Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = drain transient current pulse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6645 KB  
Article
Encapsulation Process and Dynamic Characterization of SiC Half-Bridge Power Module: Electro-Thermal Co-Design and Experimental Validation
by Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang and Huayuan Deng
Micromachines 2025, 16(7), 824; https://doi.org/10.3390/mi16070824 - 19 Jul 2025
Viewed by 2802
Abstract
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. [...] Read more.
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

11 pages, 7658 KB  
Communication
A Self-Biased Triggered Dual-Direction Silicon-Controlled Rectifier Device for Low Supply Voltage Application-Specific Integrated Circuit Electrostatic Discharge Protection
by Jie Pan, Fanyang Li, Liguo Wen, Jiazhen Jin, Xiaolong Huang and Jiaxun Han
Electronics 2024, 13(17), 3458; https://doi.org/10.3390/electronics13173458 - 30 Aug 2024
Cited by 2 | Viewed by 1166
Abstract
A direct bidirectional current discharge path between the input/output (I/O) and ground (GND) is essential for the robust protection of charging device models (CDM) in the tightly constrained design parameters of advanced low-voltage (LV) processes. Dual-direction silicon controlled rectifiers (DDSCRs) serve as ESD [...] Read more.
A direct bidirectional current discharge path between the input/output (I/O) and ground (GND) is essential for the robust protection of charging device models (CDM) in the tightly constrained design parameters of advanced low-voltage (LV) processes. Dual-direction silicon controlled rectifiers (DDSCRs) serve as ESD protection devices with high efficiency unit area discharge, enabling bidirectional electrostatic protection. However, the high trigger voltage of conventional DDSCR makes it unsuitable for ASICs used for the preamplification of biomedical signals, which only operate at low supply voltage. To address this issue, a self-biased triggered DDSCR (STDDSCR) structure is proposed to further reduce the trigger voltage. When the ESD pulse comes, the external RC trigger circuit controls the PMOS turn-on by self-bias, and the current release path is opened in advance to reduce the trigger voltage. As the ESD pulse voltage increases, the SCR loop opens to establish positive feedback and drain the amplified current. Additionally, the junction capacitance is decreased through high-resistance epitaxy and low-concentration P-well injection to further lower the trigger voltage. The simulation results of LTspice and TCAD respectively demonstrate that ESD devices can clamp transient high voltages earlier, with low parasitic capacitance and leakage current suitable for ESD protection of high-speed ports up to 1.5 V under normal operating conditions. Full article
Show Figures

Figure 1

14 pages, 6056 KB  
Article
SiC MOSFET Active Gate Drive Circuit Based on Switching Transient Feedback
by Cheng Xu and Yiru Miao
Energies 2024, 17(9), 1997; https://doi.org/10.3390/en17091997 - 23 Apr 2024
Cited by 1 | Viewed by 3036
Abstract
Due to the influence of parasitic internal parameters and junction capacitance, the silicon carbide (SiC) power devices are frequently marred by significant overshoots in current and voltage, as well as high-frequency oscillations during the switching process. These phenomena can severely compromise the reliability [...] Read more.
Due to the influence of parasitic internal parameters and junction capacitance, the silicon carbide (SiC) power devices are frequently marred by significant overshoots in current and voltage, as well as high-frequency oscillations during the switching process. These phenomena can severely compromise the reliability of SiC-based power electronic converters during operation. This study delves into the switching transient of the SiC MOSFET with the goal of establishing a quantitative correlation between the gate driving current and the overshoot in both the drain-source voltage and the drain current. In light of these findings, the innovative active gate drive (AGD) circuit, which features an adjustable gate current, is introduced. Throughout the switching process, the AGD circuit employs a dynamic monitoring and feedback mechanism that is responsive to the gate voltage and rate of change in the drain-source voltage and drain current of the SiC MOSFET. This adjustment enables gate driving current to be actively modified, thereby effectively mitigating the occurrence of overshoots and oscillations. To empirically validate the efficacy of the proposed AGD circuit in curbing voltage and current overshoots and oscillations, a double-pulse experimental setup was meticulously constructed and tested. Full article
Show Figures

