Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (288)

Search Parameters:
Keywords = decellularized scaffold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3851 KiB  
Article
Optimization and Standardization of Plant-Derived Vascular Scaffolds
by Gianna Imeidopf, Dara Khaimov, Sashane John and Nick Merna
Int. J. Mol. Sci. 2025, 26(6), 2752; https://doi.org/10.3390/ijms26062752 - 19 Mar 2025
Viewed by 652
Abstract
Vascular graft failure rates remain unacceptably high due to thrombosis and poor integration, necessitating innovative solutions. This study optimized plant-derived extracellular matrix scaffolds as a scalable and biocompatible alternative to synthetic grafts and autologous vessels. We refined decellularization protocols to achieve >95% DNA [...] Read more.
Vascular graft failure rates remain unacceptably high due to thrombosis and poor integration, necessitating innovative solutions. This study optimized plant-derived extracellular matrix scaffolds as a scalable and biocompatible alternative to synthetic grafts and autologous vessels. We refined decellularization protocols to achieve >95% DNA removal while preserving mechanical properties comparable to native vessels, significantly enhancing endothelial cell seeding. Leatherleaf viburnum leaves were decellularized using sodium dodecyl sulfate-based and Trypsin/Tergitol-based treatments, achieved via clearing in bleach and Triton X-100 for 6 to 72 h. To assess the environmental influence on scaffold performance, leaves from multiple collection sites were processed using sodium dodecyl sulfate-based protocols. Scaffold performance was evaluated through tensile testing and histological analysis to assess structural integrity, while DNA quantification and endothelial cell recellularization measured biological compatibility. Sodium dodecyl sulfate-treated scaffolds with shorter clearing durations demonstrated the highest DNA removal (≥95%) while preserving mechanical properties, significantly outperforming Trypsin/Tergitol treatments. Longer clearing times reduced fiber diameter by 60%, compromising scaffold strength. Shorter clearing times preserved extracellular matrix integrity and significantly improved endothelial cell seeding efficiency. Larger leaves supported significantly higher endothelial cell densities than smaller leaves, highlighting the need for standardized material sources. Permeability tests demonstrated minimal leakage at 120 mmHg and structural stability under dynamic flow conditions, suggesting their suitability for vascular applications. These findings establish a reliable framework for optimizing plant-derived grafts, improving their reproducibility and performance for tissue engineering applications. Full article
(This article belongs to the Special Issue Tissue Engineering Related Biomaterials: Progress and Challenges)
Show Figures

Figure 1

36 pages, 3511 KiB  
Review
Three-Dimensional Bioprinting for Intervertebral Disc Regeneration
by Md Amit Hasan Tanvir, Md Abdul Khaleque, Junhee Lee, Jong-Beom Park, Ga-Hyun Kim, Hwan-Hee Lee and Young-Yul Kim
J. Funct. Biomater. 2025, 16(3), 105; https://doi.org/10.3390/jfb16030105 - 14 Mar 2025
Viewed by 502
Abstract
The rising demand for organ transplants and the need for precise tissue models have positioned the in vitro biomanufacturing of tissues and organs as a pivotal area in regenerative treatment. Considerable development has been achieved in growing tissue-engineered intervertebral disc (IVD) scaffolds, designed [...] Read more.
The rising demand for organ transplants and the need for precise tissue models have positioned the in vitro biomanufacturing of tissues and organs as a pivotal area in regenerative treatment. Considerable development has been achieved in growing tissue-engineered intervertebral disc (IVD) scaffolds, designed to meet stringent mechanical and biological compatibility criteria. Among the cutting-edge approaches, 3D bioprinting stands out due to its unparalleled capacity to organize biomaterials, bioactive molecules, and living cells with high precision. Despite these advancements, polymer-based scaffolds still encounter limitations in replicating the extracellular matrix (ECM)-like environment, which is fundamental for optimal cellular activities. To overcome these challenges, integrating polymers with hydrogels has been recommended as a promising solution. This combination enables the advancement of porous scaffolds that nurture cell adhesion, proliferation, as well as differentiation. Additionally, bioinks derived from the decellularized extracellular matrix (dECM) have exhibited potential in replicating biologically relevant microenvironments, enhancing cell viability, differentiation, and motility. Hydrogels, whether derived from natural sources involving collagen and alginate or synthesized chemically, are highly valued for their ECM-like properties and superior biocompatibility. This review will explore recent advancements in techniques and technologies for IVD regeneration. Emphasis will be placed on identifying research gaps and proposing strategies to bridge them, with the goal of accelerating the translation of IVDs into clinical applications. Full article
(This article belongs to the Special Issue Three-Dimensional-Printable Biomaterials for Bone Regeneration)
Show Figures

