Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = conservation of kinetic energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
87 pages, 5196 KB  
Review
Review of Biomass Gasification Technologies with a Particular Focus on a Downdraft Gasifier
by Fernando Trejo
Processes 2025, 13(9), 2717; https://doi.org/10.3390/pr13092717 - 26 Aug 2025
Abstract
The utilization of biomass as a renewable energy source has the potential to play a role in mitigating climate change. Furthermore, biomass gasification represents a sustainable solution for the management of lignocellulosic waste. Topics related to the different types of gasification reactors, biomass, [...] Read more.
The utilization of biomass as a renewable energy source has the potential to play a role in mitigating climate change. Furthermore, biomass gasification represents a sustainable solution for the management of lignocellulosic waste. Topics related to the different types of gasification reactors, biomass, and economic feasibility, along with tar formation and its removal in the product gas, are discussed as general aspects in the gasification. A detailed analysis of capital and operational expenditures, the net present value, the payback period, and the internal rate of return of downdraft gasifiers has been conducted. A bibliometric analysis has been conducted; the results are presented in the form of visual maps based on keywords, and likely future trends in gasification modeling were identified. Since modeling is crucial to optimize the production or quality of the syngas, this paper discloses some important aspects related to biomass gasification carried out on downdraft gasifiers. The modeling section encompasses a range of approaches, including those based on chemical equilibrium, both stoichiometric and non-stoichiometric, kinetic models, and computational fluid dynamics. A substantial section is devoted to the modeling of the downdraft reactor, incorporating the primary conservation equations for mass, energy, and momentum. The modeling framework aims to provide a comprehensive overview for researchers seeking to simulate downdraft gasifiers. This enables researchers to utilize a summary of equations and conditions that are pertinent to their own modeling and simulations. Full article
Show Figures

Figure 1

25 pages, 5006 KB  
Article
Incorporating Finite Particle Number and Heat-Temperature Differences in the Maxwell–Boltzmann Speed Distribution
by Everett M. Criss and Anne M. Hofmeister
Foundations 2025, 5(3), 29; https://doi.org/10.3390/foundations5030029 - 25 Aug 2025
Viewed by 126
Abstract
The often used analytical representation of the Maxwell–Boltzmann classical speed distribution function (F) for elastic, indivisible particles assumes an infinite limit for the speed. Consequently, volume and the number of particles (n) extend to infinity: Both infinities contradict assumptions [...] Read more.
The often used analytical representation of the Maxwell–Boltzmann classical speed distribution function (F) for elastic, indivisible particles assumes an infinite limit for the speed. Consequently, volume and the number of particles (n) extend to infinity: Both infinities contradict assumptions underlying this non-relativistic formulation. Finite average kinetic energy and temperature (T) result from normalization of F removing n: However, total energy (i.e., heat of the collection) remains infinite because n is infinite. This problem persists in recent adaptations. To better address real (finite) systems, wherein T depends on heat, we generalize this one-parameter distribution (F, cast in energy) by proposing a two-parameter gamma distribution function (F*) in energy which reduces to F at large n. Its expectation value of kT (k = Boltzmann’s constant) replicates F, whereas the shape factor depends on n and affects the averages, as expected for finite systems. We validate F* via a first-principle, molecular dynamics numerical model of energy and momentum conserving collisions for 26, 182, and 728 particles in three-dimensional physical space. Dimensionless calculations provide generally applicable results; a total of 107 collisions suffice to represent an equilibrated collection. Our numerical results show that individual momentum conserving collisions in three-dimensions provide symmetrical speed distributions in all Cartesian directions. Thus, momentum and energy conserving collisions are the physical cause for equipartitioning of energy: Validity of this theorem for other systems depends on their specific motions. Our numerical results set upper limits on kinetic energy of individual particles; restrict the n particles to some finite volume; and lead to a formula in terms of n for conserving total energy when utilizing F* for convenience. Implications of our findings on matter under extreme conditions are briefly discussed. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