Figure 1

11 pages, 3062 KB  
Article
Hot-Carrier Damage in N-Channel EDMOS Used in Single Photon Avalanche Diode Cell through Quasi-Static Modeling
by Alain Bravaix, Hugo Pitard, Xavier Federspiel and Florian Cacho
Micromachines 2024, 15(2), 205; https://doi.org/10.3390/mi15020205 - 30 Jan 2024
Cited by 1 | Viewed by 1838
Abstract
A single photon avalanche diode (SPAD) cell using N-channel extended-drain metal oxide semiconductor (N-EDMOS) is tested for its hot-carrier damage (HCD) resistance. The stressing gate-voltage (VGS) dependence is compared to hot-hole (HH) injection, positive bias temperature (PBT) instability and off-mode (V [...] Read more.
A single photon avalanche diode (SPAD) cell using N-channel extended-drain metal oxide semiconductor (N-EDMOS) is tested for its hot-carrier damage (HCD) resistance. The stressing gate-voltage (VGS) dependence is compared to hot-hole (HH) injection, positive bias temperature (PBT) instability and off-mode (VGS = 0). The goal was to check an accurate device lifetime extraction using accelerated DC to AC stressing by applying the quasi-static (QS) lifetime technique. N-EDMOS device is devoted to 3D bonding with CMOS imagers obtained by an optimized process with an effective gate-length Leff = 0.25 µm and a SiO2 gate-oxide thickness Tox = 5 nm. The operating frequency is 10 MHz at maximum supply voltage VDDmax = 5.5 V. TCAD simulations are used to determine the real voltage and timing configurations for the device in a mixed structure of the SPAD cell. AC device lifetime is obtained using worst-case DC accelerating degradation, which is transferred by QS technique to the AC waveforms applied to N-EDMOS device. This allows us to accurately obtain the AC device lifetime as a function of the delay and load for a fixed pulse shape. It shows the predominance of the high energy hot-carriers involved in the first substrate current peak during transients. Full article
(This article belongs to the Special Issue Reliability Issues in Advanced Transistor Nodes)
Show Figures

Figure 1

13 pages, 2936 KB  
Article
An Improved Model of Single-Event Transients Based on Effective Space Charge for Metal–Oxide–Semiconductor Field-Effect Transistor
by Yutao Zhang, Hongliang Lu, Chen Liu, Yuming Zhang, Ruxue Yao and Xingming Liu
Micromachines 2023, 14(11), 2085; https://doi.org/10.3390/mi14112085 - 11 Nov 2023
Cited by 1 | Viewed by 1617
Abstract
In this paper, a single-event transient model based on the effective space charge for MOSFETs is proposed. The physical process of deposited and moving charges is analyzed in detail. The influence of deposited charges on the electric field in the depletion region is [...] Read more.
In this paper, a single-event transient model based on the effective space charge for MOSFETs is proposed. The physical process of deposited and moving charges is analyzed in detail. The influence of deposited charges on the electric field in the depletion region is investigated. The electric field decreases in a short time period due to the neutralization of the space charge. After that, the electric field increases first and then decreases when the deposited charge is moved out. The movement of the deposited charge in the body mainly occurs through ambipolar diffusion because of its high-density electrons and holes. The derivation of the variation in electric field in the depletion region is modeled in the physical process according to the analysis. In combination with the ambipolar diffusion model of excessive charge in the body, a physics-based model is built to describe the current pulse in the drain terminal. The proposed model takes into account the influence of multiple factors, like linear-energy transfer (LET), drain bias, and the doping concentration of the well. The model results are validated with the simulation results from TCAD. Through calculation, the root-mean-square error (RMSE) between the simulation and model is less than 3.7 × 10−4, which means that the model matches well with the TCAD results. Moreover, a CMOS inverter is simulated using TCAD and SPICE to validate the applicability of the proposed model in a circuit-level simulation. The proposed model captures the variation in net voltage in the inverter. The simulation result obviously shows the current plateau effect, while the relative error of the pulse width is 23.5%, much better than that in the classic model. In comparison with the classic model, the proposed model provides an RMSE of 7.59 × 10−5 for the output current curve and an RMSE of 0.158 for the output voltage curve, which are significantly better than those of the classic model. In the meantime, the proposed model does not produce extra simulation time compared with the classic double exponential model. So, the model has potential for application to flow estimation of the soft error rate (SER) at the circuit level to improve the accuracy of the results. Full article
(This article belongs to the Special Issue High-Reliability Semiconductor Devices and Integrated Circuits)
Show Figures

