Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = codon prevalence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2856 KB  
Article
Genomic Landscape and Antimicrobial Resistance of Listeria monocytogenes in Retail Chicken in Qingdao, China
by Wei Wang, Yao Zhong, Juntao Jia, Lidan Ma, Yan Lu, Qiushui Wang, Lijuan Gao, Jijuan Cao, Yinping Dong, Qiuyue Zheng and Jing Xiao
Foods 2025, 14(18), 3260; https://doi.org/10.3390/foods14183260 - 19 Sep 2025
Viewed by 192
Abstract
Listeria monocytogenes (L. monocytogenes) is an important foodborne pathogen that poses great risks to food safety and public health, and knowledge about its presence and diversity in potential sources is crucial for effectively tracking and controlling it in the food chain. [...] Read more.
Listeria monocytogenes (L. monocytogenes) is an important foodborne pathogen that poses great risks to food safety and public health, and knowledge about its presence and diversity in potential sources is crucial for effectively tracking and controlling it in the food chain. In this study, we investigated the prevalence, antimicrobial susceptibility, and genomic characteristics of Listeria monocytogenes (L. monocytogenes) collected from retail chicken meat samples in Qingdao, China, in 2022. A total of 38 (10.6%, 38/360) L. monocytogenes isolates were recovered from 360 retail chickens. All 38 isolates were classified into two lineages (I and II), three serogroups (IIa, IIb, IIc), eight sequence types (STs), eight clonal complexes (CCs), eight Sublineages (SLs) and nine cgMLSTs (CTs). ST121 and ST9 were the most prevalent STs in this study. The ST121 strains from China had heterogeneity with those from other countries, while the Chinese ST9 strains had homogeneity with those from other countries. One resistance cassette tet(M)-entS-msr(D) was identified in eight L2-SL121-ST121-CT13265 isolates, the genetic structure of which was identical to that of three reference genomes. All isolates carried the L. monocytogenes pathogenic island (LIPI)-1, with only one carrying LIPI-3 and three carrying LIPI-4. In addition, 11 isolates subtyped as L2-SL121-ST121-CT13265 were found to have a premature stop codon (PMSC) in the inlA gene in this study. Our data revealed the antimicrobial susceptibility, genomic characteristics and evolutionary relationships of L. monocytogenes in retail chicken in Qingdao, China. The characterization of genotypes, virulence, stress and antimicrobial markers of strains circulating in retail chicken in Qingdao, as described in this study, provides the opportunity to improve risk assessments of L. monocytogenes exposure. Full article
Show Figures