Figure 1

22 pages, 5010 KiB  
Article
Porcine Bone Extracellular Matrix Hydrogel as a Promising Graft for Bone Regeneration
by Rotem Hayam, Shani Hamias, Michal Skitel Moshe, Tzila Davidov, Feng-Chun Yen, Limor Baruch and Marcelle Machluf
Gels 2025, 11(3), 173; https://doi.org/10.3390/gels11030173 - 27 Feb 2025
Viewed by 483
Abstract
Bone defects resulting from trauma, tumors, or congenital conditions pose significant challenges for natural healing and often require grafting solutions. While autografts remain the gold standard, their limitations, such as restricted availability and donor site complications, underscore the need for alternative approaches. The [...] Read more.
Bone defects resulting from trauma, tumors, or congenital conditions pose significant challenges for natural healing and often require grafting solutions. While autografts remain the gold standard, their limitations, such as restricted availability and donor site complications, underscore the need for alternative approaches. The present research investigates the potential of porcine-derived bone extracellular matrix (pbECM) hydrogel as a highly promising bioactive scaffold for bone regeneration, comparing it to the human-derived bECM (hbECM). Porcine and human cancellous bones were decellularized and characterized in terms of their composition and structure. Further, the ECMs were processed into hydrogels, and their rheological properties and cytocompatibility were studied in vitro while their biocompatibility was studied in vivo using a mouse model. The potential of the pbECM hydrogel as a bone graft was evaluated in vivo using a rat femoral defect model. Our results demonstrated the excellent preservation of essential ECM components in both the pbECM and hbECM with more than 90% collagen out of all proteins. Rheological analyses revealed the superior mechanical properties of the pbECM hydrogel compared to the hbECM, with an approximately 10-fold higher storage modulus and a significantly later deformation point. These stronger gel properties of the pbECM were attributed to the higher content of structural proteins and residual minerals. Both the pbECM and hbECM effectively supported mesenchymal stem cell adhesion, viability, and proliferation, achieving a 20-fold increase in cell number within 10 days and highlighting their strong bioactive potential. In vivo, pbECM hydrogels elicited a minimal immunogenic response. Most importantly, when implanted in a rat femoral defect model, pbECM hydrogel had significantly enhanced bone regeneration through graft integration, stem cell recruitment, and differentiation. New bone formation was observed at an average of 50% of the defect volume, outperforming the commercial demineralized bone matrix (DBM), in which the new bone filled only 35% of the defect volume. These results position pbECM hydrogel as a highly effective and biocompatible scaffold for bone tissue engineering, offering a promising alternative to traditional grafting methods and paving the way for future clinical applications in bone repair. Full article
(This article belongs to the Special Issue Gels for Biomedical Applications)
Show Figures