Figure 1

11 pages, 2298 KB  
Article
Effect of Trap Behavior on the Reliability Instability of Metamorphic Buffer in InAlAs/InGaAs MHEMT on GaAs
by Ki-Yong Shin, Ju-Won Shin, Walid Amir, Surajit Chakraborty, Jae-Phil Shim, Sang-Tae Lee, Hyunchul Jang, Chan-Soo Shin, Hyuk-Min Kwon and Tae-Woo Kim
Materials 2023, 16(18), 6138; https://doi.org/10.3390/ma16186138 - 9 Sep 2023
Viewed by 1814
Abstract
Our investigation focused on assessing the influence of the metamorphic buffer in metamorphic high-electron-mobility transistors (MHEMT) that were grown on GaAs substrates. While an MHEMT exhibited elevated off-state current levels, its direct current (DC) and radio frequency (RF) traits were found to be [...] Read more.
Our investigation focused on assessing the influence of the metamorphic buffer in metamorphic high-electron-mobility transistors (MHEMT) that were grown on GaAs substrates. While an MHEMT exhibited elevated off-state current levels, its direct current (DC) and radio frequency (RF) traits were found to be comparable to those of InP-based lattice-matched high-electron-mobility transistors (LM-HEMTs). However, the Pulsed I–V measurement results confirmed the presence of the fast transient charging effect, leading to a more substantial degradation in drain current observed in MHEMT. In addition, through the low-frequency noise characteristics, it was confirmed that the dominant trapping location was located in the bulk site. The slope of the 1/f noise measurement indicated that the primary trapping site was in proximity to the bulk traps. The carrier-number-fluctuation (CNF) model was employed to extract the bulk trap density (Nt). For the LM-HEMTs, the value was at 3.27 × 1016 eV−1·cm−3, while for the MHEMT, it was 3.56 × 1017 eV−1·cm−3. Full article
Show Figures

Figure 1

10 pages, 2063 KB  
Article
Single-Particle Irradiation Effect and Anti-Irradiation Optimization of a JLTFET with Lightly Doped Source
by Haiwu Xie and Hongxia Liu
Micromachines 2023, 14(7), 1413; https://doi.org/10.3390/mi14071413 - 13 Jul 2023
Cited by 1 | Viewed by 1376
Abstract
In this article, the particle irradiation effect of a lightly doped Gaussian source heterostructure junctionless tunnel field-effect transistor (DMG-GDS-HJLTFET) is discussed. In the irradiation phenomenon, heavy ion produces a series of electron-hole pairs along the incident track, and then the generated transient current [...] Read more.
In this article, the particle irradiation effect of a lightly doped Gaussian source heterostructure junctionless tunnel field-effect transistor (DMG-GDS-HJLTFET) is discussed. In the irradiation phenomenon, heavy ion produces a series of electron-hole pairs along the incident track, and then the generated transient current can overturn the logical state of the device when the number of electron-hole pairs is large enough. In the single-particle effect of DMG-GDS-HJLTFET, the carried energy is usually represented by linear energy transfer value (LET). In simulation, the effects of incident ion energy, incident angle, incident completion time, incident position and drain bias voltage on the single-particle effect of DMG-GDS-HJLTFET are investigated. On this basis, we optimize the auxiliary gate dielectric, tunneling gate length for reliability. Simulation results show HfO2 with a large dielectric constant should be selected as the auxiliary gate dielectric in the anti-irradiation design. Larger tunneling gate leads to larger peak transient drain current and smaller tunneling gate means larger pulse width; from the point of anti-irradiation, the tunneling gate length should be selected at about 10 nm. Full article
Show Figures