Figure 1

19 pages, 6653 KB  
Article
Comprehensive Whole-Genome Survey and Analysis of the Naozhou Stock of Large Yellow Croakers (Larimichthys crocea)
by Hao-Jie Wang, Shu-Pei Huang, Eric Amenyogbe, Yue Liu, Jing-Hui Jin, Yi Lu, Charles Narteh Boateng, Zhong-Liang Wang and Jian-Sheng Huang
Animals 2025, 15(17), 2498; https://doi.org/10.3390/ani15172498 - 25 Aug 2025
Viewed by 588
Abstract
The Naozhou stock of large yellow croakers (Larimichthys crocea) exhibits unique phenotypic traits and high genetic diversity, making it a valuable resource for selective breeding and genetic conservation in aquaculture. Despite its importance, simple sequence repeat (SSR) markers have not been [...] Read more.
The Naozhou stock of large yellow croakers (Larimichthys crocea) exhibits unique phenotypic traits and high genetic diversity, making it a valuable resource for selective breeding and genetic conservation in aquaculture. Despite its importance, simple sequence repeat (SSR) markers have not been developed for this stock, which limits efforts in genetic evaluation, breeding optimization, and sustainable utilization of this commercially important species. In this study, 195,263 SSRs were identified from the genome of the Naozhou stock of large yellow croaker, covering a total length of 16,578,990 bp with a density of 288 bp/Mb. Dinucleotide repeats were the most common, with the AC motif being the most prevalent. The frequency of SSR markers ranged from 245.63 to 346.60 per Mb. A total of 30 primer pairs were synthesized, of which 28 pairs (93.3%) successfully amplified clear and reproducible bands in PCR assays. Among these, 28 SSR markers exhibited distinct and reproducible bands following gel electrophoresis. For eight SSR loci, the number of alleles (Na) ranged from 4 to 22 (mean = 11.375), while the effective number of alleles (Ne) ranged from 1.5401 to 10.4727 (mean = 5.6475). The assembled mitochondrial genome (mtDNA) was 16,467 bp in length and comprised 37 genes, including 13 protein-coding genes (PCGs), 22 tRNA genes, and 2 rRNA genes. The total sequence length of the PCGs was 11,431 bp, accounting for 69.4% of the mtDNA. A large portion of the PCGs (5) used incomplete stop codons (e.g., nad2, nad3, cox2), while others used TAA stop codons (e.g., nad6, nad5, TrnT). The mtDNA encoded a total of 3808 codons, with UAA showing the highest relative synonymous codon usage value. The SSR markers and mtDNA data generated in this study provide valuable tools for future genetic breeding and genomic research on the Naozhou stock of large yellow croakers. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 455 KB  
Article
White-Tailed Deer Prion Protein Gene Variability Suggests Selection Against Chronic Wasting Disease in Canada’s Prairies
by William Pilot, Maria I. Arifin, Antanas Staskevicius, Nicholas J. Haley, Gordon Mitchell and Jiewen Guan
Viruses 2025, 17(8), 1121; https://doi.org/10.3390/v17081121 - 15 Aug 2025
Viewed by 838
Abstract
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy that targets cervids, has become a significant threat to both free-ranging and captive populations of Canadian white-tailed deer. In an effort to mitigate its spread, research in the past 20 years has demonstrated that the [...] Read more.
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy that targets cervids, has become a significant threat to both free-ranging and captive populations of Canadian white-tailed deer. In an effort to mitigate its spread, research in the past 20 years has demonstrated that the genetic background of deer may influence the pathogenesis of CWD. Specifically, variants located on the 95-, 96-, 116- and 226-codon of the prion protein gene seem to attenuate disease progression in white-tailed deer. The influence of these alleles on the likelihood of being found CWD-positive on Saskatchewan and Albertan farms was assessed using a Bayesian logistic regression model. To assess the presence of selection for favourable prion protein gene alleles, shifts in variant genotype frequencies were examined over the last seventeen years. Our results show that deer harboring the G96S allele have significantly lowered odds of infection within Canadian herds. Furthermore, the prevalence of this allele has increased significantly in farmed deer over the past seventeen years. Establishing the dynamic genetic background of Canadian deer populations will inform future disease management initiatives. Full article
(This article belongs to the Special Issue Chronic Wasting Disease: From Pathogenesis to Prevention)
Show Figures

Figure 1

14 pages, 2957 KB  
Article
Patchy Phylogenetic Distribution and Poor Translational Adaptation of a Nested ORF in the Mammalian Mitochondrial cytb Gene
by Sheng-Lin Shi, Dan-Tong Li and Yan-Qun Liu
Genes 2025, 16(7), 833; https://doi.org/10.3390/genes16070833 - 17 Jul 2025
Viewed by 447
Abstract
Background: The mammalian mitochondrial genome has long been considered to encode only 13 proteins. However, a recent study identified a nested alternative open reading frame (nAltORF) within the primate mitochondrial cytb gene, which we designate ncytb, that is reportedly translated in the [...] Read more.
Background: The mammalian mitochondrial genome has long been considered to encode only 13 proteins. However, a recent study identified a nested alternative open reading frame (nAltORF) within the primate mitochondrial cytb gene, which we designate ncytb, that is reportedly translated in the cytosol using the standard genetic code. This discovery challenges conventional understanding and raises questions about the prevalence, conservation, and translational adaptation of such ORFs. Methods: This study conducted a comprehensive bioinformatic analysis of nested ncytb genes in 289 primate and 380 rodent mitochondrial cytb sequences. Results: Nested ncytb genes meeting the criteria (>150 codons, standard genetic code) were identified in only 10.73% of primate and 20.53% of rodent species, suggesting a patchy phylogenetic distribution. While their encoded proteins showed homology to the previously reported protein encoded by the Homo sapiens nested ncytb gene, overall amino acid conservation was low, and characteristic protein domains or signal peptides were generally not predicted. Crucially, the Kozak consensus sequences surrounding the putative start codons of these ncytb genes were exclusively “weak” or “adequate”, with none classified as “strong” or “optimal”. Codon Adaptation Index (CAI) and Relative Codon Deoptimization Index (RCDI) analyses of the nested ncytb genes revealed neither significant adaptation nor deoptimization to the codon usage of nuclear and mitochondrial genes. Furthermore, cosine similarity analysis indicated that ncytb genes exhibit significantly lower codon usage similarity to both nuclear and mitochondrial gene sets compared to their host cytb genes. Conclusions: These findings collectively suggest that while ncytb genes exist in some mammals, their inconsistent presence, weak translational initiation signals, and lack of adaptation to cytosolic codon usage characterize them as dispensable genetic elements rather than core functional genes. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

