
Soil Biocrusts May Exert a Legacy Impact on the Rhizosphere Microbial Community of Plant Crops
by Xiangbo Zou, Xinyu Jiang, Heng Jiang, Cheng Li, Jiong Cheng, Dongqing Ji, Jin Wang, Jiajin Ruan, Tiancheng Zhou, Cao Kuang, Ji Ye and Shiqin Yu
Agronomy 2024, 14(11), 2548; https://doi.org/10.3390/agronomy14112548 - 30 Oct 2024
Cited by 1 | Viewed by 967
Abstract
Biological soil crusts (biocrusts) play important ecological roles in many ecosystems, but their legacy effects in subtropical agricultural systems are poorly understood. This study investigated how biocrusts impact soil properties and subsequent crop rhizosphere microbiomes. Soil with (+BC) and without (−BC) biocrusts was [...] Read more.
Biological soil crusts (biocrusts) play important ecological roles in many ecosystems, but their legacy effects in subtropical agricultural systems are poorly understood. This study investigated how biocrusts impact soil properties and subsequent crop rhizosphere microbiomes. Soil with (+BC) and without (−BC) biocrusts was cultivated and used to grow pepper plants in a greenhouse experiment. Soil physicochemical properties and microbial communities in the pre-planting soils, and microbial communities in crop rhizosphere were analyzed. The results showed that soils with biocrust had significantly higher organic matter, total nitrogen, alkaline hydrolyzable nitrogen, total phosphorus, and total potassium content. Microbial community structures differed significantly among treatments, with −BC soils exhibiting higher microbial diversity in pre-planting conditions, while +BC soils showed higher diversity in crop rhizosphere soils. Soil properties, especially extractable potassium, total nitrogen, and organic matter content, were significantly correlated with rhizosphere microbial community structure. Additionally, our results showed that the first principal coordinate (PCoA1) of soil microbial community structure was significantly correlated with rhizosphere microbiota. Multiple regression analysis revealed that pre-planting soil microbial diversity indices and certain soil physicochemical properties could predict crop rhizosphere soil microbial diversity. Our results demonstrate that biocrusts can enhance soil fertility and alter microbial communities in subtropical agricultural soils, with persistent effects on the crop rhizosphere microbiome. This study provides new insights into the ecological legacy of biocrusts in managed subtropical ecosystems and their potential agricultural implications. Full article
Show Figures

Figure 1

15 pages, 514 KB  
Article
Native Biocrust Cyanobacteria Strains Showing Antagonism against Three Soilborne Pathogenic Fungi
by Pilar Águila-Carricondo, Raúl Román, José Ignacio Marín-Guirao, Yolanda Cantón and Miguel de Cara
Pathogens 2024, 13(7), 579; https://doi.org/10.3390/pathogens13070579 - 11 Jul 2024
Cited by 5 | Viewed by 1465
Abstract
The biocontrol potential of three native soil cyanobacteria from biological soil crusts (Nostoc commune, Scytonema hyalinum, and Tolypothrix distorta) was tested by means of in vitro mycelial growth inhibition assays for eighteen cyanobacteria-based products against three phytopathogenic soilborne fungi [...] Read more.
The biocontrol potential of three native soil cyanobacteria from biological soil crusts (Nostoc commune, Scytonema hyalinum, and Tolypothrix distorta) was tested by means of in vitro mycelial growth inhibition assays for eighteen cyanobacteria-based products against three phytopathogenic soilborne fungi (Phytophthora capsici, Pythium aphanidermatum, and Fusarium oxysporum f. sp. radicis-cucumerinum). Three cyanobacteria-based production factors were considered: (i) cyanobacterium strain, (ii) cyanobacterial culture growth phase, and (iii) different post-harvest treatments: raw cultures, cyanobacterial filtrates, and cyanobacterial extracts. Results showed that any of the factors considered are key points for successfully inhibiting fungal growth. N. commune showed the highest growth inhibition rates for the three phytopathogens; stationary phase treatments produced higher inhibition percentages than logarithmic ones; and all the post-harvest treatments of N. commune at the stationary phase inhibited the growth of P. capsici, up to 77.7%. Thus, N. commune products were tested in planta against P. capsici, but none of the products showed efficacy in delaying the onset nor reducing the damage due to P. capsici, demonstrating the complexity of the in planta assay’s success and encouraging further research to design an appropriate scaling up methodology. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