Figure 1

9 pages, 3996 KB  
Article
Impact of Charge-Trapping Effects on Reliability Instability in AlxGa1−xN/GaN High-Electron-Mobility Transistors with Various Al Compositions
by Walid Amir, Surajit Chakraborty, Hyuk-Min Kwon and Tae-Woo Kim
Materials 2023, 16(12), 4469; https://doi.org/10.3390/ma16124469 - 19 Jun 2023
Cited by 4 | Viewed by 2830
Abstract
In this study, we present a detailed analysis of trapping characteristics at the AlxGa1−xN/GaN interface of AlxGa1−xN/GaN high-electron-mobility transistors (HEMTs) with reliability assessments, demonstrating how the composition of the Al in the AlxGa [...] Read more.
In this study, we present a detailed analysis of trapping characteristics at the AlxGa1−xN/GaN interface of AlxGa1−xN/GaN high-electron-mobility transistors (HEMTs) with reliability assessments, demonstrating how the composition of the Al in the AlxGa1−xN barrier impacts the performance of the device. Reliability instability assessment in two different AlxGa1−xN/GaN HEMTs [x = 0.25, 0.45] using a single-pulse ID–VD characterization technique revealed higher drain-current degradation (∆ID) with pulse time for Al0.45Ga0.55N/GaN devices which correlates to the fast-transient charge-trapping in the defect sites near the interface of AlxGa1−xN/GaN. Constant voltage stress (CVS) measurement was used to analyze the charge-trapping phenomena of the channel carriers for long-term reliability testing. Al0.45Ga0.55N/GaN devices exhibited higher-threshold voltage shifting (∆VT) caused by stress electric fields, verifying the interfacial deterioration phenomenon. Defect sites near the interface of the AlGaN barrier responded to the stress electric fields and captured channel electrons—resulting in these charging effects that could be partially reversed using recovery voltages. The quantitative extraction of volume trap density (Nt) using 1/f low-frequency noise characterizations unveiled a 40% reduced Nt for the Al0.25Ga0.75N/GaN device, further verifying the higher trapping phenomena in the Al0.45Ga0.55N barrier caused by the rougher Al0.45Ga0.55N/GaN interface. Full article
Show Figures

Figure 1

15 pages, 3349 KB  
Article
A Neural Network to Decipher Organic Electrochemical Transistors’ Multivariate Responses for Cation Recognition
by Sébastien Pecqueur, Dominique Vuillaume, Željko Crljen, Ivor Lončarić and Vinko Zlatić
Electron. Mater. 2023, 4(2), 80-94; https://doi.org/10.3390/electronicmat4020007 - 18 May 2023
Cited by 2 | Viewed by 2870
Abstract
Extracting relevant data from real-world experiments is often challenging with intrinsic materials and device property dispersion, such as in organic electronics. However, multivariate data analysis can often be a mean to circumvent this and to extract more information when larger datasets are used [...] Read more.
Extracting relevant data from real-world experiments is often challenging with intrinsic materials and device property dispersion, such as in organic electronics. However, multivariate data analysis can often be a mean to circumvent this and to extract more information when larger datasets are used with learning algorithms instead of physical models. Here, we report on identifying relevant information descriptors for organic electrochemical transistors (OECTs) to classify aqueous electrolytes by ionic composition. Applying periodical gate pulses at different voltage magnitudes, we extracted a reduced number of nonredundant descriptors from the rich drain-current dynamics, which provide enough information to cluster electrochemical data by principal component analysis between Ca2+-, K+-, and Na+-rich electrolytes. With six current values obtained at the appropriate time domain of the device charge/discharge transient, one can identify the cationic identity of a locally probed transient current with only a single micrometric device. Applied to OECT-based neural sensors, this analysis demonstrates the capability for a single nonselective device to retrieve the rich ionic identity of neural activity at the scale of each neuron individually when learning algorithms are applied to the device physics. Full article
Show Figures

