Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = continuum removed spectral bands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3620 KB  
Article
Estimation Method of Leaf Nitrogen Content of Dominant Plants in Inner Mongolia Grassland Based on Machine Learning
by Lishan Jin, Xiumei Wang, Jianjun Dong, Ruochen Wang, Hefei Wen, Yuyan Sun, Wenbo Wu, Zhihang Zhang and Can Kang
Nitrogen 2025, 6(3), 70; https://doi.org/10.3390/nitrogen6030070 - 19 Aug 2025
Viewed by 587
Abstract
Accurate nitrogen (N) content estimation in grassland vegetation is essential for ecosystem health and optimizing pasture quality, as N supports plant photosynthesis and water uptake. Traditional lab methods are slow and unsuitable for large-scale monitoring, while remote sensing models often face accuracy challenges [...] Read more.
Accurate nitrogen (N) content estimation in grassland vegetation is essential for ecosystem health and optimizing pasture quality, as N supports plant photosynthesis and water uptake. Traditional lab methods are slow and unsuitable for large-scale monitoring, while remote sensing models often face accuracy challenges due to hyperspectral data complexity. This study improves N content estimation in the typical steppe of Inner Mongolia by integrating hyperspectral remote sensing with advanced machine learning. Hyperspectral reflectance from Leymus chinensis and Cleistogenes squarrosa was measured using an ASD FieldSpec-4 spectrometer, and leaf N content was measured with an elemental analyzer. To address high-dimensional data, four spectral transformations—band combination, first-order derivative transformation (FDT), continuous wavelet transformation (CWT), and continuum removal transformation (CRT)—were applied, with Least Absolute Shrinkage and Selection Operator (LASSO) used for feature selection. Four machine learning models—Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), Artificial Neural Network (ANN), and K-Nearest Neighbors (KNN)—were evaluated via five-fold cross-validation. Wavelet transformation provided the most informative parameters. The SVM model achieved the highest accuracy for L. chinensis (R2 = 0.92), and the ANN model performed best for C. squarrosa (R2 = 0.72). This study demonstrates that integrating wavelet transform with machine learning offers a reliable, scalable approach for grassland N monitoring and management. Full article
Show Figures

Figure 1

21 pages, 12768 KB  
Article
Applicability Analysis with the Improved Spectral Unmixing Models Based on the Measured Hyperspectral Data of Mixed Minerals
by Haonan Zhang, Lizeng Duan, Yang Zhang, Huayu Li, Donglin Li and Yan Li
Minerals 2025, 15(7), 715; https://doi.org/10.3390/min15070715 - 6 Jul 2025
Cited by 1 | Viewed by 816
Abstract
Hyperspectral technology can non-destructively identify and analyze minerals. However, the quantitative inversion of different components in mixed minerals remains difficult in mineral spectral analysis. A set of mineral samples was prepared from dolomite and gypsum, varying in their components. Three improved spectral decomposition [...] Read more.
Hyperspectral technology can non-destructively identify and analyze minerals. However, the quantitative inversion of different components in mixed minerals remains difficult in mineral spectral analysis. A set of mineral samples was prepared from dolomite and gypsum, varying in their components. Three improved spectral decomposition models were proposed: the Continuum Removal-Fully Constrained Linear Spectral Model (CR-FCLSM), the Natural Logarithm-Fully Constrained Linear Spectral Model (NL-FCLSM), and the Ratio Derivative Model (RDM). The unmixing Abundance Error (AE) was 0.161, 0.051, and 0.082 for CR-FCLSM, NL-FCLSM, and RDM. The results of the three improved linearized unmixing models are better than those of the traditional linear spectral unmixing model. The NL-FCLSM effectively enhanced the linear characteristics of the spectrum, making it more suitable for two mineral mixing scenarios. The systematic bias of CR-FCLSM may be due to its insufficient sensitivity to low-abundance signals. The stability of RDM depends on the selection of a strong linear band. The unmixing experiments of the measured spectra and the data from the USGS spectral library demonstrate that the improved linear unmixing model is more accurate than the traditional linear spectral model and simpler to calculate than the nonlinear spectral model, providing a new approach for demodulating hyperspectral images. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