22 pages, 5275 KB  
Article
Effect of Pressure Gradient on Flow and Heat Transfer over Surface-Mounted Heated Blocks in a Narrow Channel
by Dildar Gürses and Erhan Pulat
Appl. Sci. 2025, 15(16), 9099; https://doi.org/10.3390/app15169099 - 18 Aug 2025
Viewed by 217
Abstract
In this study, pressure gradient effects on heat transfer from block-like electronic chips are investigated computationally. The pressure gradient is provided by the slope given to the upper plate and starts just before the first block. Tilt angles of −2°, 0°, 2°, 4° [...] Read more.
In this study, pressure gradient effects on heat transfer from block-like electronic chips are investigated computationally. The pressure gradient is provided by the slope given to the upper plate and starts just before the first block. Tilt angles of −2°, 0°, 2°, 4° and 6° have been used. Air is used as the fluid, and it enters the duct at a constant speed with a uniform velocity profile. Calculations were made for Re numbers (Re = 6000, 9015, and 11,993) defined according to the channel height. For this purpose, conservation and SST k-ω turbulence model equations are solved by using ANSYS-Fluent 20.1 software for two-dimensional, incompressible, and turbulent flow conditions. Velocity, temperature, pressure, and turbulence kinetic energy distributions were obtained and compared for the considered slope angles. The effects of all changing conditions on heat transfer were discussed by calculating local and average Nusselt values, the reattachment lengths after the last block were calculated by plotting, and a comparison was made by plotting the pressure values on the block in the middle of the channel and at the top of the channel. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

33 pages, 1196 KB  
Article
Theoretical Formulations of Integral-Type Frequency–Amplitude Relationships for Second-Order Nonlinear Oscillators
by Chein-Shan Liu, Chia-Cheng Tsai and Chih-Wen Chang
Vibration 2025, 8(3), 45; https://doi.org/10.3390/vibration8030045 - 11 Aug 2025
Viewed by 329
Abstract
The development of simple and yet accurate formulations of frequency–amplitude relationships for non-conservative nonlinear oscillators is an important issue. The present paper is concerned with integral-type frequency–amplitude formulas in the dimensionless time domain and time domain to accurately determine vibrational frequencies of nonlinear [...] Read more.
The development of simple and yet accurate formulations of frequency–amplitude relationships for non-conservative nonlinear oscillators is an important issue. The present paper is concerned with integral-type frequency–amplitude formulas in the dimensionless time domain and time domain to accurately determine vibrational frequencies of nonlinear oscillators. The novel formulation is a balance of kinetic energy and the work during motion of the nonlinear oscillator within one period; its generalized formulation permits a weight function to appear in the integral formula. The exact values of frequencies can be obtained when exact solutions are inserted into the formulas. In general, the exact solution is not available; hence, low-order periodic functions as trial solutions are inserted into the formulas to obtain approximate values of true frequencies. For conservative nonlinear oscillators, a powerful technique is developed in terms of a weighted integral formula in the spatial domain, which is directly derived from the governing ordinary differential equation (ODE) multiplied by a weight function, and integrating the resulting equation after inserting a general trial ODE to acquire accurate frequency. The free parameter is involved in the frequency–amplitude formula, whose optimal value is achieved by minimizing the absolute error to fulfill the periodicity conditions. Several examples involving two typical non-conservative nonlinear oscillators are explored to display the effectiveness and accuracy of the proposed integral-type formulations. Full article
Show Figures