Figure 1

18 pages, 33678 KB  
Article
Design and Implementation of a Paralleled Discrete SiC MOSFET Half-Bridge Circuit with an Improved Symmetric Layout and Unique Laminated Busbar
by Ismail Ataseven, Ilker Sahin and Salih Baris Ozturk
Energies 2023, 16(6), 2903; https://doi.org/10.3390/en16062903 - 21 Mar 2023
Cited by 6 | Viewed by 7366
Abstract
Silicon carbide (SiC) metal oxide semiconductor field effect transistors (MOSFETs) have many advantages compared to silicon (Si) MOSFETs: low drain-source resistance, high thermal conductivity, low leakage current, and high switching frequency. As a result, Si MOSFETs are replaced with SiC MOSFETs in many [...] Read more.
Silicon carbide (SiC) metal oxide semiconductor field effect transistors (MOSFETs) have many advantages compared to silicon (Si) MOSFETs: low drain-source resistance, high thermal conductivity, low leakage current, and high switching frequency. As a result, Si MOSFETs are replaced with SiC MOSFETs in many industrial applications. However, there are still not as many SiC modules to customize for each application. To meet the high-power requirement for custom applications, paralleling discrete SiC MOSFETs is an essential solution. However, it comes with many technical challenges; inequality in current sharing, different switching losses, different transient characteristics, and so forth. In this paper, the detailed MATLAB®/Simulink® Simpscape model of the SiC MOSFET from the datasheet and the simulation of the half-bridge circuit are investigated. Furthermore, this paper proposes the implementation of the four-paralleled SiC MOSFET half-bridge circuit with an improved symmetric gate driver layout. Moreover, a unique laminated busbar connected directly to the printed circuit board (PCB) is proposed to increase current and thermal capacity and decrease parasitic effects. Finally, the experimental and simulation results are presented using a 650 V SiC MOSFET (CREE) double-pulse test (DPT) circuit. The voltage overshoot problems and applied solutions are also presented. Full article
(This article belongs to the Special Issue Advances in Design and Control of Power Electronic Systems)
Show Figures

Figure 1

11 pages, 6585 KB  
Article
Prediction of Single-Event Effects in FDSOI Devices Based on Deep Learning
by Rong Zhao, Shulong Wang, Shougang Du, Jinbin Pan, Lan Ma, Shupeng Chen, Hongxia Liu and Yilei Chen
Micromachines 2023, 14(3), 502; https://doi.org/10.3390/mi14030502 - 21 Feb 2023
Cited by 2 | Viewed by 2311
Abstract
Single-event effects (SEE) are an important index of radiation resistance for fully depleted silicon on insulator (FDSOI) devices. The research into traditional FDSOI devices is based on simulation software, which is time consuming, requires a large amount of calculation, and has complex operations. [...] Read more.
Single-event effects (SEE) are an important index of radiation resistance for fully depleted silicon on insulator (FDSOI) devices. The research into traditional FDSOI devices is based on simulation software, which is time consuming, requires a large amount of calculation, and has complex operations. In this paper, a prediction method for the SEE of FDSOI devices based on deep learning is proposed. The characterization parameters of SEE can be obtained quickly and accurately by inputting different particle incident conditions. The goodness of fit of the network curve for predicting drain transient current pulses can reach 0.996, and the accuracy of predicting the peak value of drain transient current and total collected charge can reach 94.00% and 96.95%, respectively. Compared with TCAD Sentaurus software, the simulation speed is increased by 5.10 × 102 and 1.38 × 103 times, respectively. This method can significantly reduce the computational cost, improve the simulation speed, and provide a new feasible method for the study of the single-event effect in FDSOI devices. Full article
Show Figures

