Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (219)

Search Parameters:
Keywords = ex vivo permeability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 19631 KiB  
Article
Design of a Foam-Actuated Nano-Emulgel for Perioceutic Drug Delivery: Formulation, Characterization, and Antimicrobial Efficacy
by Theresa P. K. Varughese, Poornima Ramburrun, Nnamdi I. Okafor, Sandy van Vuuren and Yahya E. Choonara
Gels 2025, 11(5), 373; https://doi.org/10.3390/gels11050373 - 20 May 2025
Viewed by 242
Abstract
Periodontitis is a prevalent oral condition worldwide. Azithromycin, a conventional lipophilic drug for periodontal treatment, often causes systemic side effects when administered orally. To address this, azithromycin-loaded nano-emulgels were developed using olive oil as a carrier within a xanthan gum aqueous gel phase. [...] Read more.
Periodontitis is a prevalent oral condition worldwide. Azithromycin, a conventional lipophilic drug for periodontal treatment, often causes systemic side effects when administered orally. To address this, azithromycin-loaded nano-emulgels were developed using olive oil as a carrier within a xanthan gum aqueous gel phase. This oil-in-aqueous gel emulsion was actuated into a foam for localized drug delivery in gingival and periodontal disease. The solubility of azithromycin in various vehicles was tested, with olive oil showing the best solubility (0.347 mg/mL). Thermodynamic stability testing identified viable nano-formulations, with encapsulation efficiencies ranging from 98 to 100%. These formulations exhibited rapid drug release within 2–8 h. Muco-adhesion studies and ex vivo permeability tests on porcine buccal mucosa highlighted the beneficial properties of xanthan gum for local drug retention within the oral cavity. Antimicrobial efficiency was assessed using minimum inhibitory concentrations against various oral pathogens, where the formulation with equal surfactant and co-surfactant ratios showed the most potent antibacterial activity, ranging from 0.390 to 1.56 µg/mL. This was supported by the shear-thinning, muco-adhesive, and drug-retentive properties of the xanthan gel base. The study also examined the influence of the oil phase with xanthan gum gel on foam texture, rheology, and stability, demonstrating a promising prototype for periodontitis treatment. Full article
(This article belongs to the Special Issue Hydrogels, Oleogels and Bigels Used for Drug Delivery)
Show Figures

Graphical abstract

21 pages, 7194 KiB  
Article
Quality by Design (QbD)-Based Development of a Self-Nanoemulsifying Drug Delivery System for the Ocular Delivery of Flurbiprofen
by Ju-Hwan Jeong, Tae-Han Yoon, Si-Won Ryu, Min-Gyeong Kim, Gu-Hae Kim, Ye-Jin Oh, Su-Jeong Lee, Na-Woon Kwak, Kyu-Ho Bang and Kyeong-Soo Kim
Pharmaceutics 2025, 17(5), 629; https://doi.org/10.3390/pharmaceutics17050629 - 9 May 2025
Viewed by 390
Abstract
Objectives: In this study, Quality by Design (QbD) was used to develop an optimized self-nanoemulsifying drug delivery system (SNEDDS) as an ophthalmic formulation of flurbiprofen (FLU). Using a Box–Behnken design (BBD), an optimal SNEDDS composition was crafted, targeting enhanced corneal permeability and [...] Read more.
Objectives: In this study, Quality by Design (QbD) was used to develop an optimized self-nanoemulsifying drug delivery system (SNEDDS) as an ophthalmic formulation of flurbiprofen (FLU). Using a Box–Behnken design (BBD), an optimal SNEDDS composition was crafted, targeting enhanced corneal permeability and increased bioavailability of the drug. Methods: The levels of each factor(X) were established using a pseudo-ternary diagram, and the Box-Behnken design (BBD) was used to evaluate the components of oil (18.9 mg), surfactant (70.7 mg), and co-surfactant (10.0 mg) to optimize the SNEDDS formulation. The response(Y) considered were particle size, polydispersity index (PDI), transmittance, and stability. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to analyze the particle size and morphology. In vitro and ex vivo diffusion tests were conducted to assess drug flux and permeability. Result: Using a response optimization tool, the values of each X factor were optimized to achieve a small particle size (nm), a low polydispersity index (PDI), and high transmittance (%), resulting in a formulation prepared with 18.9 mg of oil, 70.7 mg of surfactant, and 10.0 mg of co-surfactant. The optimized SNEDDS exhibited a small particle size of 24.89 nm, a minimal PDI of 0.068, and a high transmittance of 74.85%. A transmission electron microscopy (TEM) analysis confirmed the presence of uniform spherical nanoemulsion droplets with an observed mean diameter of less than 25 nm, corroborating the dynamic light scattering (DLS) measurements. Furthermore, the SNEDDS demonstrated improved stability under the stress conditions of heating–cooling cycles, with no phase separation, creaming, or caking observed and no differences in its particle size, PDI, or transmittance. In vitro and ex vivo diffusion tests demonstrated that the flux of the optimized SNEDDS (2.723 ± 0.133 mg/cm2, 5.446 ± 0.390 μg/cm2) was about 2.5 and 4 times higher than that of the drug dispersion, and the initial diffusion was faster, which is suitable for the characteristics of eye drops. Conclusions: Therefore, the formulation of a flurbiprofen-loaded SNEDDS (FLU-SNE) was successfully optimized using the QbD approach. The optimized FLU-SNE exhibited excellent stability and enhanced permeability, suggesting its potential effectiveness in treating various ocular inflammations, including uveitis and cystoid macular edema. Full article
Show Figures