17 pages, 6026 KB  
Article
Estimation of Crude Protein Content in Revegetated Alpine Grassland Using Hyperspectral Data
by Yanfu Bai, Shijie Zhou, Jingjing Wu, Haijun Zeng, Bingyu Luo, Mei Huang, Linyan Qi, Wenyan Li, Mani Shrestha, Abraham A. Degen and Zhanhuan Shang
Remote Sens. 2025, 17(13), 2114; https://doi.org/10.3390/rs17132114 - 20 Jun 2025
Cited by 1 | Viewed by 495
Abstract
Remote sensing plays an important role in understanding the degradation and restoration processes of alpine grasslands. However, the extreme climatic conditions of the region pose difficulties in collecting field spectral data on which remote sensing is based. Thus, in-depth knowledge of the spectral [...] Read more.
Remote sensing plays an important role in understanding the degradation and restoration processes of alpine grasslands. However, the extreme climatic conditions of the region pose difficulties in collecting field spectral data on which remote sensing is based. Thus, in-depth knowledge of the spectral characteristics of alpine grasslands and an accurate assessment of their restoration status are still lacking. In this study, we collected the canopy hyperspectral data of plant communities in the growing season from severely degraded grasslands and actively restored grasslands of different ages in 13 counties of the “Three-River Headwaters Region” and determined the absorption characteristics in the red-light region as well as the trends of red-light parameters. We generated a model for estimating the crude protein content of plant communities in different grasslands based on the screened spectral characteristic covariates. Our results revealed that (1) the raw reflectance parameters of the near-infrared band spectra can distinguish alpine Kobresia meadow from extremely degraded and actively restored grasslands; (2) the wavelength value red-edge position (REP), corresponding to the highest point of the first derivative (FD) spectral reflectance (680–750 nm), can identify the extremely degraded grassland invaded by Artemisia frigida; and (3) the red valley reflectance (Rrw) parameter of the continuum removal (CR) spectral curve (550–750 nm) can discriminate among actively restored grasslands of different ages. In comparison with the Kobresia meadow, the predictive model for the actively restored grassland was more accurate, reaching an accuracy of over 60%. In conclusion, the predictive modeling of forage crude protein content for actively restored grasslands is beneficial for grassland management and sustainable development policies. Full article
Show Figures

Graphical abstract

23 pages, 9081 KB  
Article
Research on Hyperspectral Inversion of Soil Organic Carbon in Agricultural Fields of the Southern Shaanxi Mountain Area
by Yunhao Han, Bin Wang, Jingyi Yang, Fang Yin and Linsen He
Remote Sens. 2025, 17(4), 600; https://doi.org/10.3390/rs17040600 - 10 Feb 2025
Cited by 1 | Viewed by 1019
Abstract
Rapidly obtaining information on the content and spatial distribution of soil organic carbon (SOC) in farmland is crucial for evaluating regional soil quality, land degradation, and crop yield. This study focuses on mountain soils in various crop cultivation areas in Shangzhou District, Shangluo [...] Read more.
Rapidly obtaining information on the content and spatial distribution of soil organic carbon (SOC) in farmland is crucial for evaluating regional soil quality, land degradation, and crop yield. This study focuses on mountain soils in various crop cultivation areas in Shangzhou District, Shangluo City, Southern Shaanxi, utilizing ZY1-02D hyperspectral satellite imagery, field-measured hyperspectral data, and field sampling data to achieve precise inversion and spatial mapping of the SOC content. First, to address spectral bias caused by environmental factors, the Spectral Space Transformation (SST) algorithm was employed to establish a transfer relationship between measured and satellite image spectra, enabling systematic correction of the image spectra. Subsequently, multiple spectral transformation methods, including continuous wavelet transform (CWT), reciprocal, first-order derivative, second-order derivative, and continuum removal, were applied to the corrected spectral data to enhance their spectral response characteristics. For feature band selection, three methods were utilized: Variable Importance Projection (VIP), Competitive Adaptive Reweighted Sampling (CARS), and Stepwise Projection Algorithm (SPA). SOC content prediction was conducted using three models: partial least squares regression (PLSR), stepwise multiple linear regression (Step-MLR), and random forest (RF). Finally, leave-one-out cross-validation was employed to optimize the L4-CARS-RF model, which was selected for SOC spatial distribution mapping. The model achieved a coefficient of determination (R2) of 0.81, a root mean square error of prediction (RMSEP) of 1.54 g kg−1, and a mean absolute error (MAE) of 1.37 g kg−1. The results indicate that (1) the Spectral Space Transformation (SST) algorithm effectively eliminates environmental interference on image spectra, enhancing SOC prediction accuracy; (2) continuous wavelet transform significantly reduces data noise compared to other spectral processing methods, further improving SOC prediction accuracy; and (3) among feature band selection methods, the CARS algorithm demonstrated the best performance, achieving the highest SOC prediction accuracy when combined with the random forest model. These findings provide scientific methods and technical support for SOC monitoring and management in mountainous areas and offer valuable insights for assessing the long-term impacts of different crops on soil ecosystems. Full article
Show Figures