Figure 1

18 pages, 5831 KB  
Article
Cure Kinetics-Driven Compression Molding of CFRP for Fast and Low-Cost Manufacturing
by Xintong Wu, Ming Zhang, Zhongling Liu, Xin Fu, Haonan Liu, Yuchen Zhang and Xiaobo Yang
Polymers 2025, 17(15), 2154; https://doi.org/10.3390/polym17152154 - 6 Aug 2025
Viewed by 470
Abstract
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, involves prolonged curing times and high energy consumption. To overcome these limitations, this study proposes an efficient and adaptable method to determine the optimal curing cycle. The effects of varying heating rates on resin dynamic and isothermal–exothermic behavior were characterized via reaction kinetics analysis using differential scanning calorimetry (DSC) and rheological measurements. The activation energy of the reaction system was substituted into the modified Sun–Gang model, and the parameters were estimated using a particle swarm optimization algorithm. Based on the curing kinetic behavior of the resin, CFRP compression molding process orthogonal experiments were conducted. A weighted scoring system incorporating strength, energy consumption, and cycle time enabled multidimensional evaluation of optimized solutions. Applying this curing cycle optimization method to a commercial epoxy resin increased efficiency by 247.22% and reduced energy consumption by 35.7% while meeting general product performance requirements. These results confirm the method’s reliability and its significance for improving production efficiency. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials, 2nd Edition)
Show Figures

Figure 1

12 pages, 736 KB  
Article
Hybrid Framework of Fermi–Dirac Spin Hydrodynamics
by Zbigniew Drogosz
Physics 2025, 7(3), 31; https://doi.org/10.3390/physics7030031 - 1 Aug 2025
Viewed by 201
Abstract
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac [...] Read more.
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac statistics are obtained and compared with the earlier derived versions where the Boltzmann approximation was used. The expressions in the two cases are found to have the same form, but the coefficients are shown to be governed by different functions. The relative differences between the tensor coefficients in the Fermi–Dirac and Boltzmann cases are found to grow exponentially with the baryon chemical potential. In the proposed formalism, nonequilibrium processes are studied including mathematically possible dissipative corrections. Standard conservation laws are applied, and the condition of positive entropy production is shown to allow for the transfer between the spin and orbital parts of angular momentum. Full article
(This article belongs to the Special Issue High Energy Heavy Ion Physics—Zimányi School 2024)
Show Figures

Figure 1

15 pages, 3754 KB  
Article
Green Regenerative Bamboo Lignin-Based Epoxy Resin: Preparation, Curing Behavior, and Performance Characterization
by Jiayao Yang, Jie Fei and Xingxing Wang
Sustainability 2025, 17(13), 6201; https://doi.org/10.3390/su17136201 - 6 Jul 2025
Viewed by 545
Abstract
The dependence of conventional epoxy resins on fossil fuels and the environmental and health hazards associated with bisphenol A (BPA) demand the creation of sustainable alternatives. Because lignin is a natural resource and has an aromatic ring skeleton structure, it could be used [...] Read more.
The dependence of conventional epoxy resins on fossil fuels and the environmental and health hazards associated with bisphenol A (BPA) demand the creation of sustainable alternatives. Because lignin is a natural resource and has an aromatic ring skeleton structure, it could be used as an alternative to fossil fuels. This study effectively resolved this challenge by utilizing a sustainable one-step epoxidation process to transform lignin into a bio-based epoxy resin. The results verified the successful synthesis of epoxidized bamboo lignin through systematic characterization employing Fourier transform infrared spectroscopy, hydrogen spectroscopy/two-dimensional heteronuclear single-quantum coherent nuclear magnetic resonance, quantitative phosphorus spectroscopy, and gel permeation chromatography. Lignin-based epoxy resins had an epoxy equivalent value of 350–400 g/mol and a weight-average molecular weight of 4853 g/mol. Studies on the curing kinetics revealed that polyetheramine (PEA-230) demonstrated the lowest apparent activation energy (46.2 kJ/mol), signifying its enhanced curing efficiency and potential for energy conservation. Mechanical testing indicated that the PEA-230 cured network demonstrated the maximum tensile strength (>25 MPa), whereas high-molecular-weight polyetheramine (PEA-2000) imparted enhanced elongation to the material. Lignin-based epoxy resins demonstrated superior heat stability. This study demonstrates the conversion of bamboo lignin into bio-based epoxy resins using a simple, environmentally friendly synthesis process, demonstrating the potential to reduce fossil resource use, efficiently use waste, develop sustainable thermosetting materials, and promote a circular bioeconomy. Full article
Show Figures

