Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = engine-based nanofluids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3161 KiB  
Article
Dynamic Characterization and Optimization of Heat Flux and Thermal Efficiency of a Penetrable Moving Hemispherical Fin Embedded in a Shape Optimized Fe3O4-Ni/C6H18OSi2 Hybrid Nanofluid: L-IIIA Solution
by Ammembal Gopalkrishna Pai, Rekha G. Pai, Karthi Pradeep and Likith Raj
Symmetry 2024, 16(11), 1532; https://doi.org/10.3390/sym16111532 - 15 Nov 2024
Viewed by 1143
Abstract
The present paper reports the theoretical results on the thermal performance of proposed Integrated Hybrid Nanofluid Hemi-Spherical Fin Model assuming a combination of Fe3O4-Ni/C6H18OSi2 hybrid nanofluid. The model leverages the concept of symmetrical [...] Read more.
The present paper reports the theoretical results on the thermal performance of proposed Integrated Hybrid Nanofluid Hemi-Spherical Fin Model assuming a combination of Fe3O4-Ni/C6H18OSi2 hybrid nanofluid. The model leverages the concept of symmetrical geometries and optimized nanoparticle shapes to enhance the heat flux, with a focus on symmetrical design applications in thermal engineering. The simulations are carried out by assuming a silicone oil as a base fluid, due to its exceptional stability in hot and humid conditions, enriched with superparamagnetic Fe3O4 and Ni nanoparticles to enhance the heat transfer capabilities, with the aim of contributing to the field of nanotechnology, electronics and thermal engineering, The focus of this work is to optimize the heat dissipation in systems that require high thermal efficiency and stability such as automotive cooling systems, aerospace components and power electronics. In addition, the study explores the influence of key parameters such as heat transfer coefficients and thermal conductivity that play an important role in improving the thermal performance of cooling systems. The overall thermal performance of the model is evaluated based on its heat flux and thermal efficiency. The study also examines the impact of the shape optimized nanoparticles in silicone oil by incorporating shape-factor in its modelling equations and proposes optimization of parameters to enhance the overall thermal performance of the system. Darcy’s flow model is used to analyse the key parameters in the system and study the thermal behaviour of the hybrid nanofluid within the fin by incorporating natural convection, temperature-dependent internal heat generation, and radiation effects. By using the similarity approach, the governing equations were reduced to non-linear ordinary differential equations and numerical solutions were obtained by using four-stage Lobatto-IIIA numerical technique due to its robust stability and convergence properties. This enables a systematic investigation of various influential parameters, including thermal conductivity, emissivity and heat transfer coefficients. Additionally, it stimulates interest among researchers in applying mathematical techniques to complex heat transfer systems, thereby contributing towards the development of highly efficient cooling system. Our findings indicate that there is a significant enhancement in the heat flux as well as improvement in the thermal efficiency due to the mixture of silicone oil and shape optimized nanoparticles, that was visualized through comprehensive graphical analysis. Quantitatively, the proposed model displays a maximum thermal efficiency of 57.5% for lamina shaped nanoparticles at Nc = 0.5, Nr = 0.2, Ng = 0.2 and Θa = 0.4. The maximum enhancement in the heat flux occurs when Nc doubles from 5 to 10 for m2 = 0.2 and Nr = 0.1. Optimal thermal performance is found for Nc, Nr and m2 values in the range 5 to 10, 0.2 to 0.4 and 0.4 to 0.8 respectively. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