Graphical abstract

22 pages, 2120 KiB  
Review
Towards Safety and Regulation Criteria for Clinical Applications of Decellularized Organ-Derived Matrices
by Elena V. A. van Hengel, Luc J. W. van der Laan, Jeroen de Jonge and Monique M. A. Verstegen
Bioengineering 2025, 12(2), 136; https://doi.org/10.3390/bioengineering12020136 - 30 Jan 2025
Viewed by 897
Abstract
Whole-organ decellularization generates scaffolds containing native extracellular matrix (ECM) components with preserved tissue microarchitecture, providing a promising advancement in tissue engineering and regenerative medicine. Decellularization retains the ECM integrity which is important for supporting cell attachment, growth, differentiation, and biological function. Although there [...] Read more.
Whole-organ decellularization generates scaffolds containing native extracellular matrix (ECM) components with preserved tissue microarchitecture, providing a promising advancement in tissue engineering and regenerative medicine. Decellularization retains the ECM integrity which is important for supporting cell attachment, growth, differentiation, and biological function. Although there are consensus guidelines to standardize decellularization processes and ECM characterization, no specific criteria or standards regarding matrix sterility and biosafety have been established so far. This regulatory gap in safety, sterilization, and regulation criteria has hampered the clinical translation of decellularized scaffolds. In this review, we identify essential criteria for the safe clinical use of decellularized products from both human and animal sources. These include the decellularization efficacy, levels of chemical residue, preservation of ECM composition and physical characteristics, and criteria for the aseptic processing of decellularization to assure sterility. Furthermore, we explore key considerations for advancing decellularized scaffolds into clinical practice, focusing on regulatory frameworks and safety requirements. Addressing these challenges is crucial for minimizing risks of adverse reactions or infection transmission, thereby accelerating the adoption of tissue-engineered products. This review aims to provide a foundation for establishing robust guidelines, supporting the safe and effective integration of decellularized scaffolds into regenerative medicine applications. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

24 pages, 30692 KiB  
Article
Sacrificing Alginate in Decellularized Extracellular Matrix Scaffolds for Implantable Artificial Livers
by Chanh-Trung Nguyen, Van Phu Le, Thi Huong Le, Jeong Sook Kim, Sung Hoon Back and Kyo-in Koo
J. Funct. Biomater. 2025, 16(1), 35; https://doi.org/10.3390/jfb16010035 - 19 Jan 2025
Viewed by 1552
Abstract
This research introduced a strategy to fabricate sub-millimeter-diameter artificial liver tissue by extruding a combination of a liver decellularized extracellular matrix (dECM), alginate, endothelial cells, and hepatocytes. Vascularization remains a critical challenge in liver tissue engineering, as replicating the liver’s intricate vascular network [...] Read more.
This research introduced a strategy to fabricate sub-millimeter-diameter artificial liver tissue by extruding a combination of a liver decellularized extracellular matrix (dECM), alginate, endothelial cells, and hepatocytes. Vascularization remains a critical challenge in liver tissue engineering, as replicating the liver’s intricate vascular network is essential for sustaining cellular function and viability. Seven scaffold groups were evaluated, incorporating different cell compositions, scaffold materials, and structural configurations. The hepatocyte and endothelial cell scaffold treated with alginate lyase demonstrated the highest diffusion rate, along with enhanced albumin secretion (2.8 µg/mL) and urea synthesis (220 µg/mL) during the same period by day 10. A dense and interconnected endothelial cell network was observed as early as day 4 in the lyased coculture group. Furthermore, three-week implantation studies in rats showed a stable integration to the host with no adverse effects. This approach offers significant potential for advancing functional liver tissue replacements, combining accelerated diffusion, enhanced albumin secretion, improved urea synthesis, dense vascular network formation, and stable implantation outcomes. Full article
(This article belongs to the Special Issue Advanced Functional Biomaterials in Regenerative Medicine)
Show Figures