Figure 1

13 pages, 1512 KB  
Article
Uncertainty in Kinetic Energy Models for Rainfall Erosivity Estimation in Semi-Arid Regions
by José Bandeira Brasil, Ana Célia Maia Meireles, Carlos Wagner Oliveira, Sirleide Maria de Menezes, Francisco Dirceu Duarte Arraes and Maria Simas Guerreiro
Hydrology 2025, 12(7), 181; https://doi.org/10.3390/hydrology12070181 - 4 Jul 2025
Viewed by 557
Abstract
The Brazilian semi-arid Northeast plays a critical role in regional hydrology, where rainfall is marked by pronounced temporal variability and short duration, presenting significant challenges for understanding and managing hydrological and erosive processes. This study aims to evaluate the performance of empirical models [...] Read more.
The Brazilian semi-arid Northeast plays a critical role in regional hydrology, where rainfall is marked by pronounced temporal variability and short duration, presenting significant challenges for understanding and managing hydrological and erosive processes. This study aims to evaluate the performance of empirical models for estimating rainfall kinetic energy (KE) and erosivity index (EI30) in this region, for all events and erosive events, using high-resolution rainfall data collected at the Federal University of Cariri (UFCA), Ceará. A total of 283 natural rainfall events were analyzed, with KE and EI30 values calculated using multiple models: Wischmeier and Smith, USDA, Van Dijk, a temporal variation-based model (KE_VT), and a regional model developed for Brazil’s semi-arid zone, which served as the reference. The results show a predominance of small rainfall events (<5.2 mm), though maximum EI30 values exceeded 1300 MJ ha−1 mm h−1, highlighting the potential for extreme erosive events. Comparative analysis revealed that all international models significantly underestimated KE and EI30 values compared to the regional reference, with the KE_VT model showing the closest approximation (13% underestimation), for all events and erosive events. Statistical assessments using the Wilcoxon test, Nash–Sutcliffe efficiency, and Willmott concordance index confirmed the superior performance of the KE_VT, for all events and erosive events. These findings underscore the importance of considering intra-event rainfall variability and regional calibration when modeling erosivity in semi-arid climates, contributing to more effective soil conservation and hydrological planning. Full article
Show Figures

Figure 1

20 pages, 2295 KB  
Article
An Energy–Momentum Conserving Algorithm for Co-Rotational Quadrilateral Shell Elements in Nonlinear Multibody Dynamics
by Zhongxue Li and Hongtao Qian
Appl. Sci. 2025, 15(13), 7153; https://doi.org/10.3390/app15137153 - 25 Jun 2025
Viewed by 289
Abstract
A new computational framework for nonlinear dynamic analysis of smooth shell structures is presented in this paper. The new framework is based on Simo & Tarnow’s energy–momentum conservation algorithm. A novel co-rotational nine-node quadrilateral shell element is embedded in the new framework. The [...] Read more.
A new computational framework for nonlinear dynamic analysis of smooth shell structures is presented in this paper. The new framework is based on Simo & Tarnow’s energy–momentum conservation algorithm. A novel co-rotational nine-node quadrilateral shell element is embedded in the new framework. The dynamic equilibrium differential equations are derived using the Hamilton principle and solved by the Newmark algorithm. At each step, midpoint interpolation is applied to both nodal variables and their time derivatives. The average value of strains at the beginning and the end of each step is used to evaluate strain energy to obtain a symmetric tangent stiffness matrix. When deriving the kinetic energy functional, the first-order derivatives of vectorial rotational variables are embedded into equivalent nodal forces. Therefore, a symmetric equivalent mass matrix is generated. The symmetric stiffness and mass matrices significantly reduce the workload in solving the nonlinear governing equations. Benchmark validations reveal close agreement with results in the existing literature. The proposed algorithm is applicable for solving smooth shell structures undergoing large displacements and rotations within spatial domains, while maintaining unconditional stability and geometric exactness. Full article
Show Figures