Figure 1

8 pages, 4689 KB  
Article
Temperature-Independent Current Dispersion in 0.15 μm AlGaN/GaN HEMTs for 5G Applications
by Nicolò Zagni, Giovanni Verzellesi and Alessandro Chini
Micromachines 2022, 13(12), 2244; https://doi.org/10.3390/mi13122244 - 17 Dec 2022
Cited by 9 | Viewed by 2151
Abstract
Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed output power. Here, [...] Read more.
Thanks to high-current densities and cutoff frequencies, short-channel length AlGaN/GaN HEMTs are a promising technology solution for implementing RF power amplifiers in 5G front-end modules. These devices, however, might suffer from current collapse due to trapping effects, leading to compressed output power. Here, we investigate the trap dynamic response in 0.15 μm GaN HEMTs by means of pulsed I-V characterization and drain current transients (DCTs). Pulsed I-V curves reveal an almost absent gate-lag but significant current collapse when pulsing both gate and drain voltages. The thermally activated Arrhenius process (with EA ≈ 0.55 eV) observed during DCT measurements after a short trap-filling pulse (i.e., 1 μs) indicates that current collapse is induced by deep trap states associated with iron (Fe) doping present in the buffer. Interestingly, analogous DCT characterization carried out after a long trap-filling pulse (i.e., 100 s) revealed yet another process with time constants of about 1–2 s and which was approximately independent of temperature. We reproduced the experimentally observed results with two-dimensional device simulations by modeling the T-independent process as the charging of the interface between the passivation and the AlGaN barrier following electron injection from the gate. Full article
Show Figures

Figure 1

9 pages, 2780 KB  
Communication
Dynamic Performance Characterization Techniques in Gallium Nitride-Based Electronic Devices
by Carlo De Santi, Matteo Buffolo, Gaudenzio Meneghesso, Enrico Zanoni and Matteo Meneghini
Crystals 2021, 11(9), 1037; https://doi.org/10.3390/cryst11091037 - 28 Aug 2021
Cited by 7 | Viewed by 2408
Abstract
In this paper, we compare and discuss the main techniques for the analysis of the dynamic performance of GaN-based transistors. The pulsed current-voltage characterization provides information on the effect of different trapping voltages on various bias points of the device under test, leading [...] Read more.
In this paper, we compare and discuss the main techniques for the analysis of the dynamic performance of GaN-based transistors. The pulsed current-voltage characterization provides information on the effect of different trapping voltages on various bias points of the device under test, leading to the detection of all the possible effects, as well as to the choice of the optimal filling and measure bias conditions in other techniques. The drain current transients use one of the identified bias configurations to extract information on the deep level signature responsible for the performance variation and, thus, they can pinpoint the corresponding physical crystal lattice configuration, providing useful information to the growers on how the issue can be solved. Finally, given the complex interplay between the filling and emission time constants, the gate frequency sweeps can be used to obtain the real performance in the target operating condition. Full article
Show Figures

Figure 1

14 pages, 937 KB  
Article
RHBD Techniques to Mitigate SEU and SET in CMOS Frequency Synthesizers
by V. Díez-Acereda, Sunil L. Khemchandani, J. del Pino and S. Mateos-Angulo
Electronics 2019, 8(6), 690; https://doi.org/10.3390/electronics8060690 - 19 Jun 2019
Cited by 16 | Viewed by 5823
Abstract
This paper presents a thorough study of radiation effects on a frequency synthesizer designed in a 0.18 μ m CMOS technology. In CMOS devices, the effect of a high energy particle impact can be modeled by a current pulse connected to the drain [...] Read more.
This paper presents a thorough study of radiation effects on a frequency synthesizer designed in a 0.18 μ m CMOS technology. In CMOS devices, the effect of a high energy particle impact can be modeled by a current pulse connected to the drain of the transistors. The effects of SET (single event transient) and SEU (single event upset) were analyzed connecting current pulses to the drains of all the transistors and analyzing the amplitude variations and phase shifts obtained at the output nodes. Following this procedure, the most sensitive circuits were detected. This paper proposes a combination of radiation hardening-by-design techniques (RHBD) such as resistor–capacitor (RC) filtering or local circuit-redundancy to mitigate the effects of radiation. The proposed modifications make the frequency synthesizer more robust against radiation. Full article
(This article belongs to the Special Issue Radiation Tolerant Electronics)
Show Figures

Figure 1

Back to TopTop