Figure 1

17 pages, 4212 KiB  
Review
Decellularized Liver Matrices for Expanding the Donor Pool—An Evaluation of Existing Protocols and Future Trends
by Marcin Morawski, Maciej Krasnodębski, Jakub Rochoń, Hubert Kubiszewski, Michał Marzęcki, Dominik Topyła, Kacper Murat, Mikołaj Staszewski, Jacek Szczytko, Marek Maleszewski and Michał Grąt
Biomolecules 2025, 15(1), 98; https://doi.org/10.3390/biom15010098 - 10 Jan 2025
Viewed by 787
Abstract
Liver transplantation is the only curative option for end-stage liver disease and is necessary for an increasing number of patients with advanced primary or secondary liver cancer. Many patient groups can benefit from this treatment, however the shortage of liver grafts remains an [...] Read more.
Liver transplantation is the only curative option for end-stage liver disease and is necessary for an increasing number of patients with advanced primary or secondary liver cancer. Many patient groups can benefit from this treatment, however the shortage of liver grafts remains an unsolved problem. Liver bioengineering offers a promising method for expanding the donor pool through the production of acellular scaffolds that can be seeded with recipient cells. Decellularization protocols involve the removal of cells using various chemical, physical, and enzymatic steps to create a collagenous network that provides support for introduced cells and future vascular and biliary beds. However, the removal of the cells causes varying degrees of matrix damage, that can affect cell seeding and future organ performance. The main objective of this review is to present the existing techniques of producing decellularized livers, with an emphasis on the assessment and definition of acellularity. Decellularization agents are discussed, and the standard process of acellular matrix production is evaluated. We also introduce the concept of the stepwise assessment of the matrix during decellularization through decellularization cycles. This method may lead to shorter detergent exposure times and less scaffold damage. The introduction of apoptosis induction in the field of organ engineering may provide a valuable alternative to existing long perfusion protocols, which lead to significant matrix damage. A thorough understanding of the decellularization process and the action of the various factors influencing the final composition of the scaffold is essential to produce a biocompatible matrix, which can be the basis for further studies regarding recellularization and retransplantation. Full article
(This article belongs to the Section Synthetic Biology and Bioengineering)
Show Figures

Figure 1

20 pages, 40344 KiB  
Article
From Cartilage to Matrix: Protocols for the Decellularization of Porcine Auricular Cartilage
by Ana Caroline dos Santos, Livia Maria Barbosa de Andrade, Raí André Querino Candelária, Juliana Casanovas de Carvalho, Maria Carolina Miglino Valbão, Rodrigo da Silva Nunes Barreto, Marcelo Domingues de Faria, Rogerio Leone Buchaim, Daniela Vieira Buchaim and Maria Angelica Miglino
Bioengineering 2025, 12(1), 52; https://doi.org/10.3390/bioengineering12010052 - 9 Jan 2025
Viewed by 757
Abstract
The shortage of tissues and damaged organs led to the development of tissue engineering. Biological scaffolds, created from the extracellular matrix (ECM) of organs and tissues, have emerged as a promising solution for transplants. The ECM of decellularized auricular cartilage is a potential [...] Read more.
The shortage of tissues and damaged organs led to the development of tissue engineering. Biological scaffolds, created from the extracellular matrix (ECM) of organs and tissues, have emerged as a promising solution for transplants. The ECM of decellularized auricular cartilage is a potential tool for producing ideal scaffolds for the recellularization and implantation of new tissue in damaged areas. In order to be classified as an ideal scaffold, it must be acellular, preserving its proteins and physical characteristics necessary for cell adhesion. This study aimed to develop a decellularization protocol for pig ear cartilage and evaluate the integrity of the ECM. Four tests were performed using different methods and protocols, with four pig ears from which the skin and subcutaneous tissue were removed, leaving only the cartilage. The most efficient protocol was the combination of trypsin with a sodium hydroxide solution (0.2 N) and SDS (1%) without altering the ECM conformation or the collagen architecture. In conclusion, it was observed that auricular cartilage is difficult to decellularize, influenced by material size, exposure time, and the composition of the solution. Freezing and thawing did not affect the procedure. The sample thickness significantly impacted the decellularization time. Full article
Show Figures