Graphical abstract

15 pages, 2457 KB  
Article
Spectral Characteristics and Identification of Degraded Alpine Meadow in Qinghai–Tibetan Plateau Based on Hyperspectral Data
by Dawen Qian, Qian Li, Bo Fan, Huakun Zhou, Yangong Du and Xiaowei Guo
Remote Sens. 2024, 16(20), 3884; https://doi.org/10.3390/rs16203884 - 18 Oct 2024
Cited by 2 | Viewed by 1298
Abstract
Grassland degradation poses a significant challenge to achieving the Sustainable Development Goals (SDGs) on the Qinghai–Tibetan Plateau (QTP). Effective monitoring of grassland degradation is essential for ecological restoration. Hyperspectral technology offers efficient and accurate identification of degradation. However, the influence of observation time, [...] Read more.
Grassland degradation poses a significant challenge to achieving the Sustainable Development Goals (SDGs) on the Qinghai–Tibetan Plateau (QTP). Effective monitoring of grassland degradation is essential for ecological restoration. Hyperspectral technology offers efficient and accurate identification of degradation. However, the influence of observation time, data analysis methods and classification techniques on the accuracy of identifying alpine grasslands remains unclear. In this study, the spectral reflectance of degraded alpine meadow, alpine meadow, alpine shrub and Tibetan barley was measured from May to September 2023 using a ground spectrometer in the northeastern QTP. First-order derivatives (FDR) and continuum removal were applied to the spectra, and characteristic parameters and vegetation indices were calculated. Support vector machine (SVM), random forest (RF), artificial neural network (ANN) and decision tree (DT) were then used to compare the classification accuracy between different months, transformation methods and characteristic parameters. The results showed that the spectral reflectance peaked in July, with significant differences in the near infrared (NIR) bands between alpine meadow and degraded alpine meadow. Alpine shrub and Tibetan barley showed greater differences in reflectance compared to other vegetation types, especially in the NIR bands. Data transformations improved reflectance and absorption characteristics in the NIR and visible bands. Indices such as DVI, RVI and NDGI effectively differentiated vegetation types. Optimal accuracy for the identification of degraded alpine meadow in July was achieved using FDR transformations and ANN or SVM for classification. This study provides methodological insights for monitoring grassland degradation on the QTP. Full article
Show Figures

Figure 1

22 pages, 6348 KB  
Article
Analysis of Vegetation Canopy Spectral Features and Species Discrimination in Reclamation Mining Area Using In Situ Hyperspectral Data
by Xu Wang, Hang Xu, Jianwei Zhou, Xiaonan Fang, Shuang Shuai and Xianhua Yang
Remote Sens. 2024, 16(13), 2372; https://doi.org/10.3390/rs16132372 - 28 Jun 2024
Cited by 6 | Viewed by 2381
Abstract
The effective identification of reclaimed vegetation species is important for the subsequent management of ecological restoration projects in mining areas. Hyperspectral remote sensing has been used for identifying vegetation species. However, few studies have focused on mine-reclaimed vegetation. Even if there are studies [...] Read more.
The effective identification of reclaimed vegetation species is important for the subsequent management of ecological restoration projects in mining areas. Hyperspectral remote sensing has been used for identifying vegetation species. However, few studies have focused on mine-reclaimed vegetation. Even if there are studies in this field, the methods used by the researches are mainly traditional discriminant analyses. The environmental conditions of reclaimed mining areas lead to significant intraclass spectral differences in reclaimed vegetation, and there is uncertainty in the identification of reclaimed vegetation species using traditional classification models. In this study, in situ hyperspectral data were used to analyze the spectral variation in the reclaimed vegetation canopy in mine restoration areas and evaluate their potential in the identification of reclaimed vegetation species. We measured the canopy spectral reflectance of five vegetation species in the study area using the ASD FieldSpec 4. The spectral characteristics of vegetation canopy were analyzed by mathematically transforming the original spectra, including Savitzky–Golay smoothing, first derivative, reciprocal logarithm, and continuum removal. In addition, we calculated indicators for identifying vegetation species using mathematically transformed hyperspectral data. The metrics were submitted to a feature selection procedure (recursive feature elimination) to optimize model performance and reduce its complexity. Different classification algorithms (regularized logistic regression, back propagation neural network, support vector machines with radial basis function kernel, and random forest) were constructed to explore optimal procedures for identifying reclaimed vegetation species based on the best feature metrics. The results showed that the separability between the spectra of reclaimed vegetation can be improved by applying different mathematical transformations to the spectra. The most important spectral metrics extracted by the recursive feature elimination (RFE) algorithm were related to the visible and near-infrared spectral regions, mainly in the vegetation pigments and water absorption bands. Among the four identification models, the random forest had the best recognition ability for reclaimed vegetation species, with an overall accuracy of 0.871. Our results provide a quantitative reference for the future exploration of reclaimed vegetation mapping using hyperspectral data. Full article
(This article belongs to the Special Issue Local-Scale Remote Sensing for Biodiversity, Ecology and Conservation)
Show Figures