31 pages, 4276 KB  
Review
RNA–DNA Differences: Mechanisms, Oxidative Stress, Transcriptional Fidelity, and Health Implications
by Viktor Stolc, Ondrej Preto, Miloslav Karhanek, Friedemann Freund, Yuri Griko, David J. Loftus and Maurice M. Ohayon
Antioxidants 2025, 14(5), 544; https://doi.org/10.3390/antiox14050544 - 30 Apr 2025
Cited by 2 | Viewed by 1703
Abstract
RNA–DNA differences (RDDs) challenge the traditional view of RNA as a faithful copy of DNA, arising through RNA editing, transcriptional errors, and oxidative damage. Reactive oxygen species (ROS) play a central role, inducing lesions like 8-oxo-guanine that compromise transcription and translation, leading to [...] Read more.
RNA–DNA differences (RDDs) challenge the traditional view of RNA as a faithful copy of DNA, arising through RNA editing, transcriptional errors, and oxidative damage. Reactive oxygen species (ROS) play a central role, inducing lesions like 8-oxo-guanine that compromise transcription and translation, leading to dysfunctional proteins. This review explores the biochemical basis of RDDs, their exacerbation under oxidative stress, and their dual roles in cellular adaptation and disease. RDDs contribute to genomic instability and are implicated in cancers, neurodegenerative disorders, and autoimmune diseases, while also driving phenotypic diversity. Drawing on terrestrial and spaceflight studies, we highlight the intersection of oxidative stress, RDD formation, and cellular dysfunction, proposing innovative mitigation approaches. Advancements in RDD detection and quantification, along with ROS management therapies, offer new avenues to restore cellular homeostasis and promote resilience. By positioning RDDs as a hallmark of genomic entropy, this review underscores the limits of biological adaptation. Furthermore, the prevalence of guanine-rich codons in antioxidant genes increases their susceptibility to ROS-induced oxidative lesions, linking redox stress, genomic instability, and constrained adaptation. These insights have profound implications for understanding aging, disease progression, and adaptive mechanisms in both terrestrial and space environments. Full article
(This article belongs to the Special Issue Redox Biology and Genomic Integrity)
Show Figures