Figure 1

20 pages, 6962 KiB  
Article
Topical Delivery of Ceramide by Oil-in-Water Nanoemulsion to Retain Epidermal Moisture Content in Dermatitis
by Yu Zhou, Lichun Wu, Yi Zhang, Jia Hu, Jannatul Fardous, Yasuhiro Ikegami and Hiroyuki Ijima
Biomolecules 2025, 15(5), 608; https://doi.org/10.3390/biom15050608 - 22 Apr 2025
Viewed by 459
Abstract
External environmental stressors and internal physiological changes frequently compromise the skin barrier, resulting in conditions such as dermatitis and dehydration. A key underlying factor is the depletion of ceramides, essential lipids in the stratum corneum that maintain skin integrity. Although topical ceramide supplementation [...] Read more.
External environmental stressors and internal physiological changes frequently compromise the skin barrier, resulting in conditions such as dermatitis and dehydration. A key underlying factor is the depletion of ceramides, essential lipids in the stratum corneum that maintain skin integrity. Although topical ceramide supplementation is effective for barrier repair, its clinical application is limited by poor solubility and low skin permeability. To overcome these challenges, this study developed an oil-in-water nanoemulsion (O/W-NE) using ultrasonic emulsification for the efficient transdermal delivery of ceramide C2. Octyldodecanol was selected as the oil phase to enhance ceramide solubility, while glycerin was incorporated to increase aqueous phase viscosity, reduce particle size, and function as a biocompatible penetration enhancer. The optimized nanoemulsion achieved a particle size of 112.5 nm and an encapsulation efficiency of 85%. Its performance was evaluated via in vitro release, ex vivo skin permeation, and in vivo biocompatibility studies. Mechanistic investigations revealed that both particle size and glycerin concentration significantly influenced ceramide penetration into the epidermis and dermis. Additionally, the nanoemulsion exhibited moisturizing and barrier-repair effects in a damaged skin model. Overall, this O/W-NE offers a stable, non-invasive strategy for enhancing ceramide delivery and restoring skin barrier function. Full article
(This article belongs to the Special Issue Molecular Advances in Wound Healing and Skin Regeneration)
Show Figures

Graphical abstract

18 pages, 8813 KiB  
Article
Chitosan-TPP Nanogels for Ocular Delivery of Folic Acid: Release Profile, Corneal Permeation, and Mucoadhesion Assessment
by Sebastián G. Bruno, Sofía M. Martínez, Camila Costa Gobbato, Daniela A. Quinteros, Agustina Alaimo and Oscar E. Pérez
Pharmaceutics 2025, 17(4), 424; https://doi.org/10.3390/pharmaceutics17040424 - 27 Mar 2025
Viewed by 483
Abstract
Background: Folic acid (FA) is essential for cellular functions but has limited ocular bioavailability, restricting its therapeutic effectiveness. Objective: To develop chitosan (CS)-based nanogels (NGs) for FA transport and release, with corneal permeation evaluation. Methods: NGs’ hydrodynamic diameter (Ho) and [...] Read more.
Background: Folic acid (FA) is essential for cellular functions but has limited ocular bioavailability, restricting its therapeutic effectiveness. Objective: To develop chitosan (CS)-based nanogels (NGs) for FA transport and release, with corneal permeation evaluation. Methods: NGs’ hydrodynamic diameter (Ho) and polydispersity index (PdI) were determined using dynamic light scattering (DLS). CS-FA interaction was confirmed by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) was applied for the dehydrated material characterization. Scanning electron microscopy (SEM) was used to evaluate the NGs ultraestructure. In vitro drug release studies were performed using a modified Franz diffusion cell, and the release profile was fitted to obtain kinetics parameters. Mucoadhesion properties were evaluated through ζ-potential measurements. Ex vivo corneal permeation studies were conducted in rabbit corneas to compare the permeability of FA contained in NGs. Results: NGs presented a Ho of 312.4 ± 8.2 nm and a PdI of 0.28 ± 0.04. SEM imaging revealed spherical morphologies with minor variations in size and shape induced by FA. Lyophilized and resuspended NGs exhibited a 6.8% increase in Ho and a PdI rise to 0.42, indicating slight aggregation. In vitro drug release studies demonstrated sustained FA release, as determined by the Higuchi model. Mucoadhesion studies showed a decrease in ζ-potential from +36.9 to +18.1 mV, confirming electrostatic interactions with mucin. Ex vivo corneal permeation studies indicated that encapsulated FA permeated 2.6 times slower than free FA, suggesting sustained release. Conclusions: our findings demonstrate the potential of nanostructures in the form of NGs to enhance FA-loaded ocular delivery and bioavailability. Full article
(This article belongs to the Special Issue Recent Advances in Chitosan-Based Nanoparticles for Drug Delivery)
Show Figures