21 pages, 6517 KiB  
Article
Experimental Forced Convection Study Using a Triply Periodic Minimal Surface Porous Structure with a Nanofluid: Comparison with Numerical Modeling
by Mohamad Ziad Saghir and Gulenay Alevay Kilic
Appl. Sci. 2024, 14(17), 7594; https://doi.org/10.3390/app14177594 - 28 Aug 2024
Cited by 1 | Viewed by 860
Abstract
Triply periodic minimal surfaces (TPMSs) show potential as porous materials in different engineering applications. Amongst them, heat sink is the subject of this paper. The advantage of such a structure is the ability to design it based on the intended applications. In the [...] Read more.
Triply periodic minimal surfaces (TPMSs) show potential as porous materials in different engineering applications. Amongst them, heat sink is the subject of this paper. The advantage of such a structure is the ability to design it based on the intended applications. In the present paper, an attempt is made to experiment with a better understanding of the performance of TPMSs in heat sink applications. The experiment was conducted for different flow rates, and two heat sink materials, aluminum and silver, were used. In addition, two fluids were used experimentally: The first was water, and the second was a mixture of water containing 0.6% aluminum nanoparticles and identified as a nanofluid. The applied heat flux was maintained constant at 30,800 W/m2. The results reveal experimentally and confirm numerically that the TPMS structure secures a uniform heat extraction in the system. The development of the boundary layer in the porous structure is reduced due to the current structure design. A higher Nusselt number is obtained when the nanofluid is used as the circulating fluid. The performance evaluation criteria in the presence of the nanofluid exceed 100. Full article
(This article belongs to the Special Issue Fluid Flow and Heat Transfer: Latest Advances and Prospects)
Show Figures

Figure 1

17 pages, 3036 KiB  
Article
Heat and Mass Transformation of Casson Hybrid Nanofluid (MoS2 + ZnO) Based on Engine Oil over a Stretched Wall with Chemical Reaction and Thermo-Diffusion Effect
by Shreedevi Madiwal and Neminath B. Naduvinamani
Lubricants 2024, 12(6), 221; https://doi.org/10.3390/lubricants12060221 - 16 Jun 2024
Cited by 2 | Viewed by 1326
Abstract
This study investigates the potential of a hybrid nanofluid composed of MoS2 and ZnO nanoparticles dispersed in engine oil, aiming to enhance the properties of a lubricant’s chemical reaction with the Soret effect on a stretching sheet under the influence of an [...] Read more.
This study investigates the potential of a hybrid nanofluid composed of MoS2 and ZnO nanoparticles dispersed in engine oil, aiming to enhance the properties of a lubricant’s chemical reaction with the Soret effect on a stretching sheet under the influence of an applied magnetic field. With the growing demand for efficient lubrication systems in various industrial applications, including automotive engines, the development of novel nanofluid-based lubricants presents a promising avenue for improving engine performance and longevity. However, the synergistic effects of hybrid nanoparticles in engine oil remain relatively unexplored. The present research addresses this gap by examining the thermal conductivity, viscosity, and wear resistance of the hybrid nanofluid, shedding light on its potential as an advanced lubrication solution. Overall, the objectives of studying the hybrid nanolubricant MoS2 + ZnO with engine oil aim to advance the development of more efficient and durable lubrication solutions for automotive engines, contributing to improved reliability, fuel efficiency, and environmental sustainability. In the present study, the heat and mass transformation of a Casson hybrid nanofluid (MoS2 + ZnO) based on engine oil over a stretched wall with chemical reaction and thermo-diffusion effect is analyzed. The governing nonlinear partial differential equations are simplified as ordinary differential equations (ODEs) by utilizing the relevant similarity variables. The MATLAB Bvp4c technique is used to solve the obtained linear ODE equations. The results are presented through graphs and tables for various parameters, namely, M, Q, β, Pr, Ec, Sc, Sr, Kp, Kr, and ϕ2* (hybrid nanolubricant parameters) and various state variables. A comparative survey of all the graphs is presented for the nanofluid (MoS2/engine oil) and the hybrid nanofluid (MoS2 + ZnO/engine oil). The results reveal that the velocity profile diminished against the values of M, Kp, and β, and the temperature profile rises with Ec and Q, whereas Pr decreases. The concentration profile is incremented (decremented) with the value of Sr (Sc and Kr). A comparison of the nanofluid and hybrid nanofluid suggests that the velocity f′ (η) becomes slower with the augmentation of ϕ2* whereas the temperature increases when ϕ2* = 0.6 become slower. Full article
Show Figures