Figure 1

13 pages, 303 KB  
Article
Regional and Gender-Based Distribution of KRAS Mutations in Metastatic Colorectal Cancer Patients in Turkey: An Observational Study
by Nurullah Ilhan, Faysal Dane, Erdem Goker, Kazım Uygun, Bülent Orhan, Kerem Okutur, İlkay Tuğba Ünek, Abdurrahman Işıkdoğan, Ahmet Bilici, Nurullah Zengin, Necati Alkış, İdris Yücel, Hatice Odabaş, Berna Ömür Öksüzoğlu, Akif Doğan, Hande Nur Erölmez and Mahmut Gümüş
Medicina 2025, 61(4), 694; https://doi.org/10.3390/medicina61040694 - 10 Apr 2025
Cited by 1 | Viewed by 1146
Abstract
Background and Objectives: KRAS genes are among the most prominent oncogenes that trigger tumor formation in colorectal cancer (CRC) and serve as predictive biomarkers for resistance to anti-EGFR therapies in metastatic colorectal cancer (mCRC) patients. However, the prevalence and mutation spectrum of the [...] Read more.
Background and Objectives: KRAS genes are among the most prominent oncogenes that trigger tumor formation in colorectal cancer (CRC) and serve as predictive biomarkers for resistance to anti-EGFR therapies in metastatic colorectal cancer (mCRC) patients. However, the prevalence and mutation spectrum of the KRAS gene family in mCRC patients in Turkey have not been sufficiently analyzed. This study investigates the frequency and distribution of mutations in the KRAS gene family across different regions of Turkey and examines gender-related variations. Materials and Methods: This multicenter observational study included 2458 histologically confirmed mCRC patients collected from 52 centers across Turkey. In a central laboratory, KRAS mutations in codons 12 and 13 were analyzed using polymerase chain reaction (PCR). Statistical analyses were performed using chi-square tests and Monte Carlo simulations, with a significance threshold set at p < 0.05. Results: Depending on the region, KRAS mutations were detected in 45% of patients, ranging from 39.6% to 47.5%. The mutation rate was significantly higher in female patients (48.8%) compared to male patients (42.6%) (p = 0.002). Codon 12 mutations were more frequent than codon 13 mutations. G12D, G12V, and G13D mutations accounted for 80% of all detected mutations. The G12V mutation was prevalent in female patients (p = 0.007). Based on region, mutation diversity was similar, and no statistically significant difference was found (p > 0.05). Conclusions: This large-scale, multicenter study provides the most comprehensive dataset of KRAS mutations in mCRC patients in Turkey. This study revealed regional trends, as well as gender differences. The findings highlight the importance of routine KRAS genotyping in guiding personalized treatment strategies, especially regarding candidate selection for anti-EGFR therapies. Further research is required to elucidate the prognostic and therapeutic implications of specific KRAS mutations. Full article
(This article belongs to the Section Oncology)
17 pages, 4239 KB  
Article
The Complete Mitochondrial Genome of Thymus mongolicus and Its Phylogenetic Relationship with Lamiaceae Species
by Na Na, Zinian Wu, Zhiyong Wang, Yanting Yang, Chunyu Tian, Lin Zhu, Taiyou Ou, Xiaofei Chen, Hongyan Xia and Zhiyong Li
Biomolecules 2025, 15(3), 343; https://doi.org/10.3390/biom15030343 - 27 Feb 2025
Cited by 1 | Viewed by 974
Abstract
Thymus mongolicus (Lamiaceae) is a plant commonly found throughout China, in which it is widely used in chemical products for daily use, traditional medicinal preparations, ecological management, and cooking. In this study, we have assembled and annotated for the first time the entire [...] Read more.
Thymus mongolicus (Lamiaceae) is a plant commonly found throughout China, in which it is widely used in chemical products for daily use, traditional medicinal preparations, ecological management, and cooking. In this study, we have assembled and annotated for the first time the entire mitochondrial genome (mitogenome) of T. mongolicus. The mitochondrial genome of T. mongolicus is composed in a monocyclic structure, with an overall size of 450,543 base pairs (bp) and a GC composition of 45.63%. It contains 32 unique protein-encoding genes. The repetitive sequences of the T. mongolicus mitogenome include 165 forward repetitive sequences and 200 palindromic repetitive sequences, in addition to 88 simple sequence repeats, of which tetramers accounted for the highest proportion (40.91%). An analysis of the mitogenome codons revealed that synonymous codons generally end with A/U. With the exception of nad4L, which uses ACG/ATG as an initiation codon, all other genes begin with the ATG start codon. Codon analysis of the mitogenome also showed that leucine (909) are the most abundant amino acid, while tryptophan (134) are the least prevalent. In total, 374 RNA editing sites were detected. Moreover, 180 homologous segments totaling 105,901 bp were found when the mitochondrial and chloroplast genomes of T. mongolicus were compared. Phylogenetic analysis further indicated that T. mongolicus is most closely related to Prunella vulgaris in the Lamiaceae family. Our findings offer important genetic insights for further research on this Lamiaceae species. To the best of our knowledge, this study is the first description of the entire mitogenome of T. mongolicus. Full article
Show Figures

Figure 1

18 pages, 4427 KB  
Article
An Actively Homing Insertion Element in a Phage Methylase Contains a Hidden HNH Endonuclease
by Danielle Arsenault, Sophia P. Gosselin and Johann Peter Gogarten
Genes 2025, 16(2), 178; https://doi.org/10.3390/genes16020178 - 1 Feb 2025
Cited by 1 | Viewed by 1213
Abstract
Background/Objectives: The ShiLan domain was previously identified as an insertion sequence in a phage DNA methylase gene that exhibited similar evolutionary patterns to that of an active intein or self-splicing intron but could not be identified as either. It produces no internal [...] Read more.
Background/Objectives: The ShiLan domain was previously identified as an insertion sequence in a phage DNA methylase gene that exhibited similar evolutionary patterns to that of an active intein or self-splicing intron but could not be identified as either. It produces no internal stop codons when read in frame with its host methylase gene, leading to the thought that it may not be an intron and rather be an abnormal type of intein. However, the sequence has no detectable self-splicing domains, which are essential for intein persistence, as preventing an intein from successfully splicing is often detrimental to proper host protein function. Methods: The analysis of alternate open reading frames for the full nucleotide sequence of this insertion element revealed the insertion to be an out-of-frame histidine-asparagine-histidine (HNH) endonuclease. A GTG start codon is located 18 bp into the insertion, and a TAA stop codon within the last four bases of the insertion (TAAC). When this frame is read, an HNH endonuclease is revealed. In-depth computational analysis could not retrieve support for this element being any known type of self-splicing element, neither intein nor intron. When read in-frame with the methylase gene, this insertion is predicted to take on a looping structure that may be able to avoid interference with the DNA methylase activity. We performed searches for sequences similar in nature to the inserted out-of-frame HNH and found several in other phages and prokaryotes. We present our survey of these out-of-frame endonuclease insertion elements as well as some speculation on how these endonucleases are getting translated to facilitate their homing activity. Conclusions: These findings expand our understanding of the possible arrangements for and prevalence of unorthodox mobile genetic elements and overlapping open reading frames in phages. Full article
(This article belongs to the Section Viral Genomics)
Show Figures