Graphical abstract

33 pages, 1249 KiB  
Review
Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function
by Francesca Nencini, Elvira Giurranna, Serena Borghi, Niccolò Taddei, Claudia Fiorillo and Matteo Becatti
Antioxidants 2025, 14(4), 390; https://doi.org/10.3390/antiox14040390 - 26 Mar 2025
Viewed by 639
Abstract
Fibrinogen, a pivotal plasma glycoprotein, plays an essential role in hemostasis by serving as the precursor to fibrin, which forms the structural framework of blood clots. Beyond coagulation, fibrinogen influences immune responses, inflammation, and tissue repair. Oxidative stress, characterized by an imbalance between [...] Read more.
Fibrinogen, a pivotal plasma glycoprotein, plays an essential role in hemostasis by serving as the precursor to fibrin, which forms the structural framework of blood clots. Beyond coagulation, fibrinogen influences immune responses, inflammation, and tissue repair. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) and antioxidants, induces fibrinogen oxidation, significantly altering its structure and function. This narrative review synthesizes findings from in vitro, ex vivo, and clinical studies, emphasizing the impact of fibrinogen oxidation on clot formation, architecture, and degradation. Oxidative modifications result in denser fibrin clots with thinner fibers, reduced permeability, and heightened resistance to fibrinolysis. These structural changes exacerbate prothrombotic conditions in cardiovascular diseases, diabetes, chronic inflammatory disorders and cancer. In contrast, “low-dose” oxidative stress may elicit protective adaptations in fibrinogen, preserving its function. The review also highlights discrepancies in experimental findings due to variability in oxidation protocols and patient conditions. Understanding the interplay between oxidation and fibrinogen function could unveil therapeutic strategies targeting oxidative stress. Antioxidant therapies or selective inhibitors of detrimental oxidation hold potential for mitigating thrombotic risks. However, further research is essential to pinpoint specific fibrinogen oxidation sites, clarify their roles in clot dynamics, and bridge the gap between basic research and clinical practice. Full article
(This article belongs to the Special Issue Understanding Oxidative Stress in Cardiovascular Disorders)
Show Figures

Figure 1

24 pages, 2661 KiB  
Article
Pleurotus eryngii Mushrooms Fermented with Human Fecal Microbiota Protect Intestinal Barrier Integrity: Immune Modulation and Signalling Pathways Counter Deoxycholic Acid-Induced Disruption in Healthy Colonic Tissue
by Evangelia N. Kerezoudi, Georgios I. Zervakis, Vasiliki Pletsa, Adamantini Kyriacou, Robert J. Brummer and Ignacio Rangel
Nutrients 2025, 17(4), 694; https://doi.org/10.3390/nu17040694 - 14 Feb 2025
Viewed by 882
Abstract
Background: This study explores the potential of the Pleurotus eryngii mushroom fermentation supernatant (FS-PEWS) as an intervention for mitigating sodium deoxycholate (SDC)-induced intestinal barrier dysfunction and inflammation. Methods: FS-PEWS was assessed for its protective effects against SDC-induced barrier dysfunction and inflammation using [...] Read more.
Background: This study explores the potential of the Pleurotus eryngii mushroom fermentation supernatant (FS-PEWS) as an intervention for mitigating sodium deoxycholate (SDC)-induced intestinal barrier dysfunction and inflammation. Methods: FS-PEWS was assessed for its protective effects against SDC-induced barrier dysfunction and inflammation using an in vitro Caco-2 cell model and ex vivo colonic biopsies from healthy adult donors, where barrier integrity, permeability, immunomodulation and receptor-mediated pathways were evaluated. Results: In Caco-2 cells, SDC exposure downregulated ZO-1, occludin, and claudin-1 expression, with FS-PEWS restoring ZO-1 and claudin-1 levels while maintaining cell viability. In colonic biopsies from healthy adults, FS-PEWS maintained tissue integrity and selectively mitigated transcellular permeability without affecting paracellular permeability when combined with the stressor. Additionally, FS-PEWS exhibited potent anti-inflammatory effects, reducing pro-inflammatory cytokines, e.g., TNF-α, IL-6, and IL-1β and modulating receptor-mediated pathways, i.e., TLR-4, dectin-1. Conclusions: These results demonstrate the potential of FS-PEWS to sustain intestinal barrier function and modulate immune responses under stress, highlighting its therapeutic potential for managing gut barrier dysfunction and inflammation associated with microbial metabolite-induced disruptions. Full article
Show Figures