Figure 1

18 pages, 1440 KB  
Article
Evaluation of Performance on Spiral Fluidic Sprinkler Using Different Nozzle Sizes Under Indoor Conditions
by Joseph Kwame Lewballah, Xingye Zhu, Alexander Fordjour and Simin Yao
Water 2025, 17(12), 1745; https://doi.org/10.3390/w17121745 - 10 Jun 2025
Viewed by 520
Abstract
Sprinkler system performance enhancement has been a key area of research due to concerns about water shortages and rising energy costs. This study evaluated the hydraulic performance of the newly designed Spiral Fluidic Sprinkler (SFS) with various nozzles under different operating pressures. MATLAB [...] Read more.
Sprinkler system performance enhancement has been a key area of research due to concerns about water shortages and rising energy costs. This study evaluated the hydraulic performance of the newly designed Spiral Fluidic Sprinkler (SFS) with various nozzles under different operating pressures. MATLAB R2020b software was used to simulate sprinkler uniformities under various operating pressures and the droplet diameter, velocity, and kinetic energy were measured using a 2DVD video raindrop spectrometer. The results showed that larger nozzle sizes generally improved application uniformity and efficiency. The 4 mm nozzle at 200 kPa achieved the lowest coefficient of variation (CV) at 6.2%, while the 3 mm nozzle showed a higher CV of 10.4%. Under 200 and 250 kPa of pressure, a statistically significant difference (p < 0.05) was observed between the CVs for the 4 mm nozzle. Droplet size distributions revealed that over 90% of droplets produced by the 4 mm nozzle were under 3 mm in diameter across all pressures. Kinetic energy analysis indicated that droplet momentum increased with pressure, enhancing coverage but potentially increasing drift at higher levels. Overall, the SFS demonstrated strong potential for water conservation and improved irrigation efficiency in controlled agricultural environments. Full article
(This article belongs to the Special Issue Advances in Agricultural Irrigation Management and Technology)
Show Figures

Figure 1

23 pages, 6820 KB  
Article
Anti-Erosion Mechanism of Biological Crusts and Eco-Protection Technology Using Composite Biofilms for Traditional Rammed Earth Dwellings in Songyang County
by Jiahui Yang, Ning Wang, Zebiao Huang, Yue Huang, Weilu Lv and Shuai Yang
Coatings 2025, 15(5), 608; https://doi.org/10.3390/coatings15050608 - 20 May 2025
Viewed by 673
Abstract
A typical county for traditional village conservation in China is Songyang County. It is renowned for its ancient rammed earth dwellings, which exhibit a unique microclimate and possess significant historical value. However, high precipitation and acid rain under the subtropical monsoon climate have [...] Read more.
A typical county for traditional village conservation in China is Songyang County. It is renowned for its ancient rammed earth dwellings, which exhibit a unique microclimate and possess significant historical value. However, high precipitation and acid rain under the subtropical monsoon climate have caused severe surface erosion, including cracking and spalling. This study focuses on traditional rammed earth dwellings in Chenjiapeng Village, Songyang County, combining field surveys, experimental analysis, and microscopic characterization to systematically investigate erosion mechanisms and protection strategies. Techniques, such as drone aerial photography, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and microbial diversity detection, were employed to elucidate the anti-erosion mechanisms of gray–green biological crusts on rammed earth surfaces. The results indicate that algal crusts enhance surface compressive strength and shear resistance through macroscopic coverage (reducing raindrop kinetic energy and moisture retention) and microscopic extracellular polysaccharide-cemented soil particles forming a three-dimensional network. However, acidic environments induce metabolic acid release from algae, dissolving cementing materials and creating a “surface protection-internal damage” paradox. To address this, a “transparent film-biofiber-acid inhibition layer” composite biofilm design is proposed, integrating a biodegradable polylactic acid (PLA) mesh, algal attachment substrates, and calcium carbonate microparticles to dynamically neutralize acidic substances, achieving synergistic ecological protection and cultural heritage authenticity. This study provides innovative solutions for the anti-erosion protection of traditional rammed earth structures, emphasizing environmental compatibility and sustainability. Full article
Show Figures