Graphical abstract

23 pages, 10810 KB  
Article
Selection of Spectral Parameters and Optimization of Estimation Models for Soil Total Nitrogen Content during Fertilization Period in Apple Orchards
by Zhilin Gao, Wenqian Wang, Hongjia Wang and Ruiyan Li
Horticulturae 2024, 10(4), 358; https://doi.org/10.3390/horticulturae10040358 - 4 Apr 2024
Cited by 7 | Viewed by 1536
Abstract
The rapid and accurate diagnosis of nitrogen content in apple orchard soil is of great significance for the rational application of nitrogen fertilizer in orchards to improve apple yield and quality. An apple orchard in Shuangquan Town, Changqing District, Jinan City, Shandong Province, [...] Read more.
The rapid and accurate diagnosis of nitrogen content in apple orchard soil is of great significance for the rational application of nitrogen fertilizer in orchards to improve apple yield and quality. An apple orchard in Shuangquan Town, Changqing District, Jinan City, Shandong Province, was taken as the experimental area. The optimal method for extracting spectral characteristic bands and screening spectral characteristic indices (SCIs) of soil total nitrogen (TN) for independent and comprehensive fertilization periods was explored. Independent and comprehensive soil TN content estimation models were constructed and optimized for each and the entire fertilization period, respectively. The results show that compared with the correlation coefficient method, stepwise multiple linear regression (SMLR) performs better in extracting hyperspectral characteristic bands of soil TN content. It helps to achieve a higher modeling accuracy, smaller root mean square error (RMSE), and is more conducive to avoiding the influence of multicollinearity of model variables. The sensitive areas of soil TN content in the SCI do not undergo significant changes due to different fertilization periods. Among them, the ratio spectral indices (RSIs) are in the range of 800–900 nm, 1900–1950 nm, and 2200–2300 nm, while the sensitive areas of the difference spectral index (DI) and Normalized difference spectral index (NDSI) are in the range of 1900–1950 nm and 2200–2300 nm. The combination of SCI and characteristic bands significantly improves the prediction accuracy of soil TN estimation models. The independent and comprehensive estimation models for each fertilization period based on the BP (back propagation) neural network optimized by the Mind Evolution Algorithm (MEA-BPNN) can achieve a more stable and accurate estimation of soil TN. Finally, using soil spectral characteristic bands selected through continuum removal (CR) transformation and SMLR, combined with SCI, the model based on the MEA-BPNN (CR-SCI-MEA-BPNN) has the best prediction performance. The modeling determination coefficients R2 for each fertilization period reached 0.94, 0.95, 0.92, and 0.94, respectively, with RMSE of 0.0032, 0.0024, 0.0035, and 0.0027. The R2 and RMSE of the modeling and validation set of the entire fertilization period comprehensive model are 0.899, 0.0038, and 0.89, 0.0041, respectively. The results of this article provide technical support for promoting the timely monitoring of soil TN content and guiding rational fertilization in apple orchards. Full article
Show Figures

Figure 1

16 pages, 1163 KB  
Article
Analysis of Spectral Characteristics of Cotton Leaves at Bud Stage under Different Nitrogen Application Rates
by Jiaqiang Wang, Caiyun Yin, Weiyang Liu, Wenhao Xia and Songrui Ning
Agronomy 2024, 14(4), 662; https://doi.org/10.3390/agronomy14040662 - 25 Mar 2024
Viewed by 1858
Abstract
Soil salinity affects nutrient uptake by cotton. The cotton bud stage is a very important period in the process of cotton planting and directly affects the yield of cotton. The nutritional status of the bud stage directly affects the reflectance spectra of cotton [...] Read more.
Soil salinity affects nutrient uptake by cotton. The cotton bud stage is a very important period in the process of cotton planting and directly affects the yield of cotton. The nutritional status of the bud stage directly affects the reflectance spectra of cotton canopy leaves. Therefore, it is of great significance to nondestructively monitor the nutritional status of the cotton bud stage on salinized soil via spectroscopic techniques and perform corresponding management measures to improve cotton yield. In this study, potted plants with different nitrogen application rates were set up to obtain the reflection spectral curves of cotton bud stage leaves, analyze their spectral characteristics under different nitrogen application rates, and establish spectral estimation models of chlorophyll density. The results are as follows: in the continuum removal spectrum of the cotton bud stage, the lowest point of the absorption valley near 500 nm shifted to the shortwave direction with an increasing nitrogen application rate. The mean reflectance between 765 and 880 nm was significantly different between nitrogen-stressed and nitrogen-unstressed cotton. The average reflectance of the near-infrared band, the absorption valley depths near 500 nm and 675 nm, the first derivative of the 710 nm reflectance, and the second derivatives of the 690 nm and 730 nm reflectance increased with increasing nitrogen application and chlorophyll density, and significant correlations were observed with the chlorophyll density. These parameters were modeled using support vector regression (SVR) and artificial neural network (ANN) methods, two commonly used algorithms in the field of machine learning. The determination coefficients of the three chlorophyll samples via the ANN models were 0.92, 0.77, and 0.94 for the modeling set and 0.77, 0.69, and 0.77 for the verification set. The ratio of quartile to root-mean-square error (RPIQ) of the ANN model was greater than 2.2, and the ratio of the standard error of the measured value to the standard error of the predicted (SEL/SEP) was close to 1, indicating that the chlorophyll density estimation models built based on the ANN algorithm had robust prediction ability. Our model could accurately estimate the leaf chlorophyll density in the cotton bud stage. Full article
Show Figures