Figure 1

13 pages, 4099 KB  
Article
Alu–Mediated Duplication and Deletion of Exon 11 Are Frequent Mechanisms of PALB2 Inactivation, Predisposing Individuals to Hereditary Breast–Ovarian Cancer Syndrome
by Diletta Sidoti, Valeria Margotta, Diletta Calosci, Erika Fiorentini, Costanza Bacci, Francesca Gensini, Laura Papi and Marco Montini
Cancers 2024, 16(23), 4022; https://doi.org/10.3390/cancers16234022 - 30 Nov 2024
Cited by 1 | Viewed by 1800
Abstract
Background/Objective: Large genomic rearrangements of PALB2 gene, particularly deletions and duplications, have been linked to hereditary breast–ovarian cancer. Our research specifically focuses on delineating the intronic breakpoints associated with rearrangements of PALB2 exon 11, which is crucial for understanding the mechanisms underlying these [...] Read more.
Background/Objective: Large genomic rearrangements of PALB2 gene, particularly deletions and duplications, have been linked to hereditary breast–ovarian cancer. Our research specifically focuses on delineating the intronic breakpoints associated with rearrangements of PALB2 exon 11, which is crucial for understanding the mechanisms underlying these genomic changes in patients with hereditary breast and ovarian syndrome. Methods: By using next-generation sequencing, we identified one duplication and three deletions of PALB2 exon 11, confirmed by Multiplex Ligation-Dependent Probe Amplification analysis. To assess the impact on transcription and potential splicing issues, reverse-transcription PCR was performed on patients’ RNA. For the detailed characterization of intronic breakpoints, the primer walking approach and long-range PCR were implemented, followed by Sanger sequencing. Results: Our analysis revealed a tandem duplication of 5134 base pairs (bp) mediated by AluY repeats located in introns 10 and 11, respectively. Moreover, identical deletions were identified in three unrelated patients, encompassing an approximate 8050 bp region mediated by AluSx elements. Both genomic alterations resulted in a truncated PALB2 protein due to the introduction of a premature stop codon. Conclusions: This study underscores the remarkable instability of intronic regions flanking exon 11 of PALB2 and identifies a previously unreported hotspot involving Alu repeats with very high sequence homology in introns 10 and 11 of the gene. Our findings suggest avenues for further research, such as investigating the prevalence of similar genomic rearrangements in larger cohorts and exploring functional studies to understand how these alterations contribute to hereditary breast cancer pathogenesis. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