Figure 1

32 pages, 5291 KiB  
Article
Analytical Investigation of Thermal Radiation Effects on Electroosmotic Propulsion of Electrically Conducting Ionic Nanofluid with Single-Walled Carbon Nanotube Interaction in Ciliated Channels
by Junaid Mehboob, Rahmat Ellahi and Sadiq Mohammad Sait
Symmetry 2024, 16(6), 717; https://doi.org/10.3390/sym16060717 - 9 Jun 2024
Cited by 12 | Viewed by 911
Abstract
This study examines the behavior of single-walled carbon nanotubes (SWCNTs) suspended in a water-based ionic solution, driven by the combined mechanisms of electroosmosis and peristalsis through ciliated media. The inclusion of nanoparticles in ionic fluid expands the range of potential applications and allows [...] Read more.
This study examines the behavior of single-walled carbon nanotubes (SWCNTs) suspended in a water-based ionic solution, driven by the combined mechanisms of electroosmosis and peristalsis through ciliated media. The inclusion of nanoparticles in ionic fluid expands the range of potential applications and allows for the tailoring of properties to suit specific needs. This interaction between ionic fluids and nanomaterials results in advancements in various fields, including energy storage, electronics, biomedical engineering, and environmental remediation. The analysis investigates the influence of a transverse magnetic field, thermal radiation, and mixed convection acting on the channel walls. The novel physical outcomes include enhanced propulsion efficiency due to SWCNTs, understanding the influence of thermal radiation on fluid behavior and heat exchange, elucidation of the interactions between SWCNTs and the nanofluid, and recognizing implications for microfluidics and biomedical engineering. The Poisson–Boltzmann ionic distribution is linearized using the modified Debye–Hückel approximation. By employing real-world approximations, the governing equations are simplified using long-wavelength and low-Reynolds-number approximation. Conducting sensitivity analyses or exploring the impact of higher-order corrections on the model’s predictions in recent literature might alter the results significantly. This acknowledges the complexities of the modeling process and sets the groundwork for further enhancement and investigation. The resulting nonlinear system of equations is solved through regular perturbation techniques, and graphical representations showcase the variation in significant physical parameters. This study also discusses pumping and trapping phenomena in the context of relevant parameters. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

21 pages, 4977 KiB  
Article
Darcy–Brinkman Model for Ternary Dusty Nanofluid Flow across Stretching/Shrinking Surface with Suction/Injection
by Sudha Mahanthesh Sachhin, Ulavathi Shettar Mahabaleshwar, David Laroze and Dimitris Drikakis
Fluids 2024, 9(4), 94; https://doi.org/10.3390/fluids9040094 - 18 Apr 2024
Cited by 6 | Viewed by 1687 | Correction
Abstract
Understanding of dusty fluids for different Brinkman numbers in porous media is limited. This study examines the Darcy–Brinkman model for two-dimensional magneto-hydrodynamic fluid flow across permeable stretching/shrinking surfaces with heat transfer. Water was considered as a conventional base fluid in which the copper [...] Read more.
Understanding of dusty fluids for different Brinkman numbers in porous media is limited. This study examines the Darcy–Brinkman model for two-dimensional magneto-hydrodynamic fluid flow across permeable stretching/shrinking surfaces with heat transfer. Water was considered as a conventional base fluid in which the copper (Cu), silver (Ag), and titanium dioxide (TiO2) nanoparticles were submerged in a preparation of a ternary dusty nanofluid. The governing nonlinear partial differential equations are converted to ordinary differential equations through suitable similarity conversions. Under radiation and mass transpiration, analytical solutions for stretching sheets/shrinking sheets are obtained. Several parameters are investigated, including the magnetic field, Darcy–Brinkman model, solution domain, and inverse Darcy number. The outcomes of the present article reveal that increasing the Brinkman number and inverse Darcy number decreases the velocity of the fluid and dusty phase. Increasing the magnetic field decreases the momentum of the boundary layer. Ternary dusty nanofluids have significantly improved the heat transmission process for manufacturing with applications in engineering, and biological and physical sciences. The findings of this study demonstrate that the ternary nanofluid phase’s heat and mass transpiration performance is better than the dusty phase’s performance. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