Figure 1

29 pages, 2414 KiB  
Review
Current Status of Bioprinting Using Polymer Hydrogels for the Production of Vascular Grafts
by Jana Matějková, Denisa Kaňoková and Roman Matějka
Gels 2025, 11(1), 4; https://doi.org/10.3390/gels11010004 - 26 Dec 2024
Viewed by 1043
Abstract
Cardiovascular disease is one of the leading causes of death and serious illness in Europe and worldwide. Conventional treatment—replacing the damaged blood vessel with an autologous graft—is not always affordable for the patient, so alternative approaches are being sought. One such approach is [...] Read more.
Cardiovascular disease is one of the leading causes of death and serious illness in Europe and worldwide. Conventional treatment—replacing the damaged blood vessel with an autologous graft—is not always affordable for the patient, so alternative approaches are being sought. One such approach is patient-specific tissue bioprinting, which allows for precise distribution of cells, material, and biochemical signals. With further developmental support, a functional replacement tissue or vessel can be created. This review provides an overview of the current state of bioprinting for vascular graft manufacturing and summarizes the hydrogels used as bioinks, the material of carriers, and the current methods of fabrication used, especially for vessels smaller than 6 mm, which are the most challenging for cardiovascular replacements. The fabrication methods are divided into several sections—self-supporting grafts based on simple 3D bioprinting and bioprinting of bioinks on scaffolds made of decellularized or nanofibrous material. Full article
(This article belongs to the Special Issue Application of Hydrogels in 3D Bioprinting for Tissue Engineering)
Show Figures

Graphical abstract

21 pages, 2012 KiB  
Article
Decellularized Green and Brown Macroalgae as Cellulose Matrices for Tissue Engineering
by Caitlin Berry-Kilgour, Indrawati Oey, Jaydee Cabral, Georgina Dowd and Lyn Wise
J. Funct. Biomater. 2024, 15(12), 390; https://doi.org/10.3390/jfb15120390 - 23 Dec 2024
Viewed by 889
Abstract
Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and [...] Read more.
Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and biological inertness. Terrestrial and marine plants offer diverse morphologies that can replicate the ECM of various tissues and be isolated through decellularization protocols. In this study, three marine macroalgae species—namely Durvillaea poha, Ulva lactuca, and Ecklonia radiata—were selected for their morphological variation. Low-intensity, chemical treatments were developed for each species to maintain native cellulose structures within the matrices while facilitating the clearance of DNA and pigment. Scaffolds generated from each seaweed species were non-toxic for human dermal fibroblasts but only the fibrous inner layer of those derived from E. radiata supported cell attachment and maturation over the seven days of culture. These findings demonstrate the potential of E. radiata-derived cellulose scaffolds for skin tissue engineering and highlight the influence of macroalgae ECM structures on decellularization efficiency, cellulose matrix properties, and scaffold utility. Full article
(This article belongs to the Special Issue Novel Biomaterials for Tissue Engineering)
Show Figures

Figure 1

14 pages, 5653 KiB  
Article
Uterine Repair Mechanisms Are Potentiated by Mesenchymal Stem Cells and Decellularized Tissue Grafts Through Elevated Vegf, Cd44, and Itgb1 Gene Expression
by Sara Bandstein, Lucia De Miguel-Gómez, Edina Sehic, Emy Thorén, Sara López-Martínez, Irene Cervelló, Randa Akouri, Mihai Oltean, Mats Brännström and Mats Hellström
Bioengineering 2024, 11(12), 1268; https://doi.org/10.3390/bioengineering11121268 - 14 Dec 2024
Viewed by 978
Abstract
Transplantation of decellularized uterus tissue showed promise in supporting regeneration following uterine injury in animal models, suggesting an alternative to complete uterus transplantation for uterine factor infertility treatment. However, most animal studies utilized small grafts, limiting their clinical relevance. Hence, we used larger [...] Read more.
Transplantation of decellularized uterus tissue showed promise in supporting regeneration following uterine injury in animal models, suggesting an alternative to complete uterus transplantation for uterine factor infertility treatment. However, most animal studies utilized small grafts, limiting their clinical relevance. Hence, we used larger grafts (20 × 10 mm), equivalent to nearly one uterine horn in rats, to better evaluate the bioengineering challenges associated with structural support, revascularization, and tissue regeneration. We analyzed histopathology, employed immunohistochemistry, and investigated gene expression discrepancies in growth-related proteins over four months post-transplantation in acellular grafts and those recellularized (RC) with bone marrow-derived mesenchymal stem cells (bmMSCs). RC grafts exhibited less inflammation and faster epithelialization and migration of endogenous cells into the graft compared with acellular grafts. Despite the lack of a significant difference in the density of CD31 positive blood vessels between groups, the RC group demonstrated a better organized myometrial layer and an overall faster regenerative progress. Elevated gene expression for Vegf, Cd44, and Itgb1 correlated with the enhanced tissue regeneration in this group. Elevated Tgfb expression was noted in both groups, potentially contributing to the rapid revascularization. Our findings suggest that large uterine injuries can be regenerated using decellularized tissue, with bmMSCs enhancing the endogenous repair mechanisms. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Graphical abstract