Figure 1

15 pages, 22796 KB  
Article
Spatial and Temporal Changes of Typical Vegetation in the Yellow River Delta Based on Zhuhai-1 Hyperspectral Data
by Junyi Jiang, Hao Tian, Pingjie Fu, Fei Meng and Hongju Tong
Appl. Sci. 2023, 13(23), 12614; https://doi.org/10.3390/app132312614 - 23 Nov 2023
Cited by 4 | Viewed by 1436
Abstract
The Yellow River Delta wetland boasts a diverse range of vegetation species and harbors an ecosystem that is both sensitive and fragile, so it is of great practical significance to accurately extract the vegetation information and analyze the spatial and temporal changes of [...] Read more.
The Yellow River Delta wetland boasts a diverse range of vegetation species and harbors an ecosystem that is both sensitive and fragile, so it is of great practical significance to accurately extract the vegetation information and analyze the spatial and temporal changes of this region. Based on the hyperspectral image data of Zhuhai-1, this study selected the characteristic bands through the continuum removal method. It combined these spectral attributes with index-based characteristics, utilizing the random forest algorithm to classify prevalent vegetation types while subjecting the outcomes to thorough analysis. It was shown that (1) when integrating spectral features, red edge indices, water indices, and vegetation indices to classify five distinct vegetation types in the Yellow River Delta during 2020 and 2022, the random forest classification algorithm showed higher classification accuracy, and the study achieved commendable overall classification accuracy rates and Kappa coefficients of 85.92% and 0.84, and 86.25% and 0.84, respectively. (2) In 2020 and 2022, the distribution of vegetation in the Yellow River Delta exhibited the following order: Suaeda glauca > Phragmites > Spartina alterniflora > Tamarisk > Typha orientalis Presl. With the exception of Spartina alterniflora, all categories of vegetation witnessed an increase in their distribution areas. Phragmites experienced the most significant growth, with an area expansion of 9.42%. (3) The ecological restoration and management measures taken in the Yellow River Delta have proven notably effective. The proportion of Spartina alterniflora within the vegetation decreased by 3.45%, the native vegetation showed a resurgence, the distribution pattern of vegetation communities moved toward stability, and the total area of vegetation in the study area exhibited an upward trajectory. Full article
Show Figures

Figure 1

21 pages, 27095 KB  
Article
Integration of Vis–NIR Spectroscopy and Machine Learning Techniques to Predict Eight Soil Parameters in Alpine Regions
by Chuanli Jiang, Jianyun Zhao and Guorong Li
Agronomy 2023, 13(11), 2816; https://doi.org/10.3390/agronomy13112816 - 15 Nov 2023
Cited by 10 | Viewed by 3145
Abstract
Visible and near-infrared spectroscopy (Vis–NIR, 350–1100 nm) has great potential for predicting soil properties. However, current research on the hyperspectral prediction of soil parameters in agricultural areas of alpine regions and the types of parameters included is limited, and optimal spectral treatments and [...] Read more.
Visible and near-infrared spectroscopy (Vis–NIR, 350–1100 nm) has great potential for predicting soil properties. However, current research on the hyperspectral prediction of soil parameters in agricultural areas of alpine regions and the types of parameters included is limited, and optimal spectral treatments and predictive models applicable to different parameters have not been sufficiently investigated. Therefore, we evaluated the accuracy of predicting total nitrogen (TN), phosphorus pentoxide (TP2O5), total potassium oxide (TK2O), alkali-hydrolyzable nitrogen (AHN), effective phosphorus (AP), effective potassium (AK), soil organic matter (SOM), and pH in the Qinghai–Tibet Plateau using the Vis–NIR technique in combination with spectral transformations, correlation analysis, feature selection, and machine learning. The results show that spectral transformations improve the correlation between spectra and parameters but are dependent on the parameter type and the method used. Continuum removal (CR), logarithmic first-order differential (FDL), and inverse first-order differential (FDR) had the most significant effects. The feature bands were extracted using the SPA and modeled using partial least squares (PLSR), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and backpropagation neural networks (BPNNs). The accuracy was evaluated based on R2, RMSE, RPD, and RPIQ. We found that the PLSR model only enables the prediction of SOM and pH with lower accuracy than the remaining models. XGBoost can predict all of the parameters but only for AHN; the prediction performance is better than other methods (R2 = 0.776, RMSE = 0.043 g/kg, and RPIQ = 2.88). The RF, SVM, and BPNN models cannot predict AK, AP, and AHN, respectively. In addition, TP2O5, AP, and pH are best suited for modeling using RF (RPIQ = 2.776, 3.011, and 3.198); TN, AK, and SOM are best suited for modeling using BPNN (RPIQ = 2.851, 2.394, and 3.085); and AHN and TK2O are best suited for XGBoost and SVM, respectively (RPIQ = 2.880 and 3.217). Therefore, this study can provide technical and data support for the accurate and efficient acquisition of soil parameters in alpine agriculture. Full article
(This article belongs to the Special Issue The Application of Near-Infrared Spectroscopy in Agriculture)
Show Figures