27 pages, 853 KiB  
Article
Overlapping Grid-Based Spectral Collocation Technique for Bioconvective Flow of MHD Williamson Nanofluid over a Radiative Circular Cylindrical Body with Activation Energy
by Musawenkosi Patson Mkhatshwa
Computation 2024, 12(4), 75; https://doi.org/10.3390/computation12040075 - 5 Apr 2024
Cited by 5 | Viewed by 1438
Abstract
The amalgamation of motile microbes in nanofluid (NF) is important in upsurging the thermal conductivity of various systems, including micro-fluid devices, chip-shaped micro-devices, and enzyme biosensors. The current scrutiny focuses on the bioconvective flow of magneto-Williamson NFs containing motile microbes through a horizontal [...] Read more.
The amalgamation of motile microbes in nanofluid (NF) is important in upsurging the thermal conductivity of various systems, including micro-fluid devices, chip-shaped micro-devices, and enzyme biosensors. The current scrutiny focuses on the bioconvective flow of magneto-Williamson NFs containing motile microbes through a horizontal circular cylinder placed in a porous medium with nonlinear mixed convection and thermal radiation, heat sink/source, variable fluid properties, activation energy with chemical and microbial reactions, and Brownian motion for both nanoparticles and microbes. The flow analysis has also been considered subject to velocity slips, suction/injection, and heat convective and zero mass flux constraints at the boundary. The governing equations have been converted to a non-dimensional form using similarity variables, and the overlapping grid-based spectral collocation technique has been executed to procure solutions numerically. The graphical interpretation of various pertinent variables in the flow profiles and physical quantities of engineering attentiveness is provided and discussed. The results reveal that NF flow is accelerated by nonlinear thermal convection, velocity slip, magnetic fields, and variable viscosity parameters but decelerated by the Williamson fluid and suction parameters. The inclusion of nonlinear thermal radiation and variable thermal conductivity helps to enhance the fluid temperature and heat transfer rate. The concentration of both nanoparticles and motile microbes is promoted by the incorporation of activation energy in the flow system. The contribution of microbial Brownian motion along with microbial reactions on flow quantities justifies the importance of these features in the dynamics of motile microbes. Full article
Show Figures

Figure 1

17 pages, 6636 KiB  
Article
Comparative Study on the Thermal Properties of Engine Oils and Their Nanofluids Incorporating Fullerene-C60, TiO2 and Fe2O3 at Different Temperatures
by Chanaka Galpaya, Ashan Induranga, Vimukthi Vithanage, Prasanga Mantilaka and Kaveenga Rasika Koswattage
Energies 2024, 17(3), 732; https://doi.org/10.3390/en17030732 - 3 Feb 2024
Cited by 5 | Viewed by 2150
Abstract
The efficiency, durability, and overall performance of a car engine are influenced by several critical factors. The quality and properties of engine oil play a crucial role, and oil is used in internal combustion engines for lubrication and cooling purposes. This research study [...] Read more.
The efficiency, durability, and overall performance of a car engine are influenced by several critical factors. The quality and properties of engine oil play a crucial role, and oil is used in internal combustion engines for lubrication and cooling purposes. This research study aimed to compare the impact of fullerene-C60 (99.5%), Fe2O3, and TiO2 nanoparticles on the thermal properties of C.A.L.T.E.X. red engine oil with grades 10W30, 20W40, and 20W50. This study focused on the effect of a nanoparticle concentration of 0.01 wt.% in different engine oil grades at various temperature values of 30–120 °C. The nanofluids were prepared using the two-step direct mixing method, employing a magnetic stirrer and an ultrasonicator, ensuring uniform distribution of nanoparticles in the base fluids. The thermal conductivity, thermal diffusivity, and volumetric heat capacity of the base fluids and nanofluids were measured using the FLUCON LAMBDA thermal conductivity meter. Additionally, flash points were measured using the flash point tester. It was concluded that the thermal properties of TiO2 and Fe2O3 showed considerable enhancement; in contrast, fullerene only showed a 212 °C flash point. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