18 pages, 2519 KiB  
Article
A Tissue-Engineered Construct Based on a Decellularized Scaffold and the Islets of Langerhans: A Streptozotocin-Induced Diabetic Model
by Victor I. Sevastianov, Anna S. Ponomareva, Natalia V. Baranova, Aleksandra D. Belova, Lyudmila A. Kirsanova, Alla O. Nikolskaya, Eugenia G. Kuznetsova, Elizaveta O. Chuykova, Nikolay N. Skaletskiy, Galina N. Skaletskaya, Evgeniy A. Nemets, Yulia B. Basok and Sergey V. Gautier
Life 2024, 14(11), 1505; https://doi.org/10.3390/life14111505 - 19 Nov 2024
Viewed by 999
Abstract
Producing a tissue-engineered pancreas based on a tissue-specific scaffold from a decellularized pancreas, imitating the natural pancreatic tissue microenvironment and the islets of Langerhans, is one of the approaches to treating patients with type 1 diabetes mellitus (T1DM). The aim of this work [...] Read more.
Producing a tissue-engineered pancreas based on a tissue-specific scaffold from a decellularized pancreas, imitating the natural pancreatic tissue microenvironment and the islets of Langerhans, is one of the approaches to treating patients with type 1 diabetes mellitus (T1DM). The aim of this work was to investigate the ability of a fine-dispersed tissue-specific scaffold (DP scaffold) from decellularized human pancreas fragments to support the islets’ survival and insulin-producing function when injected in a streptozotocin-induced diabetic rat model. The developed decellularization protocol allows us to obtain a scaffold with a low DNA content (33 [26; 38] ng/mg of tissue, p < 0.05) and with the preservation of GAGs (0.92 [0.84; 1.16] µg/mg, p < 0.05) and fibrillar collagen (273.7 [241.2; 303.0] µg/mg, p < 0.05). Rat islets of Langerhans were seeded in the obtained scaffolds. The rats with stable T1DM were treated by intraperitoneal injections of rat islets alone and islets seeded on the DP scaffold. The blood glucose level was determined for 10 weeks with a histological examination of experimental animals’ pancreas. A more pronounced decrease in the recipient rats’ glycemia was detected after comparing the islets seeded on the DP scaffold with the control injection (by 71.4% and 51.2%, respectively). It has been shown that the DP scaffold facilitates a longer survival and the efficient function of pancreatic islets in vivo and can be used to engineer a pancreas. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Graphical abstract