Figure 1

19 pages, 5066 KB  
Article
Prediction of Potassium Content in Rice Leaves Based on Spectral Features and Random Forests
by Yue Yu, Haiye Yu, Xiaokai Li, Lei Zhang and Yuanyuan Sui
Agronomy 2023, 13(9), 2337; https://doi.org/10.3390/agronomy13092337 - 7 Sep 2023
Cited by 10 | Viewed by 2217
Abstract
The information acquisition about potassium, which affects the quality and yield of crops, is of great significance for crop nutrient management and intelligent decision making in smart agriculture. This article proposes a method for predicting the rice leaf potassium content (LKC) using spectral [...] Read more.
The information acquisition about potassium, which affects the quality and yield of crops, is of great significance for crop nutrient management and intelligent decision making in smart agriculture. This article proposes a method for predicting the rice leaf potassium content (LKC) using spectral characteristics and random forests (RF). The method screens spectral characteristic variables based on the linear correlation analysis results of rice LKC and four transformed spectra (original reflectance (R), first derivative reflectance (FDR), continuum-removed reflectance (CRR), and normalized reflectance (NR)) of leaves and the PCA dimensionality reduction results of vegetation indices. Following a second screening of the correlated single band and vegetation index variables of the four transformed spectra, the RF is used to obtain the mixed variable (MV), and regression models are developed to achieve an accurate prediction of rice LKC. Additionally, the effect of potassium spectral sensitivity bands, indices, spectral transformation form, and different modeling methods on rice LKC prediction accuracy is assessed. The results showed that the mixed variable obtained with the second screening using the random forest feature selection method could effectively improve the prediction accuracy of rice LKC. The regression models based on the single band variables (BV) and the vegetation index variables (IV), FDR–RF and IV–RF, with R2 values of 0.62301 and 0.7387 and RMSE values of 0.24174 and 0.15045, respectively, are the best models. In comparison to the previous two models, the MV–RF validation had a higher R2 and a lower RMSE, reaching 0.77817 and 0.14913, respectively. It can be seen that the RF has a better processing ability for the MV that contains vegetation indices and IV than for the BV. Furthermore, the results of different variable screening and regression analyses also revealed that the single band’s range of 1402–1428 nm and 1871–1907 nm, as well as the vegetation indices constituted of reflectance 1799–1881 nm and 2276–2350 nm, are of great significance for predicting rice LKC. This conclusion can provide a reference for establishing a universal vegetation index related to potassium. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

21 pages, 15060 KB  
Article
Estimation of the Multielement Content in Rocks Based on a Combination of Visible–Near-Infrared Reflectance Spectroscopy and Band Index Analysis
by Guo Jiang, Xi Chen, Jinlin Wang, Shanshan Wang, Shuguang Zhou, Yong Bai, Tao Liao, He Yang, Kai Ma and Xianglian Fan
Remote Sens. 2023, 15(14), 3591; https://doi.org/10.3390/rs15143591 - 18 Jul 2023
Cited by 4 | Viewed by 2083
Abstract
Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed the potential of hyperspectral estimation [...] Read more.
Rock geochemical methods are effective for geological surveys, but typical sampling and laboratory-based analytical methods are time-consuming and costly. However, using visible–near-infrared spectroscopy to estimate the metal element content of rock is an alternative method. This study discussed the potential of hyperspectral estimation of Cu and its significant associated elemental content. Ninety-five rock samples were collected from the Kalatage Yudai copper–nickel deposit in Hami, Xinjiang. The effects of different spectral resolutions, spectral preprocessing, band indices, and characteristic band selection on the estimation of the element contents of Fe, Cu, Co, and Ti were investigated. The results show that when the spectral resolution is 5 nm, good results are obtained for all four metal elements, Fe, Cu, Co, and Ti, with the coefficients of determination R2 reaching 0.54, 0.59, 0.41, and 0.78, respectively. The best results are obtained for all transformed spectra with continuum removal, inverse transformation, continuum removal, and logarithmic transformation, respectively. In addition, the accuracy of the estimation models constructed by combining band indices and feature band selection was superior compared with full-band spectra for Fe (R2 = 0.654, MAE = 1.27%, and RPD = 1.498), Cu (R2 = 0.694, MAE = 20.509, and RPD = 1.711), Co (R2 = 0.805, MAE = 2.573, and RPD = 2.199), and Ti (R2 = 0.501, MAE = 0.04%, and RPD = 1.412). The results indicate that using band indices can provide a more accurate estimation of metal element content, providing a new technical method for the efficient acquisition of regional mineralization indicator element content distribution. Full article
(This article belongs to the Special Issue New Trends on Remote Sensing Applications to Mineral Deposits-II)
Show Figures

