Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = charging station load prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2441 KB  
Article
Reliability Enhancement of Puducherry Smart Grid System Through Optimal Integration of Electric Vehicle Charging Station–Photovoltaic System
by M. A. Sasi Bhushan, M. Sudhakaran, Sattianadan Dasarathan and V. Sowmya Sree
World Electr. Veh. J. 2025, 16(8), 443; https://doi.org/10.3390/wevj16080443 - 6 Aug 2025
Viewed by 330
Abstract
Distributed generation strengthens distribution network reliability by placing generators close to load centers. The integration of electric vehicle charging stations (EVCSs) with PV systems mitigates the effects of EV charging burden. In this research, the objective is to combineEVCSs with distributed generation (DG) [...] Read more.
Distributed generation strengthens distribution network reliability by placing generators close to load centers. The integration of electric vehicle charging stations (EVCSs) with PV systems mitigates the effects of EV charging burden. In this research, the objective is to combineEVCSs with distributed generation (DG) units in the Puducherry smart grid system to obtain optimized locations and enhance their reliability. To determine the right nodes for DGs and EVCSs in an uneven distribution network, the modified decision-making (MDM) algorithm and the model predictive control (MPC) approach are used. The Indian utility 29-node distribution network (IN29NDN), which is an unbalanced network, is used for testing. The effects of PV systems and EVCS units are studied in several settings and at various saturation levels. This study validates the correctness of its findings by evaluating the outcomes of proposed methodological approaches. DIgSILENT Power Factory is used to conduct the simulation experiments. The results show that optimizing the location of the DG unit and the size of the PV system can significantly minimize power losses and make a distribution network (DN) more reliable. Full article
Show Figures

Figure 1

16 pages, 3186 KB  
Article
AI-Driven Framework for Secure and Efficient Load Management in Multi-Station EV Charging Networks
by Md Sabbir Hossen, Md Tanjil Sarker, Marran Al Qwaid, Gobbi Ramasamy and Ngu Eng Eng
World Electr. Veh. J. 2025, 16(7), 370; https://doi.org/10.3390/wevj16070370 - 2 Jul 2025
Viewed by 712
Abstract
This research introduces a comprehensive AI-driven framework for secure and efficient load management in multi-station electric vehicle (EV) charging networks, responding to the increasing demand and operational difficulties associated with widespread EV adoption. The suggested architecture has three main parts: a Smart Load [...] Read more.
This research introduces a comprehensive AI-driven framework for secure and efficient load management in multi-station electric vehicle (EV) charging networks, responding to the increasing demand and operational difficulties associated with widespread EV adoption. The suggested architecture has three main parts: a Smart Load Balancer (SLB), an AI-driven intrusion detection system (AIDS), and a Real-Time Analytics Engine (RAE). These parts use advanced machine learning methods like Support Vector Machines (SVMs), autoencoders, and reinforcement learning (RL) to make the system more flexible, secure, and efficient. The framework uses federated learning (FL) to protect data privacy and make decisions in a decentralized way, which lowers the risks that come with centralizing data. The framework makes load distribution 23.5% more efficient, cuts average wait time by 17.8%, and predicts station-level demand with 94.2% accuracy, according to simulation results. The AI-based intrusion detection component has precision, recall, and F1-scores that are all over 97%, which is better than standard methods. The study also finds important gaps in the current literature and suggests new areas for research, such as using graph neural networks (GNNs) and quantum machine learning to make EV charging infrastructures even more scalable, resilient, and intelligent. Full article
Show Figures