16 pages, 972 KB  
Article
Setting Up an NGS Sequencing Platform and Monitoring Molecular Markers of Anti-Malarial Drug Resistance in Djibouti
by Nasserdine Papa Mze, Houssein Yonis Arreh, Rahma Abdi Moussa, Mahdi Bachir Elmi, Mohamed Ahmed Waiss, Mohamed Migane Abdi, Hassan Ibrahim Robleh, Samatar Kayad Guelleh, Abdoul-ilah Ahmed Abdi, Hervé Bogreau, Leonardo K. Basco and Bouh Abdi Khaireh
Biology 2024, 13(11), 905; https://doi.org/10.3390/biology13110905 - 6 Nov 2024
Viewed by 2112
Abstract
Djibouti is confronted with malaria resurgence, with malaria having been occurring in epidemic proportions since a decade ago. The current epidemiology of drug-resistant Plasmodium falciparum is not well known. Molecular markers were analyzed by targeted sequencing in 79 P. falciparum clinical isolates collected [...] Read more.
Djibouti is confronted with malaria resurgence, with malaria having been occurring in epidemic proportions since a decade ago. The current epidemiology of drug-resistant Plasmodium falciparum is not well known. Molecular markers were analyzed by targeted sequencing in 79 P. falciparum clinical isolates collected in Djibouti city in 2023 using the Miseq Illumina platform newly installed in the country. The objective of the study was to analyze the key codons in these molecular markers associated with antimalarial drug resistance. The prevalence of the mutant Pfcrt CVIET haplotype (92%) associated with chloroquine resistance and mutant Pfdhps-Pfdhfr haplotypes (7.4% SGEA and 53.5% IRN, respectively) associated with sulfadoxine-pyrimethamine resistance was high. By contrast, Pfmdr1 haplotypes associated with amodiaquine (YYY) or lumefantrine (NFD) resistance were not observed in any of the isolates. Although the “Asian-type” PfK13 mutations associated with artemisinin resistance were not observed, the “African-type” PfK13 substitution, R622I, was found in a single isolate (1.4%) for the first time in Djibouti. Our genotyping data suggest that most Djiboutian P. falciparum isolates are resistant to chloroquine and sulfadoxine-pyrimethamine but are sensitive to amodiaquine, lumefantrine, and artemisinin. Nonetheless, the presence of an isolate with the R622I PfK13 substitution is a warning signal that calls for a regular surveillance of molecular markers of antimalarial drug resistance. Full article
Show Figures

Figure 1

20 pages, 5392 KB  
Article
Coxsackievirus B3-Induced m6A Modification of RNA Enhances Viral Replication via Suppression of YTHDF-Mediated Stress Granule Formation
by Guangze Zhao, Huifang M. Zhang, Yankuan T. Chen, Kerry Shi, Sana Aghakeshmiri, Fione Yip, Honglin Luo, Bruce McManus and Decheng Yang
Microorganisms 2024, 12(11), 2152; https://doi.org/10.3390/microorganisms12112152 - 26 Oct 2024
Cited by 2 | Viewed by 2075
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification. Here, we demonstrate that coxsackievirus B3 (CVB3), a common causative agent of viral myocarditis, induces m6A modification primarily at the stop codon and 3′ untranslated regions of its genome. As [...] Read more.
N6-methyladenosine (m6A) is the most prevalent internal RNA modification. Here, we demonstrate that coxsackievirus B3 (CVB3), a common causative agent of viral myocarditis, induces m6A modification primarily at the stop codon and 3′ untranslated regions of its genome. As a positive-sense single-stranded RNA virus, CVB3 replicates exclusively in the cytoplasm through a cap-independent translation initiation mechanism. Our study shows that CVB3 modulates the expression and nucleo-cytoplasmic transport of the m6A machinery components—METTL3, ALKBH5 and YTHDFs—resulting in increased m6A modifications that enhance viral replication. Mechanistically, this enhancement is mediated through YTHDF-driven stress granule (SG) formation. We observed that YTHDF proteins co-localize with human antigen R (HuR), a protein facilitating cap-independent translation, in SGs during early infection. Later in infection, YTHDFs are cleaved, suppressing SG formation. Notably, for the first time, we identified that during early infection CVB3’s RNA-dependent RNA polymerase (3D) and double-stranded RNA (dsRNA) are stored in SGs, co-localizing with HuR. This early-stage sequestration likely protects viral components for use in late-phase replication, when SGs are disrupted due to YTHDF cleavage. In summary, our findings reveal that CVB3-induced m6A modifications enhance viral replication by regulating YTHDF-mediated SG dynamics. This study provides a potential therapeutic strategy for CVB3-induced myocarditis. Full article
(This article belongs to the Special Issue Viral Proteases in Viral Infection and Drug Development)
Show Figures