Figure 1

15 pages, 4256 KB  
Article
Hyperspectral Characteristic Band Selection and Estimation Content of Soil Petroleum Hydrocarbon Based on GARF-PLSR
by Pengfei Shi, Qigang Jiang and Zhilian Li
J. Imaging 2023, 9(4), 87; https://doi.org/10.3390/jimaging9040087 - 20 Apr 2023
Cited by 5 | Viewed by 2078
Abstract
With continuous improvements in oil production, the environmental problems caused by oil exploitation are becoming increasingly serious. Rapid and accurate estimation of soil petroleum hydrocarbon content is of great significance to the investigation and restoration of environments in oil-producing areas. In this study, [...] Read more.
With continuous improvements in oil production, the environmental problems caused by oil exploitation are becoming increasingly serious. Rapid and accurate estimation of soil petroleum hydrocarbon content is of great significance to the investigation and restoration of environments in oil-producing areas. In this study, the content of petroleum hydrocarbon and the hyperspectral data of soil samples collected from an oil-producing area were measured. For the hyperspectral data, spectral transforms, including continuum removal (CR), first- and second-order differential (CR-FD, CR-SD), and Napierian logarithm (CR-LN), were applied to eliminate background noise. At present, there are some shortcomings in the method of feature band selection, such as large quantity, time of calculation, and unclear importance of each feature band obtained. Meanwhile, redundant bands easily exist in the feature set, which seriously affects the accuracy of the inversion algorithm. In order to solve the above problems, a new method (GARF) for hyperspectral characteristic band selection was proposed. It combined the advantage that the grouping search algorithm can effectively reduce the calculation time with the advantage that the point-by-point search algorithm can determine the importance of each band, which provided a clearer direction for further spectroscopic research. The 17 selected bands were used as the input data of partial least squares regression (PLSR) and K-nearest neighbor (KNN) algorithms to estimate soil petroleum hydrocarbon content, and the leave-one-out method was used for cross-validation. The root mean squared error (RMSE) and coefficient of determination (R2) of the estimation result were 3.52 and 0.90, which implemented a high accuracy with only 8.37% of the entire bands. The results showed that compared with the traditional characteristic band selection methods, GARF can effectively reduce the redundant bands and screen out the optimal characteristic bands in the hyperspectral data of soil petroleum hydrocarbon with the method of importance assessment, which retained the physical meaning. It provided a new idea for the research of other substances in soil. Full article
(This article belongs to the Special Issue Multi-Spectral and Color Imaging: Theory and Application)
Show Figures