Figure 1

22 pages, 6913 KB  
Article
Coordinated Interaction Strategy of User-Side EV Charging Piles for Distribution Network Power Stability
by Juan Zhan, Mei Huang, Xiaojia Sun, Zuowei Chen, Zhihan Zhang, Yang Li, Yubo Zhang and Qian Ai
Energies 2025, 18(8), 1944; https://doi.org/10.3390/en18081944 - 10 Apr 2025
Viewed by 607
Abstract
In response to the challenges of imbalanced economic efficiency of charging stations caused by disorderly charging of large-scale electric vehicles (EVs), rising electricity expenditure of users, and increased risk of stable operation of the power grid, this study designs a user-side vehicle pile [...] Read more.
In response to the challenges of imbalanced economic efficiency of charging stations caused by disorderly charging of large-scale electric vehicles (EVs), rising electricity expenditure of users, and increased risk of stable operation of the power grid, this study designs a user-side vehicle pile resource interaction strategy considering source load clustering to enhance the economy and safety of electric vehicle energy management. Firstly, by constructing a dynamic traffic flow distribution network coupling architecture, a bidirectional interaction model between charging facilities and transportation/power systems is established to analyze the dynamic correlation between charging demand and road network status. Next, an EV charging and discharging electricity price response model is established to quantify the load regulation potential under different scenarios. Secondly, by combining urban transportation big data and prediction networks, high-precision inference of the spatiotemporal distribution of charging loads can be achieved. Then, a multidimensional optimization objective function covering operator revenue, user economy, and grid power quality is constructed, and a collaborative decision-making model is established. Finally, the IEEE69 node system is validated through joint simulation with actual urban areas, and the non-dominated sorting genetic algorithm II (NSGA-II) based on reference points is used for the solution. The results show that the optimization strategy proposed by NSGA-II can increase the operating revenue of charging stations by 33.43% while reducing user energy costs and grid voltage deviations by 18.9% and 68.89%, respectively. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

35 pages, 8254 KB  
Article
Prospective Design and Evaluation of a Renewable Energy Hybrid System to Supply Electrical and Thermal Loads Simultaneously with an Electric Vehicle Charging Station for Different Weather Conditions in Iran
by Hossein Kiani, Behrooz Vahidi, Seyed Hossein Hosseinian, George Cristian Lazaroiu and Pierluigi Siano
Smart Cities 2025, 8(2), 61; https://doi.org/10.3390/smartcities8020061 - 7 Apr 2025
Viewed by 1293
Abstract
The global demand for transportation systems is growing due to the rise in passenger and cargo traffic, predicted to reach twice the current level by 2050. Although this growth signifies social and economic progress, its impact on energy consumption and greenhouse gas emissions [...] Read more.
The global demand for transportation systems is growing due to the rise in passenger and cargo traffic, predicted to reach twice the current level by 2050. Although this growth signifies social and economic progress, its impact on energy consumption and greenhouse gas emissions cannot be overlooked. Developments in the transportation industry must align with advancements in emerging energy production systems. In this regards, UNSDG 7 advocates for “affordable and clean energy”, leading to a global shift towards the electrification of transport systems, sourcing energy from a mix of renewable and non-renewable resources. This paper proposes an integrated hybrid renewable energy system with grid connectivity to meet the electrical and thermal loads of a tourist complex, including an electric vehicle charging station. The analysis was carried on in nine locations with different weather conditions, with various components such as wind turbines, photovoltaic systems, diesel generators, boilers, converters, thermal load controllers, and battery energy storage systems. The proposed model also considers the effects of seasonal variations on electricity generation and charging connectivity. Sensitivity analysis has been carried on investigating the impact of variables on the techno-economic parameters of the hybrid system. The obtained results led to interesting conclusions. Full article
(This article belongs to the Special Issue Energy Strategies of Smart Cities)
Show Figures