Figure 1

22 pages, 12170 KiB  
Article
Evaluation of Preclinical Efficacy of Curcumin-Loaded Bicosome Systems in Amelioration of Oral Mucositis
by Daniela Vergara, Claudia Sanhueza, Susana Méndez, Mariela Bustamante, Benjamín Vega, Francisca Acevedo and Olga López
Pharmaceutics 2025, 17(2), 181; https://doi.org/10.3390/pharmaceutics17020181 - 1 Feb 2025
Viewed by 909
Abstract
Background/Objectives: Oral mucositis (OM) is a common and debilitating side effect of cancer therapy, characterized by ulceration or inflammation of the oral mucosa. This study evaluates the preclinical efficacy of curcumin-loaded bicosome systems (cur-BS) in mitigating chemotherapy-induced OM in mice. Methods: BS were [...] Read more.
Background/Objectives: Oral mucositis (OM) is a common and debilitating side effect of cancer therapy, characterized by ulceration or inflammation of the oral mucosa. This study evaluates the preclinical efficacy of curcumin-loaded bicosome systems (cur-BS) in mitigating chemotherapy-induced OM in mice. Methods: BS were prepared using a combination of 1,2-di-palmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), α-tocopherol, and curcumin, encapsulated within liposomal vesicles. Three formulations with different curcumin concentrations (180, 540, and 900 μM) were characterized by particle size, polydispersity index (PDI), encapsulation efficiency (EE), appearance, and morphology. The formulation with the highest concentration (cur-BS 5×) was selected for ex vivo permeability studies, release profile analysis, and in vitro anti-inflammatory efficacy. OM was induced in mice using 5-fluorouracil (5-FU) and acetic acid. Cur-BS 5× was compared to the commercial product Dentoxol®. Results: The results showed that cur-BS 5× provided sustained release through a mechanism involving both diffusion and matrix relaxation, enhancing curcumin retention in deeper skin layers. Treatment with cur-BS 5× downregulated the expression of inflammatory markers (IL-1β and TNF-α). Macroscopic assessments demonstrated that both cur-BS 5× and Dentoxol® reduced OM severity, with the greatest improvement observed between days 6 and 9. By day 24, OM scores were 1.25 ± 0.5 for cur-BS 5× and 1.0 ± 0.0 for Dentoxol®, indicating effectiveness in both treatments. However, histological analysis revealed superior tissue recovery with cur-BS 5×, showing better epithelial structure and reduced inflammation. Cur-BS 5×-treated mice also exhibited greater weight recovery and higher survival rates compared to the Dentoxol® group. Conclusions: These findings suggest that cur-BS 5× may enhance OM treatment, offering outcomes comparable to or better than those of Dentoxol®. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