19 pages, 2442 KiB  
Article
Unsteady Magnetohydrodynamic Radiative Casson Nanofluid within Chemically Reactive Flow over a Stretchable Surface with Variable Thickness through a Porous Medium
by Ahmed M. Sedki and Raed Qahiti
Energies 2023, 16(23), 7776; https://doi.org/10.3390/en16237776 - 25 Nov 2023
Cited by 3 | Viewed by 1467
Abstract
This study presents a mathematical investigation into the phenomena of radiative heat with an unsteady MHD electrically conducting boundary layer of chemically reactive Casson nanofluid flow due to a pored stretchable sheet immersed in a porous medium in the presence of heat generation, [...] Read more.
This study presents a mathematical investigation into the phenomena of radiative heat with an unsteady MHD electrically conducting boundary layer of chemically reactive Casson nanofluid flow due to a pored stretchable sheet immersed in a porous medium in the presence of heat generation, thermophoretic force, and Brownian motion. The surface is assumed to be not flat, and has variable thickness. The magnetic field is time-dependent, and the chemical reaction coefficient is inversely varied with the distance. The nanofluid’s velocity, heat, and concentration at the surface are nonlinearly varied. A similarity transformation is introduced, and the controlling equations are converted into nondimensional forms involving many significant physical factors. The transformed forms are analyzed numerically using a computational method based on the finite difference scheme and Newton’s linearization procedure. The impact of the involved physical parameters is performed in graphical and tabular forms. Some special cases of the current work are compared with published studies, and an excellent agreement is obtained. The main results of the present work indicate that the higher values of the Casson parameter cause an increase in both the shear stress and heat flux, but a decrease in the mass flux. Also, it is noted that the chemical reaction, the nanoparticles’ volume, and the permeability factor enhance the effect the of Casson parameter on both the shear stress and heat flux, while the variable thickness and thermal radiation field reduce it; on the other hand, the variable thickness and nanoparticles’ volume enforce the influence of the Casson parameter on mass flux, but thermal radiation, the permeability factor, and chemical reaction decrease it. The present study has important applications in mechanical engineering and natural sciences. In addition, it has significant applications in devices used for blood transfusion, dialysis and cancer therapy. Full article
Show Figures

Figure 1

31 pages, 13506 KiB  
Review
A Review of Nanofluids as Coolants for Thermal Management Systems in Fuel Cell Vehicles
by Qi Tao, Fei Zhong, Yadong Deng, Yiping Wang and Chuqi Su
Nanomaterials 2023, 13(21), 2861; https://doi.org/10.3390/nano13212861 - 28 Oct 2023
Cited by 12 | Viewed by 5095
Abstract
With the development of high-power fuel cell vehicles, heat dissipation requirements have become increasingly stringent. Although conventional cooling techniques improve the heat dissipation capacity by increasing the fan rotating speed or radiator dimensions, high energy consumption and limited engine compartment space prevent their [...] Read more.
With the development of high-power fuel cell vehicles, heat dissipation requirements have become increasingly stringent. Although conventional cooling techniques improve the heat dissipation capacity by increasing the fan rotating speed or radiator dimensions, high energy consumption and limited engine compartment space prevent their implementation. Moreover, the insufficient heat transfer capacity of existing coolants limits the enhancement of heat dissipation performance. Therefore, exploring novel coolants to replace traditional coolants is important. Nanofluids composed of nanoparticles and base liquids are promising alternatives, effectively improving the heat transfer capacity of the base liquid. However, challenges remain that prevent their use in fuel cell vehicles. These include issues regarding the nanofluid stability and cleaning, erosion and abrasion, thermal conductivity, and electrical conductivity. In this review, we summarize the nanofluid applications in oil-fueled, electric, and fuel cell vehicles. Subsequently, we provide a comprehensive literature review of the challenges and future research directions of nanofluids as coolants in fuel cell vehicles. This review demonstrates the potential of nanofluids as an alternative thermal management system that can facilitate transition toward a low-carbon, energy-secure economy. It will serve as a reference for researchers to focus on new areas that could drive the field forward. Full article
Show Figures