18 pages, 7600 KiB  
Article
Effects of Two Decellularization Protocols on the Mechanical Behavior and Structural Properties of the Human Urethra
by Marcela Kuniakova, Zuzana Varchulova Novakova, Daniel Haspinger, Justyna Anna Niestrawska, Martin Klein, Paulina Galfiova, Jan Kovac, Michal Palkovic, Lubos Danisovic, Niels Hammer and Stanislav Ziaran
Int. J. Mol. Sci. 2024, 25(22), 12361; https://doi.org/10.3390/ijms252212361 - 18 Nov 2024
Cited by 1 | Viewed by 990
Abstract
This study evaluates the effects of two decellularization protocols, enzyme-detergent (ED) and detergent-detergent (DD), on the structural and biomechanical properties of human urethral tissue. Urethral samples from 18 individuals were divided into ED (n = 7) and DD (n = 11) [...] Read more.
This study evaluates the effects of two decellularization protocols, enzyme-detergent (ED) and detergent-detergent (DD), on the structural and biomechanical properties of human urethral tissue. Urethral samples from 18 individuals were divided into ED (n = 7) and DD (n = 11) groups, with native samples (n = 3) serving as controls. Histological and ultrastructural analyses confirmed that both protocols effectively removed cellular content while preserving essential extracellular matrix (ECM) elements, such as collagen and elastic fibers. Immunohistochemical staining for collagen IV and fibronectin revealed no significant differences between decellularized and native tissues, indicating intact ECM structure. Biomechanical testing demonstrated that DD-treated tissues had significantly lower Cauchy stress (1494.8 ± 518.4 kPa) when compared to native tissues (2439.7 ± 578.7 kPa, p = 0.013), while ED-treated tissues were similar to both groups. Both decellularized groups exhibited reduced stretch at failure and elastic modulus compared to native tissues. Cytotoxicity assays using adipose-derived stem cells demonstrated no signs of toxicity in either protocol. Overall, both ED and DD protocols effectively preserved the urethral ECM structure and mechanical properties, making them suitable for potential use in tissue-engineered grafts and for biobanking purposes. Further research is needed to refine and optimize decellularization methods to improve scaffold recellularization and ensure clinical safety and efficacy. Full article
(This article belongs to the Special Issue Novel Insights into Regenerative Medicine)
Show Figures

Figure 1

25 pages, 10548 KiB  
Article
Bioactive Three-Dimensional Chitosan-Based Scaffolds Modified with Poly(dopamine)/CBD@Pt/Au/PVP Nanoparticles as Potential NGCs Applicable in Nervous Tissue Regeneration—Preparation and Characterization
by Aleksandra Sierakowska-Byczek, Aleksandra Gałuszka, Łukasz Janus and Julia Radwan-Pragłowska
Molecules 2024, 29(22), 5376; https://doi.org/10.3390/molecules29225376 - 14 Nov 2024
Cited by 1 | Viewed by 964
Abstract
Tissue engineering of nervous tissue is a promising direction in the treatment of neurological diseases such as spinal cord injuries or neuropathies. Thanks to technological progress and scientific achievements; the use of cells; artificial scaffolds; and growth factors are becoming increasingly common. Despite [...] Read more.
Tissue engineering of nervous tissue is a promising direction in the treatment of neurological diseases such as spinal cord injuries or neuropathies. Thanks to technological progress and scientific achievements; the use of cells; artificial scaffolds; and growth factors are becoming increasingly common. Despite challenges such as the complex structure of this tissue, regenerative medicine appears as a promising future approach to improve the quality of life of patients with nervous injuries. Until now; most functional biomaterials used for this purpose were based on decellularized extra cellular matrix (ECM) or nanofibrous materials, whereas current clinically verified ones in most cases do not exhibit bioactivity or the possibility for external stimulation. The aim of this research was to develop a new type of bioactive, chitosan-based 3D materials applicable as nerve guide conduits (NGCs) modified with poly(dopamine), Au/Pt coated with PVP nanoparticles, and cannabidiol. The NGCs were prepared under microwave-assisted conditions and their chemical structure was studied using the FT-IR method. Next, this study will discuss novel biomaterials for morphology and swelling abilities as well as susceptibility to biodegradation in the presence of collagenase and lysozyme. Finally, their potential in the field of nervous tissue engineering has been verified via a cytotoxicity study using the 1321N1 human astrocytoma cell line, which confirmed their biocompatibility in direct contact studies. Full article
Show Figures