Figure 1

27 pages, 5984 KB  
Article
Demand Response Strategies for Electric Vehicle Charging and Discharging Behavior Based on Road–Electric Grid Interaction and User Psychology
by Yang Gao, Xiaohong Zhang, Qingyuan Yan and Yanxue Li
Sustainability 2025, 17(6), 2536; https://doi.org/10.3390/su17062536 - 13 Mar 2025
Viewed by 1307
Abstract
With the rapid increase in electric vehicle (EV) ownership, the uncertainty of EV charging demand has become a significant concern, especially in distributed photovoltaic (PV) power distribution networks (DNs) with high penetration rates. This growing demand presents challenges in meeting the needs of [...] Read more.
With the rapid increase in electric vehicle (EV) ownership, the uncertainty of EV charging demand has become a significant concern, especially in distributed photovoltaic (PV) power distribution networks (DNs) with high penetration rates. This growing demand presents challenges in meeting the needs of EV owners and grid charging/discharging stations (GCDSs), jeopardizing the stability, efficiency, reliability, and sustainability of the DNs. To address these challenges, this study introduces innovative models, the anchoring effect, and regret theory for EV demand response (DR) decision-making, focusing on dual-sided demand management for GCDSs and EVs. The proposed model leverages the light spectrum optimizer–convolutional neural network to predict PV output and utilizes Monte Carlo simulation to estimate EV charging load, ensuring precise PV output prediction and effective EV distribution. To optimize DR decisions for EVs, this study employs time-of-use guidance optimization through a logistic–sine hybrid chaotic–hippopotamus optimizer (LSC-HO). By integrating the anchoring effect and regret theory model with LSC-HO, this approach enhances satisfaction levels for GCDSs by balancing DR, enhancing voltage quality within the DNs. Simulations on a modified IEEE-33 system confirm the efficacy of the proposed approach, validating the efficiency of the optimal scheduling methods and enhancing the stable operation, efficiency, reliability, and sustainability of the DNs. Full article
Show Figures

Figure 1

12 pages, 2974 KB  
Article
Electric Load Prediction of Electric Vehicle Charging Stations Based on Moving Average–Gated Recurrent Unit
by Wei Huang, Chuanhong Ru, Jian Qin, Yong Lin, Qingxi Cai and Bing Song
Processes 2025, 13(3), 706; https://doi.org/10.3390/pr13030706 - 28 Feb 2025
Viewed by 749
Abstract
The load prediction of electric vehicle charging stations is the basis of their static safety, which directly affects the safety of operation, the rationality of planning, and the economy of supply. However, various factors lead to drastic changes in short-term power consumption, which [...] Read more.
The load prediction of electric vehicle charging stations is the basis of their static safety, which directly affects the safety of operation, the rationality of planning, and the economy of supply. However, various factors lead to drastic changes in short-term power consumption, which makes the data more complicated and difficult to predict. In this paper, the moving average–gated recurrent unit method is proposed to predict the electric load of electric vehicle charging stations. A prediction model is established based on the historical data of electric load of electric vehicle charging stations to realize the accurate prediction of future electric loads. Firstly, considering the problems of noise in the historical data of electric vehicle charging stations, the moving average method is used for smoothing. Secondly, the smoothed data are modeled by the gated recurrent unit, and the future prediction results are obtained. Finally, the validity and practicability of the proposed method are proved by the research and testing of the actual electric vehicle charging station power load dataset. Compared with the classic LSTM prediction model, the proposed MA-GRU method can achieve more accurate prediction performance. Full article
(This article belongs to the Special Issue Process Systems Engineering for Complex Industrial Systems)
Show Figures

Figure 1

16 pages, 4453 KB  
Article
EV Charging Behavior Analysis and Load Prediction via Order Data of Charging Stations
by Shiqian Wang, Bo Liu, Qiuyan Li, Ding Han, Jianshu Zhou and Yue Xiang
Sustainability 2025, 17(5), 1807; https://doi.org/10.3390/su17051807 - 20 Feb 2025
Cited by 3 | Viewed by 1295
Abstract
To understand the charging behavior of electric vehicle (EV) users and the sustainable use of the flexibility resources of EV, EV charging behavior analysis and load prediction via order data of charging stations was proposed. The user probability distribution model is established from [...] Read more.
To understand the charging behavior of electric vehicle (EV) users and the sustainable use of the flexibility resources of EV, EV charging behavior analysis and load prediction via order data of charging stations was proposed. The user probability distribution model is established from the characteristic dimensions of EV charging initial time, initial state of charge, power level, and charging time. Under the conditions of specific districts, seasons, multiple EV types, and specific weather, the Monte Carlo simulation method is used to predict the EV load distribution at the physical level. The correlation between users’ willingness to charge and the electricity price is analyzed, and the logistic function is used to establish the charging load prediction model on the economic level. Taking a city in Henan Province, China, as an example, the calculation results show that the EV charging load distribution varies with the district, season, weather, and EV type, and the 24 h time-of-use (TOU) electricity price and EV quantity distribution are analyzed. The proposed method can better reflect EV charging behavior and accurately predict EV charging load. Full article
(This article belongs to the Special Issue Sustainable Management for Distributed Energy Resources)
Show Figures