Figure 1

23 pages, 3388 KiB  
Article
Scrutinization of Waste Discharge Concentrations in Eyring-Powell Nanofluid Past a Deformable Horizontal Plane Surface
by Samia Elattar, Umair Khan, Aurang Zaib, Anuar Ishak, Wafaa Saleh and Ahmed M. Abed
Water 2023, 15(19), 3419; https://doi.org/10.3390/w15193419 - 28 Sep 2023
Cited by 12 | Viewed by 1553
Abstract
Nanomaterials have been the focus of intense study and growth in the modern era across the globe because of their outstanding qualities, which are brought about by their nanoscale size; for instance, increased adsorption and catalysis capabilities plus significant reactivity. Multiple investigations have [...] Read more.
Nanomaterials have been the focus of intense study and growth in the modern era across the globe because of their outstanding qualities, which are brought about by their nanoscale size; for instance, increased adsorption and catalysis capabilities plus significant reactivity. Multiple investigations have verified the fact that nanoparticles may successfully remove a variety of pollutants from water, and, as a result, they have been utilized in the treatment of both water and wastewater. Therefore, the current research intent is to examine the nonlinear heat source/sink influence on the 3D flow of water-based silver nanoparticles incorporated in an Eyring–Powell fluid across a deformable sheet with concentration pollutants. Silver particles have been used intensively to filter water, due to their potent antibacterial properties. The leading equations involving partial differential equations are renewed into the form of ordinary ordinary differential equations through utilizing the appropriate similarity technique. Then, these converted equations are solved by utilizing an efficient solver bvp4c. Visual displays and extensive exploration of the different impacts of the non-dimensional parameters on the concentration, temperature, and velocity profiles are provided. Also, the important engineering variables including skin friction, the rate of heat, and mass transfer are examined. The findings suggest that the mass transfer rate declines due to pollutant parameters. Also, the results suggest that the friction factor is uplifted by about 15% and that the heat transfer rate, as well as the mass transfer rate, declines by about 21%, due to the presence of the nanoparticle volume fraction. We believe that these results may improve the flow rate of nanofluid systems, improve heat transfer, and reduce pollutant dispersal. Full article
Show Figures

Figure 1

27 pages, 6951 KiB  
Article
A New 3D Mathematical Model for Simulating Nanofluid Flooding in a Porous Medium for Enhanced Oil Recovery
by Abdullah Al-Yaari, Dennis Ling Chuan Ching, Hamzah Sakidin, Mohana Sundaram Muthuvalu, Mudasar Zafar, Abdurrashid Haruna, Zulkifli Merican Aljunid Merican and Abdus Samad Azad
Materials 2023, 16(15), 5414; https://doi.org/10.3390/ma16155414 - 2 Aug 2023
Cited by 7 | Viewed by 1996
Abstract
Two-phase Darcy’s law is a well-known mathematical model used in the petrochemical industry. It predicts the fluid flow in reservoirs and can be used to optimize oil production using recent technology. Indeed, various models have been proposed for predicting oil recovery using injected [...] Read more.
Two-phase Darcy’s law is a well-known mathematical model used in the petrochemical industry. It predicts the fluid flow in reservoirs and can be used to optimize oil production using recent technology. Indeed, various models have been proposed for predicting oil recovery using injected nanofluids (NFs). Among them, numerical modeling is attracting the attention of scientists and engineers owing to its ability to modify the thermophysical properties of NFs such as density, viscosity, and thermal conductivity. Herein, a new model for simulating NF injection into a 3D porous media for enhanced oil recovery (EOR) is investigated. This model has been developed for its ability to predict oil recovery across a wide range of temperatures and volume fractions (VFs). For the first time, the model can examine the changes and effects of thermophysical properties on the EOR process based on empirical correlations depending on two variables, VF and inlet temperature. The governing equations obtained from Darcy’s law, mass conservation, concentration, and energy equations were numerically evaluated using a time-dependent finite-element method. The findings indicated that optimizing the temperature and VF could significantly improve the thermophysical properties of the EOR process. We observed that increasing the inlet temperature (353.15 K) and volume fraction (4%) resulted in better oil displacement, improved sweep efficiency, and enhanced mobility of the NF. The oil recovery decreased when the VF (>4%) and temperature exceeded 353.15 K. Remarkably, the optimal VF and inlet temperature for changing the thermophysical properties increased the oil production by 30%. Full article
Show Figures