Figure 1

18 pages, 11581 KB  
Article
Preparation and Application of Polyclonal Antibodies for the Rapid Detection of Actinidia Chlorotic Ringspot-Associated Virus
by Jing Shang, Hongping Feng, Yuxuan Wang, Yunan Wang, Xiao Zhang and Zhouyu Zhang
Viruses 2024, 16(10), 1600; https://doi.org/10.3390/v16101600 - 11 Oct 2024
Viewed by 1447
Abstract
Actinidia chlorotic ringspot-associated virus (AcCRaV, Emaravirus actinidiae) is prevalent in Chinese kiwifruit, leading to substantial yield reduction. The intricate nature of symptoms presents diagnostic challenges, underscoring the necessity for a rapid and accurate detection method that facilitates effective control. In this investigation, [...] Read more.
Actinidia chlorotic ringspot-associated virus (AcCRaV, Emaravirus actinidiae) is prevalent in Chinese kiwifruit, leading to substantial yield reduction. The intricate nature of symptoms presents diagnostic challenges, underscoring the necessity for a rapid and accurate detection method that facilitates effective control. In this investigation, AcCRaV isolates from key kiwi-producing regions in Sichuan province were collected and analyzed, with representative strains chosen as experimental materials. Primers targeting the nucleoprotein gene of AcCRaV were designed, and their codon usage was optimized to enhance performance. Various serological methods utilizing polyclonal antibodies were developed, including ELISA, dot immunobinding assay, and AcCRaV-specific gold immunochromatographic bands (AcCRaV-GICS). Field samples exhibited high specificity and sensitivity when tested using these methods. Furthermore, the results obtained from a large number of field samples are consistent with those derived from RT-PCR analysis, further validating the applicability of our approach. A detection method capable of handling a large volume of field samples infected with AcCRaV is currently lacking; thus, our system construction provides an important reference for addressing this gap. Full article
(This article belongs to the Special Issue Advances in Plant Virus/Viroid Detection and Identification Methods)
Show Figures

Figure 1

20 pages, 5940 KB  
Article
Endemic Radiation of African Moonfish, Selene dorsalis (Gill 1863), in the Eastern Atlantic: Mitogenomic Characterization and Phylogenetic Implications of Carangids (Teleostei: Carangiformes)
by Emmanuel Ofosu Mireku Ewusi, Soo Rin Lee, Ah Ran Kim, Yunji Go, Hsu Htoo, Sangdeok Chung, Muhammad Hilman Fu’adil Amin, Sapto Andriyono, Hyun-Woo Kim and Shantanu Kundu
Biomolecules 2024, 14(10), 1208; https://doi.org/10.3390/biom14101208 - 25 Sep 2024
Cited by 4 | Viewed by 1905
Abstract
This study offers an in-depth analysis of the mitochondrial genome of Selene dorsalis (Gill 1863), a species native to the Eastern Atlantic Ocean. The circular mitochondrial DNA molecule measures 16,541 base pairs and comprises 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, [...] Read more.
This study offers an in-depth analysis of the mitochondrial genome of Selene dorsalis (Gill 1863), a species native to the Eastern Atlantic Ocean. The circular mitochondrial DNA molecule measures 16,541 base pairs and comprises 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA genes, and a control region (CR). The nucleotide composition exhibits a notable adenine-thymine (AT) bias, accounting for 53.13%, which aligns with other species in the Carangidae family. Most PCGs initiate with the ATG codon, with the exception of Cytochrome C oxidase subunit I, which starts with GTG. Analysis of relative synonymous codon usage reveals that leucine and serine are the most prevalent amino acids in the mitochondrial genome of S. dorsalis and its congeners (S. vomer and S. setapinnis). All tRNAs display the typical cloverleaf structure, though tRNA Serine (S1) lacks a dihydrouracil arm. Pairwise comparisons of synonymous and nonsynonymous substitutions for all PCGs yielded values below ‘1’, indicating strong purifying selection. The CR spans 847 bp, representing 5.12% of the mitochondrial genome, and is characterized by high AT content (62.81%). It is situated between tRNA-Pro (TGG) and tRNA-Phe (GAA). The CR contains conserved sequence blocks, with CSB-1 being the longest at 22 bp and CSB-D the shortest at 18 bp. Phylogenetic analysis, using Bayesian and Maximum-likelihood trees constructed from concatenated PCGs across 72 species, successfully differentiates S. dorsalis from other carangids. This study also explores how ocean currents and gyres might influence lineage diversification and parapatric speciation of Selene species between the Atlantic and Pacific Oceans. These results highlight the importance of the mitochondrial genome in elucidating the structural organization and evolutionary dynamics of S. dorsalis and its relatives within marine ecosystems. Full article
Show Figures