Figure 1

17 pages, 526 KB  
Article
On-Road Wireless EV Charging Systems as a Complementary to Fast Charging Stations in Smart Grids
by Fawzi Alorifi, Walied Alfraidi and Mohamed Shalaby
World Electr. Veh. J. 2025, 16(2), 99; https://doi.org/10.3390/wevj16020099 - 12 Feb 2025
Cited by 3 | Viewed by 3193
Abstract
Electric vehicle (EV) users have the flexibility to fulfill their charging needs using either high-speed charging stations or innovative on-road wireless charging systems, ensuring uninterrupted travel to their destinations. These options present a spectrum of benefits, enhancing convenience and efficiency. The adoption of [...] Read more.
Electric vehicle (EV) users have the flexibility to fulfill their charging needs using either high-speed charging stations or innovative on-road wireless charging systems, ensuring uninterrupted travel to their destinations. These options present a spectrum of benefits, enhancing convenience and efficiency. The adoption of on-road wireless charging as a complementary method influences both the timing and extent of demand at fast-charging stations. This study introduces a comprehensive probabilistic framework to analyze EV arrival rates at fast-charging facilities, incorporating the impact of on-road wireless charging availability. The proposed model utilizes transportation data, including patterns from the US National Household Travel Survey (NHTS), to predict the specific times when EVs would need fast charging. To account for uncertainties in EV user decisions concerning charging preferences, a Monte Carlo simulation (MCS) approach is employed, ensuring a comprehensive analysis of charging behaviors and their potential impact on charging stations. A queuing model is developed to estimate the charging demand for numerous electric vehicles at a charging station, considering both scenarios: on-road EV wireless charging and relying exclusively on fast-charging stations. This study includes an analysis of a case and its simulation results based on a 32-bus distribution system and data from the US National Household Travel Survey (NHTS). The results indicate that integrating on-road EV wireless charging as complementary to fast charging significantly reduces the peak load at the charging station. Additionally, considering the on-road EV wireless charging system, the peak load of the station no longer aligns with the peak load of the power grid, resulting in improved power system capacity and deferred system upgrades. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