Figure 1

32 pages, 6823 KiB  
Article
Numerical and Machine Learning Approach for Fe3O4-Au/Blood Hybrid Nanofluid Flow in a Melting/Non-Melting Heat Transfer Surface with Entropy Generation
by Shaik Jakeer, Sathishkumar Veerappampalayam Easwaramoorthy, Seethi Reddy Reddisekhar Reddy and Hayath Thameem Basha
Symmetry 2023, 15(8), 1503; https://doi.org/10.3390/sym15081503 - 28 Jul 2023
Cited by 6 | Viewed by 1899
Abstract
The physiological system loses thermal energy to nearby cells via the bloodstream. Such energy loss can result in sudden death, severe hypothermia, anemia, high or low blood pressure, and heart surgery. Gold and iron oxide nanoparticles are significant in cancer treatment. Thus, there [...] Read more.
The physiological system loses thermal energy to nearby cells via the bloodstream. Such energy loss can result in sudden death, severe hypothermia, anemia, high or low blood pressure, and heart surgery. Gold and iron oxide nanoparticles are significant in cancer treatment. Thus, there is a growing interest among biomedical engineers and clinicians in the study of entropy production as a means of quantifying energy dissipation in biological systems. The present study provides a novel implementation of an intelligent numerical computing solver based on an MLP feed-forward backpropagation ANN with the Levenberg–Marquard algorithm to interpret the Cattaneo–Christov heat flux model and demonstrate the effect of entropy production and melting heat transfer on the ferrohydrodynamic flow of the Fe3O4-Au/blood Powell–Eyring hybrid nanofluid. Similarity transformation studies symmetry and simplifies PDEs to ODEs. The MATLAB program bvp4c is used to solve the nonlinear coupled ordinary differential equations. Graphs illustrate the impact of a wide range of physical factors on variables, including velocity, temperature, entropy generation, local skin friction coefficient, and heat transfer rate. The artificial neural network model engages in a process of data selection, network construction, training, and evaluation through the use of mean square error. The ferromagnetic parameter, porosity parameter, distance from origin to magnetic dipole, inertia coefficient, dimensionless Curie temperature ratio, fluid parameters, Eckert number, thermal radiation, heat source, thermal relaxation parameter, and latent heat of the fluid parameter are taken as input data, and the skin friction coefficient and heat transfer rate are taken as output data. A total of sixty data collections were used for the purpose of testing, certifying, and training the ANN model. From the results, it is found that the fluid temperature declines when the thermal relaxation parameter is improved. The latent heat of the fluid parameter impacts the entropy generation and Bejan number. There is a less significant impact on the heat transfer rate of the hybrid nanofluid over the sheet on the melting heat transfer parameter. Full article
(This article belongs to the Special Issue Advances in Heat and Mass Transfer with Symmetry)
Show Figures