13 pages, 1791 KB  
Article
Impacts of Managed Vegetation Restoration on Arbuscular Mycorrhizal Fungi and Diazotrophs in Karst Ecosystems
by Mingming Sun, Dan Xiao, Wei Zhang and Kelin Wang
J. Fungi 2024, 10(4), 280; https://doi.org/10.3390/jof10040280 - 10 Apr 2024
Cited by 4 | Viewed by 2012
Abstract
The crucial functional arbuscular mycorrhizal fungi (AMF) and diazotrophs play pivotal roles in nutrient cycling during vegetation restoration. However, the impact of managed vegetation restoration strategies on AMF and diazotroph communities remains unclear. In this study, we investigated the community structure and diversity [...] Read more.
The crucial functional arbuscular mycorrhizal fungi (AMF) and diazotrophs play pivotal roles in nutrient cycling during vegetation restoration. However, the impact of managed vegetation restoration strategies on AMF and diazotroph communities remains unclear. In this study, we investigated the community structure and diversity of AMF and diazotrophs in a karst region undergoing managed vegetation restoration from cropland. Soil samples were collected from soils under three vegetation restoration strategies, plantation forest (PF), forage grass (FG), and a mixture of plantation forest and forage grass (FF), along with a control for cropland rotation (CR). The diversity of both AMF and diazotrophs was impacted by managed vegetation restoration. Specifically, the AMF Shannon index was higher in CR and PF compared to FF. Conversely, diazotroph richness was lower in CR, PF, and FG than in FF. Furthermore, both AMF and diazotroph community compositions differed between CR and FF. The relative abundance of AMF taxa, such as Glomus, was lower in FF compared to the other three land-use types, while Racocetra showed the opposite trend. Among diazotroph taxa, the relative abundance of Anabaena, Nostoc, and Rhizobium was higher in FF than in CR. Soil properties such as total potassium, available potassium, pH, and total nitrogen were identified as the main factors influencing AMF and diazotroph diversity. These findings suggest that AMF and diazotroph communities were more sensitive to FF rather than PF and FG after managed vegetation restoration from cropland, despite similar levels of soil nutrients among PF, FG, and FF. Consequently, the integration of diverse economic tree species and forage grasses in mixed plantations notably altered the diversity and species composition of AMF and diazotrophs, primarily through the promotion of biocrust formation and root establishment. Full article
(This article belongs to the Special Issue Diversity and Biotechnology of Soil Fungi and Rhizosphere Fungi)
Show Figures

Figure 1

16 pages, 2399 KB  
Article
Greenhouse Gas Fluxes from the Epiphytic Lichens: Incubation Experiments
by Anastasia I. Matvienko, Svetlana Y. Evgrafova, Natalia M. Kovaleva, Elizaveta V. Sideleva, Maria V. Sitnikova, Oleg V. Menyailo and Oxana V. Masyagina
Forests 2024, 15(1), 107; https://doi.org/10.3390/f15010107 - 5 Jan 2024
Cited by 2 | Viewed by 2760
Abstract
Because they are widespread and evolutionarily old, epiphytic lichens (ELs) play an important role in global forest ecosystems. ELs are abundant in Siberian forest ecosystems, which are highly vulnerable to climate change; thus, ELs can be important contributors to the carbon (C) cycle. [...] Read more.
Because they are widespread and evolutionarily old, epiphytic lichens (ELs) play an important role in global forest ecosystems. ELs are abundant in Siberian forest ecosystems, which are highly vulnerable to climate change; thus, ELs can be important contributors to the carbon (C) cycle. This study aims to address the unknown role of tree-inhabiting ELs in the C cycle of forest ecosystems in Central Siberia, where the EL biomass ranges from 492 to 3200 kg per ha. The main finding of this study is that ELs in a hydrated state can generate CH4 for an extended period (at least two weeks), as determined by an incubation method. At the same EL moisture level, EL CO2 fluxes are species-specific. The pattern of the release or uptake of GHGs by ELs may also alter due to climate change, e.g., changes in precipitation regimes (such as more frequent extreme rainfalls and droughts). Therefore, the EL contribution to the C cycle in forest ecosystems should be assessed, e.g., via the modeling of C cycling. Furthermore, specific factors, such as the EL exposure on the phorophyte stem, the EL biodiversity, and the day/night GHG fluxes, should be considered for a more concise assessment of ELs’ contribution to the C cycle of forest ecosystems and their response to ongoing and projected climate change. Full article
(This article belongs to the Special Issue Fixation, Transport and Storage of Carbon by Forest Ecosystems)
Show Figures

Figure 1

Back to TopTop