20 pages, 10807 KB  
Article
A Vertical Federated Learning Method for Electric Vehicle Charging Station Load Prediction in Coupled Transportation and Power Distribution Systems
by Qi Han and Xueping Li
Processes 2025, 13(2), 468; https://doi.org/10.3390/pr13020468 - 8 Feb 2025
Viewed by 1063
Abstract
The continuous growth of electric vehicle (EV) ownership has increased the proportion of EV charging station load (EVCSL) in the distribution network (DN). The prediction of EVCSL is important for the safe and stable operation of the DN. However, simply predicting the EVCSL [...] Read more.
The continuous growth of electric vehicle (EV) ownership has increased the proportion of EV charging station load (EVCSL) in the distribution network (DN). The prediction of EVCSL is important for the safe and stable operation of the DN. However, simply predicting the EVCSL based on the characteristics of the DN, ignoring the impact of coupled transportation network (TN) characteristics, will reduce prediction performance. Few studies focus on combining DN and TN data for EVCSL prediction. On the premise of protecting the privacy of TN data, this paper proposes a vertical adaptive attention-based federated prediction method of EVCSL based on an edge aggregation graph attention network combined with a long- and short-term memory network (V2AFedEGAT combined with LSTM) to fully utilize the characteristics of DN and TN. This method introduces a spatio-temporal hybrid attention module to alleviate the characteristic distribution skew of DN and TN. Furthermore, to balance the privacy protection and training efficiency after multiple modules are integrated into the secure federated linear regression framework, the training strategy of the federated framework and the update strategy of the model are optimized. The simulation results show that the proposed federated method improves the prediction performance by about 4% and has a sub-second response speed. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 3700 KB  
Article
Enhancing Urban Electric Vehicle (EV) Fleet Management Efficiency in Smart Cities: A Predictive Hybrid Deep Learning Framework
by Mohammad Aldossary
Smart Cities 2024, 7(6), 3678-3704; https://doi.org/10.3390/smartcities7060142 - 2 Dec 2024
Cited by 11 | Viewed by 3457
Abstract
Rapid technology advances have made managing charging loads and optimizing routes for electric vehicle (EV) fleets, especially in cities, increasingly important. IoT sensors in EV charging stations and cars enhance prediction and optimization algorithms with real-time data on charging behaviors, traffic, vehicle locations, [...] Read more.
Rapid technology advances have made managing charging loads and optimizing routes for electric vehicle (EV) fleets, especially in cities, increasingly important. IoT sensors in EV charging stations and cars enhance prediction and optimization algorithms with real-time data on charging behaviors, traffic, vehicle locations, and environmental factors. These IoT data enable the GNN-ViGNet hybrid deep learning model to anticipate electric vehicle charging needs. Data from 400,000 IoT sensors at charging stations and vehicles in Texas were analyzed to identify EV charging patterns. These IoT sensors capture crucial parameters, including charging habits, traffic conditions, and other environmental elements. Frequency-Aware Dynamic Range Scaling and advanced preparation methods, such as Categorical Encoding, were employed to improve data quality. The GNN-ViGNet model achieved 98.9% accuracy. The Forecast Accuracy Rate (FAR) and Charging Load Variation Index (CLVI) were introduced alongside Root-Mean-Square Error (RMSE) and Mean Square Error (MSE) to assess the model’s predictive power further. This study presents a prediction model and a hybrid Coati–Northern Goshawk Optimization (Coati–NGO) route optimization method. Routes can be real-time adjusted using IoT data, including traffic, vehicle locations, and battery life. The suggested Coati–NGO approach combines the exploratory capabilities of Coati Optimization (COA) with the benefits of Northern Goshawk Optimization (NGO). It was more efficient than Particle Swarm Optimization (919 km) and the Firefly Algorithm (914 km), reducing the journey distance to 511 km. The hybrid strategy converged more quickly and reached optimal results in 100 rounds. This comprehensive EV fleet management solution enhances charging infrastructure efficiency, reduces operational costs, and improves fleet performance using real-time IoT data, offering a scalable and practical solution for urban EV transportation. Full article
Show Figures

Figure 1

20 pages, 2957 KB  
Article
Optimization of Electric Vehicle Charging Control in a Demand-Side Management Context: A Model Predictive Control Approach
by Victor Fernandez and Virgilio Pérez
Appl. Sci. 2024, 14(19), 8736; https://doi.org/10.3390/app14198736 - 27 Sep 2024
Cited by 11 | Viewed by 4857
Abstract
In this paper, we propose a novel demand-side management (DSM) system designed to optimize electric vehicle (EV) charging at public stations using model predictive control (MPC). The system adjusts to real-time grid conditions, electricity prices, and user preferences, providing a dynamic approach to [...] Read more.
In this paper, we propose a novel demand-side management (DSM) system designed to optimize electric vehicle (EV) charging at public stations using model predictive control (MPC). The system adjusts to real-time grid conditions, electricity prices, and user preferences, providing a dynamic approach to energy distribution in smart city infrastructures. The key focus of the study is on reducing peak loads and enhancing grid stability, while minimizing charging costs for end users. Simulations were conducted under various scenarios, demonstrating the effectiveness of the proposed system in mitigating peak demand and optimizing energy use. Additionally, the system’s flexibility enables the adjustment of charging schedules to meet both grid requirements and user needs, making it a scalable solution for smart city development. However, current limitations include the assumption of uniform tariffs and the absence of renewable energy considerations, both of which are critical in real-world applications. Future research will focus on addressing these issues, improving scalability, and integrating renewable energy sources. The proposed framework represents a significant step towards efficient energy management in urban settings, contributing to both cost savings and environmental sustainability. Full article
(This article belongs to the Special Issue Internet of Things: Recent Advances and Applications)
Show Figures