Figure 1

27 pages, 13182 KiB  
Article
Using Nano-Fluids Minimum Quantity Lubrication (NF-MQL) to Improve Tool Wear Characteristics for Efficient Machining of CFRP/Ti6Al4V Aeronautical Structural Composite
by Kiran Mughal, Mohammad Pervez Mughal, Muhammad Umar Farooq, Saqib Anwar and Muhammad Imam Ammarullah
Processes 2023, 11(5), 1540; https://doi.org/10.3390/pr11051540 - 17 May 2023
Cited by 37 | Viewed by 2716
Abstract
The aeronautical industry constantly strives for efficient technologies to facilitate hole-making in CFRP/Ti6Al4V structural components. The prime challenge in this direction is excessive tool wear because of the different engineering properties of both materials. Nanofluid minimum quantity lubrication (NF-MQL) is the latest technology [...] Read more.
The aeronautical industry constantly strives for efficient technologies to facilitate hole-making in CFRP/Ti6Al4V structural components. The prime challenge in this direction is excessive tool wear because of the different engineering properties of both materials. Nanofluid minimum quantity lubrication (NF-MQL) is the latest technology to provide synergistic improvement in tool tribological properties and lubrication function during machining. In the current study, an MoS2-based NF-MQL system was applied during helical milling using a FIREX-coated tool. In-depth analysis of wear, a scanning electron microscope (SEM), and electron deposition spectroscopy (EDS) were used to evaluate workpiece elemental transfer and tool wear mechanisms. Experimental findings showed that 1% nanoparticles concentration in lubricant resulted in low tool wear of 13 µm after 10 holes. The SEM and EDS analyses depicted formation of tribo-film on the surface, resulting less severe wear and a reduced degree of adhesion. However, a low nanoparticle concentration of 0.5% resulted in 106 µm tool wear after 10 holes with slight evidence of tribo-film. Parametric analysis based on eccentricity, spindle speeds (individual for CFRP and Ti6Al4V), axial pitch, and tangential feed showed correlations with mechanical damage. An extended study of up to 200 holes showed diffusion of C element at a high rate as compared to metal elements such as W and Co. The lowest tool wear was observed using eccentricity level 1, spindle speed Ti6Al4V 1000 rpm, spindle speed CFRP 7500 rpm, tangential feed 0.01 mm/tooth, axial pitch 1.5 mm, and 1% of MoS2 nanoparticles. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 7356 KiB  
Article
Model-Based Performance Optimization of Thermal Management System of Proton Exchange Membrane Fuel Cell
by Jiaming Zhang, Fuwu Yan, Changqing Du, Wenhao Li, Hongzhang Fang and Jun Shen
Energies 2023, 16(9), 3952; https://doi.org/10.3390/en16093952 - 8 May 2023
Cited by 1 | Viewed by 2053
Abstract
As a promising new power source, the proton exchange membrane fuel cell (PEMFC) has attracted extensive attention. The PEMFC engine produces a large amount of waste heat during operation. The excessive temperature will reduce the efficiency and lifespan of PEMFC engine and even [...] Read more.
As a promising new power source, the proton exchange membrane fuel cell (PEMFC) has attracted extensive attention. The PEMFC engine produces a large amount of waste heat during operation. The excessive temperature will reduce the efficiency and lifespan of PEMFC engine and even cause irreversible damage if not taken away in time. The thermal management system of the PEMFC plays a critical role in efficiency optimization, longevity and operational safety. To solve the problem of high heat production in the operation of the PEMFC, two approaches are proposed to improve the heat dissipation performance of the radiators in thermal management systems. Three kinds of nanofluids with excellent electrical and thermal conductivity–Al2O3, SiO2 and ZnO– are employed as the cooling medium. The radiator parameters are optimized to improve the heat transfer capability. A typical 1D thermal management system and an isotropic 3D porous medium model replacing the wavy fin are constructed to reveal the effects of the nanofluid and the parameters of the radiator performance and the thermal management system. The results show that all three kinds of nanofluids can effectively improve the heat transfer capacity of the coolant, among which the comprehensive performance of the Al2O3 nanofluid is best. When the mass flow rate is 0.04 kg/s and the concentration is 0.5 vol%, the amount of heat transfer of the Al2O3 nanofluid increases by 12.7% when compared with pure water. Under the same conditions, it can reduce the frontal area of the radiator by 12%. For the radiator, appropriate reduction of the fin pitch and wavy length and increase of wave amplitude can effectively improve the spread of heat. The use of fin parameters with higher heat dissipation power results in lower coolant temperatures at the inlet and outlet of the stack. The performance of the radiator is predicted by the two model-based approaches described above which provide a reliable theoretical basis for the optimization of the thermal management system and the matching of the components. Full article
Show Figures

Figure 1

12 pages, 1965 KiB  
Article
Three-Dimensional Unsteady Mixed Convection Flow of Non-Newtonian Nanofluid with Consideration of Retardation Time Effects
by Badreddine Ayadi, Kaouther Ghachem, Kamel Al-Khaled, Sami Ullah Khan, Karim Kriaa, Chemseddine Maatki, Nesrine Zahi and Lioua Kolsi
Mathematics 2023, 11(8), 1892; https://doi.org/10.3390/math11081892 - 17 Apr 2023
Cited by 1 | Viewed by 1520
Abstract
The advances in nanotechnology led to the development of new kinds of engineered fluids called nanofluids. Nanofluids have several industrial and engineering applications, such as solar energy systems, heat conduction processes, nuclear systems, chemical processes, etc. The motivation of the present work is [...] Read more.
The advances in nanotechnology led to the development of new kinds of engineered fluids called nanofluids. Nanofluids have several industrial and engineering applications, such as solar energy systems, heat conduction processes, nuclear systems, chemical processes, etc. The motivation of the present work is to analyze and explore the thermal and dynamic behaviors of a non-Newtonian fluid flow under time retardation effects. The flow is unsteady and caused by a bidirectional, periodically moving surface. In addition to the convective heat transfer and fluid flow, the radiation and chemical reactions have also been considered. The governing equations are established based on the modified Cattaneo–Christov heat flux formulation. It was found that the bidirectional velocities oscillate periodically, and that the magnitude of the oscillation increases with the retardation time. Higher temperatures occur when the porosity parameter is increased, and lower concentrations are encountered for higher values of the concentration relaxation parameter. The current results can be applied in thermal systems, heat transfer enhancement, chemical synthesis, solar systems, power generation, medical applications, the automotive industry, process industries, refrigeration, etc. Full article
Show Figures

Figure 1

Back to TopTop