Figure 1

17 pages, 6215 KiB  
Article
Heparin Immobilization Enhances Hemocompatibility, Re-Endothelization, and Angiogenesis of Decellularized Liver Scaffolds
by Chandra Jit Yadav, Usha Yadav, Sadia Afrin, Jun-Yeong Lee, Jihad Kamel and Kyung-Mee Park
Int. J. Mol. Sci. 2024, 25(22), 12132; https://doi.org/10.3390/ijms252212132 - 12 Nov 2024
Viewed by 1625
Abstract
Bioengineered livers are currently an acceptable alternative to orthotopic liver transplants to overcome the scarcity of donors. However, the challenge of using a bioengineered liver is the lack of an intact endothelial layer in the vascular network leading to thrombosis. Heparin-modified surfaces have [...] Read more.
Bioengineered livers are currently an acceptable alternative to orthotopic liver transplants to overcome the scarcity of donors. However, the challenge of using a bioengineered liver is the lack of an intact endothelial layer in the vascular network leading to thrombosis. Heparin-modified surfaces have been demonstrated to decrease thrombogenicity in earlier research. However, in our study, we aimed to apply heparin immobilization to enhance the hemocompatibility, endothelial cell (EC) adhesion, and angiogenesis of rat decellularized liver scaffolds (DLS). Heparin was immobilized on the DLS by the end-point attachment technique. The scaffold’s hemocompatibility was assessed using ex vivo blood perfusion and platelet adhesion studies. The heparinized scaffold (HEP-DLS) showed a significantly reduced thrombogenicity and platelet aggregation. HEP-DLS was recellularized with EA.hy926 cells via the portal vein and maintained in the bioreactor for 7 days, showing increased EC adhesion and coverage within the blood vessels. The Resazurin reduction assay confirmed the presence of actively proliferating cells in the HEP-DLS. The scaffolds were implanted subcutaneously into the dorsum of mice for 21 days to evaluate cell migration and angiogenesis. The results showed significant increases in the number of blood vessels in the HEP-DLS group. Our results demonstrated that heparin immobilization reduces thrombosis, promotes re-endothelialization, and enhances angiogenesis in DLS. The research provides insight into the potential use of heparin in the formation of a functioning vasculature. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 4165 KiB  
Article
Three-Dimensional Printed Customized Scaffolds Covered with Decellularized Bone Extracellular Matrix for Open-Wedge High-Tibial Osteotomy
by Geunseon Ahn, Jun-Young Kim, Jin-Hyung Shim, Sang-Hyun An, Junsik Kim, Changhwan Kim, In-Gyu Lee, Jung-Min Shin and Byunghoon Lee
Bioengineering 2024, 11(11), 1129; https://doi.org/10.3390/bioengineering11111129 - 8 Nov 2024
Cited by 1 | Viewed by 1081
Abstract
Void fillers are required for osseous gaps generated after orthopedic procedures as medial open-wedge high-tibial osteotomy (MOWHTO) to provide sufficient structural support and a rapid osteosynthesis. We developed a novel three-dimensional (3D) printing-based platform technology using the customized 3D scaffolds covered with polycaprolactone [...] Read more.
Void fillers are required for osseous gaps generated after orthopedic procedures as medial open-wedge high-tibial osteotomy (MOWHTO) to provide sufficient structural support and a rapid osteosynthesis. We developed a novel three-dimensional (3D) printing-based platform technology using the customized 3D scaffolds covered with polycaprolactone (PCL)/β-tri-calcium phosphates (β-TCP)/bone decellularized extracellular matrix (dECM) for use as bone substitute scaffold, which can be effectively exploited to estimate the calculated correction angle with preoperative simulations. PCL/β-TCP/bone dECM scaffolds demonstrated significantly higher cell contain levels in cell seeding efficiency, excellent proliferation capacity, and promotion of early osteogenic differentiation compared with PCL/β-TCP scaffolds. The scaffolds promoted bone mineralization at the early time points of an in vivo study (8 weeks) and exhibited biodegradable properties (38% for 16 weeks). The correction angle measured after osteotomy using 3D printed scaffolds was estimated with high accuracy with low errors (10.3° ± 0.9°) and was not significantly different even in the presence of lateral cortical hinge fractures. The customized 3D scaffold enriched with PCL/β-TCP/bone dECM yielded excellent cell seeding efficiency, proliferation capacity, early osteogenic differentiation, and bone mineralization outcomes. It is expected to solve the disadvantages related to bone union in MOWHTO and to replace autografts in the future. Full article
(This article belongs to the Collection 3D Bioprinting in Bioengineering)
Show Figures

Figure 1

Back to TopTop