Figure 1

14 pages, 1924 KB  
Article
Electric Vehicle Charging Load Prediction Considering Spatio-Temporal Node Importance Information
by Sizu Hou, Xinyu Zhang and Haiqing Yu
Energies 2024, 17(19), 4840; https://doi.org/10.3390/en17194840 - 27 Sep 2024
Cited by 3 | Viewed by 1401
Abstract
The rapid development of electric vehicles (EVs) has brought great challenges to the power grid, so improving the EV load prediction accuracy is crucial to the safe operation of the power grid. Aiming at the problem of insufficient consideration of spatial dimension information [...] Read more.
The rapid development of electric vehicles (EVs) has brought great challenges to the power grid, so improving the EV load prediction accuracy is crucial to the safe operation of the power grid. Aiming at the problem of insufficient consideration of spatial dimension information in the current EV charging load forecasting research, this study proposes a forecasting method that considers spatio-temporal node importance information. The improved PageRank algorithm is used to carry out the importance degree calculation of the load nodes based on the historical load information and the geographic location information of the charging station nodes, and the spatio-temporal features are initially extracted. In addition, the attention mechanism and convolutional network techniques are also utilized to further mine the spatio-temporal feature information to improve the prediction accuracy. The results on a charging station load dataset within a city in the Hebei South Network show that the model in this study can effectively handle the task of forecasting large fluctuations and long time series of charging loads and improve the forecasting accuracy. Full article
Show Figures

Figure 1

17 pages, 6362 KB  
Article
Electric Vehicle Charging Load Prediction Based on Weight Fusion Spatial–Temporal Graph Convolutional Network
by Jun Zhang, Huiluan Cong, Hui Zhou, Zhiqiang Wang, Ziyi Wen and Xian Zhang
Energies 2024, 17(19), 4798; https://doi.org/10.3390/en17194798 - 25 Sep 2024
Cited by 2 | Viewed by 1129
Abstract
The rapid increase in electric vehicles (EVs) poses significant impacts on multi-energy system (MES) operation and energy management. Accurately assessing EV charging demand becomes crucial for maintaining MES stability, making it an urgent issue to be studied. Therefore, this paper proposes a novel [...] Read more.
The rapid increase in electric vehicles (EVs) poses significant impacts on multi-energy system (MES) operation and energy management. Accurately assessing EV charging demand becomes crucial for maintaining MES stability, making it an urgent issue to be studied. Therefore, this paper proposes a novel deep learning-based EV charging load prediction framework to assess the impact of EVs on the MES. First, to model the EV traffic flow, a modified weight fusion spatial–temporal graph convolutional network (WSTGCN) is proposed to capture the inherent spatial–temporal characteristics of traffic flow. Specifically, to enhance the WSTGCN performance, the modified residual modules and weight fusion mechanism are integrated into the WSTGCN. Then, based on the predicted traffic flow, an improved queuing theory model is introduced to predict the charging load. In this improved queuing theory model, special consideration is given to subjective EV user behaviors, such as refusing to join queues and leaving impatiently, making the queuing model more realistic. Additionally, it should be noted that the proposed charging load predicting method relies on traffic flow data rather than historical charging data, which successfully addresses the data insufficiency problem of newly established charging stations, thereby offering significant practical value. Experimental results demonstrate that the proposed WSTGCN model exhibits superior accuracy in predicting traffic flow compared to other benchmark models, and the improved queuing theory model further enhances the accuracy of the results. Full article
Show Figures