Graphical abstract

12 pages, 5722 KB  
Article
Steady Smoldering of Fuel Rods: Relationship Between Propagation Velocity and Fume Thickness on Schlieren Photographs
by Guangxin Yu, Xin Chen, Yi Zhang, Jianwen Zha and Fang He
Processes 2025, 13(4), 954; https://doi.org/10.3390/pr13040954 - 24 Mar 2025
Viewed by 2254
Abstract
The steady smoldering of rod-shaped fuels, a traditional Chinese disinfection and pest control technique, presents unique challenges in theoretical modeling. Conventional analytical approaches based on energy and mass conservation equations form an underdetermined system, failing to uniquely resolve three critical parameters: temperature field, [...] Read more.
The steady smoldering of rod-shaped fuels, a traditional Chinese disinfection and pest control technique, presents unique challenges in theoretical modeling. Conventional analytical approaches based on energy and mass conservation equations form an underdetermined system, failing to uniquely resolve three critical parameters: temperature field, char morphology, and propagation velocity. This study establishes a quantitative relationship between smoldering propagation velocity and smoke schlieren thickness through integrated experimental and theoretical methodologies. Systematic experiments were conducted on vertically oriented fuel rods (upward and downward configurations), measuring propagation velocity, char cone geometries, and schlieren photographs. By incorporating surface oxidation kinetics and oxygen transport mechanisms into a theoretical model, we revealed an inverse proportionality between propagation velocity and schlieren thickness, thereby introducing a third constraint to resolve the system. Comparative analysis demonstrated excellent agreement between calculated and measured velocities for downward smoldering, with deviations below 20% for biomass rods and 60% for commercial incense rods. Significant discrepancies in upward smoldering were attributed to smoke plume entrainment effects. This work enhances the mechanistic understanding of smoldering propagation dynamics in anisotropic fuel systems. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

24 pages, 352 KB  
Article
Bounce Cosmology in a Locally Scale Invariant Physics with a U(1) Symmetry
by Meir Shimon
Universe 2025, 11(3), 93; https://doi.org/10.3390/universe11030093 - 9 Mar 2025
Cited by 1 | Viewed by 568
Abstract
An asymmetric non-singular bouncing cosmological model is proposed in the framework of a locally scale-invariant scalar-tensor version of the standard model of particle physics and gravitation. The scalar field ϕ is complex. In addition to local scale invariance, the theory is U(1)-symmetric and [...] Read more.
An asymmetric non-singular bouncing cosmological model is proposed in the framework of a locally scale-invariant scalar-tensor version of the standard model of particle physics and gravitation. The scalar field ϕ is complex. In addition to local scale invariance, the theory is U(1)-symmetric and has a conserved global charge associated with time variations of the phase of ϕ. An interplay between the positive energy density contributions of relativistic and non-relativistic matter and that of the negative kinetic energy associated with the phase of ϕ results in a classical non-singular stable bouncing dynamics deep in the radiation-dominated era. This encompasses the observed redshifting era, which is preceded by a blueshifting era. The proposed model potentially avoids the flatness and horizon problems, as well as allowing for the generation of a scale-invariant spectrum of metric perturbations of the scalar type during a matter-dominated-like pre-bounce phase, with no recourse to an inflationary era. Full article
22 pages, 5597 KB  
Article
Evaluating Combustion Ignition, Burnout, Stability, and Intensity of Coal–Biomass Blends Within a Drop Tube Furnace Through Modelling
by Garikai T. Marangwanda and Daniel M. Madyira
Energies 2025, 18(6), 1322; https://doi.org/10.3390/en18061322 - 7 Mar 2025
Viewed by 686
Abstract
This study focused on evaluating the combustion ignition, burnout, stability, and intensity of Hwange coal and Pinus sawdust blends within a drop tube furnace (DTF) through modelling. The cocombustion of coal with biomass is gaining attention as a strategy to improve fuel efficiency [...] Read more.
This study focused on evaluating the combustion ignition, burnout, stability, and intensity of Hwange coal and Pinus sawdust blends within a drop tube furnace (DTF) through modelling. The cocombustion of coal with biomass is gaining attention as a strategy to improve fuel efficiency and reduce emissions. Hwange coal, a key energy source in Zimbabwe, produces significant emissions, while Pinus sawdust offers a renewable alternative with favourable combustion properties. Optimising cocombustion performance is highly dependent on understanding various mass- and energy-conservation-related parameters in detail, hence the motivation of this study. The fuels of interest were blended through increasing the Pinus sawdust mass percentages up to 30%. A DTF that is 2 m long and 0.07 m in diameter was modelled and validated successfully using particle residence time and temperature profiles. An increase in blending resulted in an increase in combustion intensity, as made apparent by the heat of reaction profiles, which were also shown to be dependent on the kinetic rate of the reaction between CO and O2 to form CO2. The burnout rate profiles demonstrated that as blending increased, heat was released more abruptly over a short distance; hence, combustion became less stable. The burnout rate profiles were shown to be dependent on the kinetic rate of reaction between char and O2 to form CO. The effect of DTF wall temperatures (1273, 1473, and 1673 K) was also studied, with the results showing that at a low temperature, the reaction zone was delayed to a distance of 0.8 m from the injection point, as compared to 0.4 m at 1673 K. In summary, this study demonstrated that combustion ignition, burnout, and intensity increased with the blending ratio of Pinus sawdust, whilst combustion stability decreased. Full article
Show Figures