Figure 1

18 pages, 2471 KB  
Article
The Prevalence and Molecular Characterization of Bovine Leukemia Virus among Dairy Cattle in Henan Province, China
by Yuxi Zhao, Xiaojie Zhu, Zhen Zhang, Jianguo Chen, Yingyu Chen, Changmin Hu, Xi Chen, Ian D. Robertson and Aizhen Guo
Viruses 2024, 16(9), 1399; https://doi.org/10.3390/v16091399 - 31 Aug 2024
Cited by 4 | Viewed by 2135
Abstract
Enzootic bovine leukosis, a neoplastic disease caused by the bovine leukemia virus (BLV), was the primary cancer affecting cattle in China before 1985. Although its prevalence decreased significantly between 1986 and 2000, enzootic bovine leukosis has been re-emerging since 2000. This re-emergence has [...] Read more.
Enzootic bovine leukosis, a neoplastic disease caused by the bovine leukemia virus (BLV), was the primary cancer affecting cattle in China before 1985. Although its prevalence decreased significantly between 1986 and 2000, enzootic bovine leukosis has been re-emerging since 2000. This re-emergence has been largely overlooked, possibly due to the latent nature of BLV infection or the perceived lack of sufficient evidence. This study investigated the molecular epidemiology of BLV infections in dairy cattle in Henan province, Central China. Blood samples from 668 dairy cattle across nine farms were tested using nested polymerase chain reaction assays targeting the partial envelope (env) gene (gp51 fragment). Twenty-three samples tested positive (animal-level prevalence of 3.4%; 95% confidence interval: 2.2, 5.1). The full-length env gene sequences from these positive samples were obtained and phylogenetically analyzed, along with previously reported sequences from the GenBank database. The sequences from positive samples were clustered into four genotypes (1, 4, 6, and 7). The geographical annotation of the maximum clade credibility trees suggested that the two genotype 1 strains in Henan might have originated from Japan, while the genotype 7 strain is likely to have originated from Moldova. Subsequent Bayesian stochastic search variable selection analysis further indicated a strong geographical association between the Henan strains and Japan, as well as Moldova. The estimated substitution rate for the env gene ranged from 4.39 × 10−4 to 2.38 × 10−3 substitutions per site per year. Additionally, codons 291, 326, 385, and 480 were identified as positively selected sites, potentially associated with membrane fusion, epitope peptide vaccine design, and transmembrane signal transduction. These findings contribute to the broader understanding of BLV epidemiology in Chinese dairy cattle and highlight the need for measures to mitigate further BLV transmission within and between cattle herds in China. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

31 pages, 12407 KB  
Article
Protein Fold Usages in Ribosomes: Another Glance to the Past
by Inzhu Tanoz and Youri Timsit
Int. J. Mol. Sci. 2024, 25(16), 8806; https://doi.org/10.3390/ijms25168806 - 13 Aug 2024
Cited by 2 | Viewed by 1673
Abstract
The analysis of protein fold usage, similar to codon usage, offers profound insights into the evolution of biological systems and the origins of modern proteomes. While previous studies have examined fold distribution in modern genomes, our study focuses on the comparative distribution and [...] Read more.
The analysis of protein fold usage, similar to codon usage, offers profound insights into the evolution of biological systems and the origins of modern proteomes. While previous studies have examined fold distribution in modern genomes, our study focuses on the comparative distribution and usage of protein folds in ribosomes across bacteria, archaea, and eukaryotes. We identify the prevalence of certain ‘super-ribosome folds,’ such as the OB fold in bacteria and the SH3 domain in archaea and eukaryotes. The observed protein fold distribution in the ribosomes announces the future power-law distribution where only a few folds are highly prevalent, and most are rare. Additionally, we highlight the presence of three copies of proto-Rossmann folds in ribosomes across all kingdoms, showing its ancient and fundamental role in ribosomal structure and function. Our study also explores early mechanisms of molecular convergence, where different protein folds bind equivalent ribosomal RNA structures in ribosomes across different kingdoms. This comparative analysis enhances our understanding of ribosomal evolution, particularly the distinct evolutionary paths of the large and small subunits, and underscores the complex interplay between RNA and protein components in the transition from the RNA world to modern cellular life. Transcending the concept of folds also makes it possible to group a large number of ribosomal proteins into five categories of urfolds or metafolds, which could attest to their ancestral character and common origins. This work also demonstrates that the gradual acquisition of extensions by simple but ordered folds constitutes an inexorable evolutionary mechanism. This observation supports the idea that simple but structured ribosomal proteins preceded the development of their disordered extensions. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Biology in France)
Show Figures

Figure 1

Back to TopTop