Figure 1

8 pages, 1440 KB  
Proceeding Paper
Robust & Optimal Predictive Current Control for Bi-Directional DC-DC Converter in Distributed Energy Storage Systems
by Haris Sheh Zad, Abasin Ulasyar, Adil Zohaib, Muhammad Irfan, Zeeshan Yaqoob and Samid Ali Haider
Eng. Proc. 2024, 75(1), 26; https://doi.org/10.3390/engproc2024075026 - 25 Sep 2024
Cited by 1 | Viewed by 884
Abstract
This article proposes the development of an optimal and robust control approach for the voltage regulation of a bi-directional DC-DC converter for its integration in battery energy storage and electric vehicle charging station applications. The objective of the proposed controller is to enhance [...] Read more.
This article proposes the development of an optimal and robust control approach for the voltage regulation of a bi-directional DC-DC converter for its integration in battery energy storage and electric vehicle charging station applications. The objective of the proposed controller is to enhance the robustness and disturbance rejection capability of the bidirectional buck-boost converter. The inner current control loop adopts the optimal model predictive control (MPC) scheme while the outer voltage control loop has been developed utilizing the robust sliding mode control (SMC) approach. The results of the proposed robust & optimal control approach show better voltage conversion capabilities with improved transient response and steady-state characteristics in the presence of variations in load and disturbances. Full article
Show Figures

Figure 1

29 pages, 7562 KB  
Article
Optimizing Electric Vehicle (EV) Charging with Integrated Renewable Energy Sources: A Cloud-Based Forecasting Approach for Eco-Sustainability
by Mohammad Aldossary, Hatem A. Alharbi and Nasir Ayub
Mathematics 2024, 12(17), 2627; https://doi.org/10.3390/math12172627 - 24 Aug 2024
Cited by 11 | Viewed by 3621
Abstract
As electric vehicles (EVs) are becoming more common and the need for sustainable energy practices is growing, better management of EV charging station loads is a necessity. The simple act of folding renewable power from solar or wind in an EV charging system [...] Read more.
As electric vehicles (EVs) are becoming more common and the need for sustainable energy practices is growing, better management of EV charging station loads is a necessity. The simple act of folding renewable power from solar or wind in an EV charging system presents a huge opportunity to make them even greener as well as improve grid resiliency. This paper proposes an innovative EV charging station energy consumption forecasting approach by incorporating integrated renewable energy data. The optimization is achieved through the application of SARLDNet, which enhances predictive accuracy and reduces forecast errors, thereby allowing for more efficient energy allocation and load management in EV charging stations. The technique leverages comprehensive solar and wind energy statistics alongside detailed EV charging station utilization data collected over 3.5 years from various locations across California. To ensure data integrity, missing data were meticulously addressed, and data quality was enhanced. The Boruta approach was employed for feature selection, identifying critical predictors, and improving the dataset through feature engineering to elucidate energy consumption trends. Empirical mode decomposition (EMD) signal decomposition extracts intrinsic mode functions, revealing temporal patterns and significantly boosting forecasting accuracy. This study introduces a novel stem-auxiliary-reduction-LSTM-dense network (SARLDNet) architecture tailored for robust regression analysis. This architecture combines regularization, dense output layers, LSTM-based temporal context learning, dimensionality reduction, and early feature extraction to mitigate overfitting. The performance of SARLDNet is benchmarked against established models including LSTM, XGBoost, and ARIMA, demonstrating superior accuracy with a mean absolute percentage error (MAPE) of 7.2%, Root Mean Square Error (RMSE) of 22.3 kWh, and R2 Score of 0.87. This validation of SARLDNet’s potential for real-world applications, with its enhanced predictive accuracy and reduced error rates across various EV charging stations, is a reason for optimism in the field of renewable energy and EV infrastructure planning. This study also emphasizes the role of cloud infrastructure in enabling real-time forecasting and decision support. By facilitating scalable and efficient data processing, the insights generated support informed energy management and infrastructure planning decisions under dynamic conditions, empowering the audience to adopt sustainable energy practices. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

Back to TopTop