Figure 1

17 pages, 8614 KB  
Article
Estimation of Winter Wheat Canopy Chlorophyll Content Based on Canopy Spectral Transformation and Machine Learning Method
by Xiaokai Chen, Fenling Li, Botai Shi, Kai Fan, Zhenfa Li and Qingrui Chang
Agronomy 2023, 13(3), 783; https://doi.org/10.3390/agronomy13030783 - 8 Mar 2023
Cited by 19 | Viewed by 3081
Abstract
Canopy chlorophyll content (CCC) is closely related to crop nitrogen status, crop growth and productivity, detection of diseases and pests, and final yield. Thus, accurate monitoring of chlorophyll content in crops is of great significance for decision support in precision agriculture. In this [...] Read more.
Canopy chlorophyll content (CCC) is closely related to crop nitrogen status, crop growth and productivity, detection of diseases and pests, and final yield. Thus, accurate monitoring of chlorophyll content in crops is of great significance for decision support in precision agriculture. In this study, winter wheat in the Guanzhong Plain area of the Shaanxi Province, China, was selected as the research subject to explore the feasibility of canopy spectral transformation (CST) combined with a machine learning method to estimate CCC. A hyperspectral canopy ground dataset in situ was measured to construct CCC prediction models for winter wheat over three growth seasons from 2014 to 2017. Sensitive-band reflectance (SR) and narrow-band spectral index (NSI) were established based on the original spectrum (OS) and CSTs, including the first derivative spectrum (FDS) and continuum removal spectrum (CRS). Winter wheat CCC estimation models were constructed using univariate regression, partial least squares (PLS) regression, and random forest (RF) regression based on SR and NSI. The results demonstrated the reliability of CST combined with the machine learning method to estimate winter wheat CCC. First, compared with OS-SR (683 nm), FDS-SR (630 nm) and CRS-SR (699 nm) had a larger correlation coefficient between canopy reflectance and CCC; secondly, among the parametric regression methods, the univariate regression method with CRS-NDSI as the independent variable achieved satisfactory results in estimating the CCC of winter wheat; thirdly, as a machine learning regression method, RF regression combined with multiple independent variables had the best winter wheat CCC estimation accuracy (the determination coefficient of the validation set (Rv2) was 0.88, the RMSE of the validation set (RMSEv) was 3.35 and relative prediction deviation (RPD) was 2.88). Thus, this modeling method could be used as a basic method to predict the CCC of winter wheat in the Guanzhong Plain area. Full article
(This article belongs to the Special Issue Remote Sensing in Smart Agriculture)
Show Figures

Figure 1

19 pages, 6219 KB  
Article
Detection and Relative Quantification of Neodymium in Sillai Patti Carbonatite Using Decision Tree Classification of the Hyperspectral Data
by Muhammad Qasim and Shuhab D. Khan
Sensors 2022, 22(19), 7537; https://doi.org/10.3390/s22197537 - 5 Oct 2022
Cited by 11 | Viewed by 3457
Abstract
A recent increase in the importance of Rare Earth Elements (REEs), proportional to advancements in modern technology, green energy, and defense, has urged researchers to look for more sophisticated and efficient exploration methods for their host rocks, such as carbonatites. Hyperspectral remote sensing [...] Read more.
A recent increase in the importance of Rare Earth Elements (REEs), proportional to advancements in modern technology, green energy, and defense, has urged researchers to look for more sophisticated and efficient exploration methods for their host rocks, such as carbonatites. Hyperspectral remote sensing has long been recognized as having great potential to identify the REEs based on their sharp and distinctive absorption features in the visible near-infrared (VNIR) and shortwave infrared (SWIR) electromagnetic spectral profiles. For instance, neodymium (Nd), one of the most abundant Light Rare Earth Elements (LREEs), has among the most distinctive absorption features of REEs in the VNIR part of the electromagnetic spectrum. Centered at ~580, ~745, ~810, and ~870 nm in the VNIR, the positions of these absorption features have been proved to be independent of the mineralogy that hosts Nd, and the features can be observed in samples as low in Nd as 1000 ppm. In this study, a neodymium index (NI) is proposed based on the 810 nm absorption feature and tested on the hyperspectral images of the Sillai Patai carbonatite samples to identify Nd pixels and to decipher the relative concentration of Nd in the samples based on the depth of the absorption feature. A preliminary spectral study of the carbonatite samples was carried out using a spectroradiometer to determine the presence of Nd in the samples. Only two of the absorption features of Nd, centered at ~745 and ~810 nm, are prominent in the Nd-rich samples. The other absorption features are either weak or suppressed by the featureless spectra of the associated minerals. Similar absorption features are found in the VNIR and SWIR images of the rock samples captured by the laboratory-based hyperspectral cameras that are processed through Minimum Noise Fraction (MNF) and Fast Fourier Transform (FFT) to filter the signal and noise from the reflectance data. An RGB false-color composite of continuum-removed VNIR reflectance bands covering wavelengths of 587.5, 747.91, and 810.25 nm efficiently displayed the spatial distribution of Nd-rich hotspots in the hyperspectral image. The depth of the 810 nm absorption feature, which corresponds to the concentration of Nd in a pixel, is comparatively greater in these zones and is quantified using the proposed NI such that the deeper the absorption feature, the higher the NI. To quantify the Nd-rich pixels in the continuum-removed VNIR images, different threshold values of NI are introduced into a decision tree classifier which generates the number of pixels in each class. The strength of the proposed NI coupled with the decision tree classifier is further supported by the accuracy assessment of the classified images generating the Kappa coefficient of 0.82. Comparing the results of the remote sensing data obtained in this study with some of the previously published studies suggests that the Sillai Patti carbonatite is rich in Nd and associated REEs, with some parts of the samples as high in Nd concentration as 1000 ppm. Full article
Show Figures

Figure 1

Back to TopTop