Figure 1

28 pages, 11579 KB  
Article
Identifying Exifone as a Dual-Target Agent Targeting Both SARS-CoV-2 3CL Protease and the ACE2/S-RBD Interaction Among Clinical Polyphenolic Compounds
by Jiani Lu, Yan Tang, Hongtao Li, Xixiang Chen, Pengcheng Qin, Jianrong Xu, Weihua Li and Lili Chen
Int. J. Mol. Sci. 2025, 26(5), 2243; https://doi.org/10.3390/ijms26052243 - 2 Mar 2025
Cited by 1 | Viewed by 1588
Abstract
The ongoing emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has led to resistance against multiple coronavirus disease 2019 (COVID-19) vaccines and therapeutic medications, making the development of effective therapeutics against SARS-CoV-2 a high priority. Studies have shown that bioactive polyphenols, [...] Read more.
The ongoing emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has led to resistance against multiple coronavirus disease 2019 (COVID-19) vaccines and therapeutic medications, making the development of effective therapeutics against SARS-CoV-2 a high priority. Studies have shown that bioactive polyphenols, particularly those with triphenol groups, can effectively inhibit the activity of SARS-CoV-2 3-chymotrypsin-like protease (3CLpro). However, the structural instability of polyphenols necessitates further research. To address this, we conducted a literature review to identify triphenol compounds that are either approved or currently undergoing clinical trials, assessing their potential to inhibit SARS-CoV-2 3CLpro. Exifone and benserazide hydrochloride were identified as the inhibitors of SARS-CoV-2 3CLpro among these compounds, using a fluorescence resonance energy transfer (FRET)-based assay. Benserazide hydrochloride was confirmed as a covalent binder to SARS-CoV-2 3CLpro through time-dependent inhibition and kinetic analysis, with its binding mode elucidated by molecular docking. Notably, exifone not only inhibited the protease activity but also blocked the interaction between the host cell receptor angiotensin-converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein receptor binding domain (S-RBD), as identified by surface plasmon resonance (SPR) and flow cytometry. Additionally, exifone demonstrated antiviral activity against various SARS-CoV-2-S pseudovirus variants. In conclusion, the discovery of exifone and benserazide hydrochloride underscores the potential of polyphenols in developing conserved 3CLpro inhibitors for coronaviruses, offering new strategies for the rapid development of effective drugs against both current and future coronavirus pandemics. Full article
(This article belongs to the Special Issue Molecular Modeling: Latest Advances and Applications)
Show Figures

Figure 1

Back to TopTop