17 pages, 5542 KiB  
Article
Fabrication and Evaluation of Dissolving Hyaluronic Acid Microneedle Patches for Minimally Invasive Transdermal Drug Delivery by Nanoimprinting
by Sayaka Miura, Rio Yamagishi, Mano Ando, Yuna Hachikubo, Nor Amirrah Ibrahim, Nur Izzah Md Fadilah, Manira Maarof, Misaki Oshima, Sen Lean Goo, Hiryu Hayashi, Mayu Morita, Mh Busra Fauzi and Satoshi Takei
Gels 2025, 11(2), 89; https://doi.org/10.3390/gels11020089 - 23 Jan 2025
Cited by 3 | Viewed by 2131
Abstract
Transdermal drug delivery minimizes pain and provides a controlled, stable release of drugs, but its effectiveness is limited by the skin’s natural barriers. Microneedles overcome this problem, enabling minimally invasive drug delivery. Microneedle patches (MNPs) with 80 µm-tall needles composed of hyaluronic acid [...] Read more.
Transdermal drug delivery minimizes pain and provides a controlled, stable release of drugs, but its effectiveness is limited by the skin’s natural barriers. Microneedles overcome this problem, enabling minimally invasive drug delivery. Microneedle patches (MNPs) with 80 µm-tall needles composed of hyaluronic acid (HA) were developed and evaluated for their formability, structural integrity, dissolution rate, skin penetration ability, and drug transmission capacity. The influence of the molecular weight of HA on these properties was also investigated. MNPs made from low-molecular-weight HA (30 kDa–50 kDa) demonstrated 12.5 times superior drug permeability in ex vivo human skin compared to needleless patches (NLPs). Furthermore, in the same test, low-molecular-weight HA MNPs had 1.7 times higher drug permeability than high-molecular-weight HA MNPs, suggesting superior transdermal administration. The molecular weight of HA significantly influenced its solubility and permeability, highlighting the potential effectiveness of MNPs as drug delivery systems. Puncture tests demonstrated a penetration depth of 50–60 µm, indicating minimal nerve irritation in the dermis and effective drug delivery to the superficial dermal layer. These results present a manufacturing technique for MNPs incorporating model drug compounds and highlight their potential as a novel and minimally invasive drug delivery method for the biomedical applications of soft gels. Full article
Show Figures

Figure 1

31 pages, 4890 KiB  
Article
Characteristics of Hydrogels as a Coating for Microneedle Transdermal Delivery Systems with Agomelatine
by Monika Wojtyłko, Ariadna B. Nowicka, Anna Froelich, Mirosław Szybowicz, Tobiasz Banaszek, Dorota Tomczak, Wiesław Kuczko, Radosław Wichniarek, Irena Budnik, Barbara Jadach, Oliwia Kordyl, Antoni Białek, Julia Krysztofiak, Tomasz Osmałek and Dimitrios A. Lamprou
Molecules 2025, 30(2), 322; https://doi.org/10.3390/molecules30020322 - 15 Jan 2025
Cited by 1 | Viewed by 1782
Abstract
Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the stratum corneum barrier. For this purpose, [...] Read more.
Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the stratum corneum barrier. For this purpose, the use of microneedles may increase the efficiency of administration. The aim of this study was to prepare an agomelatine-loaded hydrogel suitable for coating microneedles for the transdermal drug delivery of AGM. The optimized formulations were subjected to spectroscopic and rheological characterization and mechanical tests, as well as tested for release through an artificial membrane and permeation through human skin ex vivo. Both hydrogels were found to have suitable parameters for coating microneedles using the dip-coating method, including the stability of the substance at the process temperature, shear-thinning behavior, and appropriate textural parameters such as adhesion or hardness. Additionally, two formulations were tested for potential application to the skin alone because the gels showed suitable mechanical properties for the skin application. In this case, the ethanol gel was characterized by higher skin permeability and better spreadability. The information obtained in this study will allow the preparation of coated microneedles for the transdermal administration of agomelatine. Full article
(This article belongs to the Special Issue Hydrogels: Preparation, Characterization, and Applications)
Show Figures

Figure 1

16 pages, 16262 KiB  
Article
Effects of Standardized Natural Citrus Extract on Growth, Gut Health, Carcass Quality, and Welfare of Broiler Chickens
by Sekhou Cisse, Arkadiusz Matuszewski, Damian Bień, Patrycja Ciborowska, Anna Zalewska, Jakub Urban, Monika Michalczuk, Marta Mendel, Urszula Latek, Joanna Polak, Małgorzata Sobczak-Filipiak, Paweł Konieczka and Mohammed El Amine Benarbia
Animals 2025, 15(2), 127; https://doi.org/10.3390/ani15020127 - 8 Jan 2025
Viewed by 1400
Abstract
This study aimed to investigate the effects of a Standardized Natural Citrus Extract (SNCE) on broiler chickens’ growth performance, gut health, carcass quality, and welfare. A total of 756 one-day-old Ross 308 males were randomly assigned to two groups: a control group (CTL) [...] Read more.
This study aimed to investigate the effects of a Standardized Natural Citrus Extract (SNCE) on broiler chickens’ growth performance, gut health, carcass quality, and welfare. A total of 756 one-day-old Ross 308 males were randomly assigned to two groups: a control group (CTL) fed with a standard diet, and a citrus group (SNCE) fed with the same standard diet supplemented with 250 g/ton of feed of SNCE. Growth performance was recorded weekly until d 35, while mortality was recorded daily. The feed conversion ratio (FCR) and European Efficiency Index (EEI) of broiler chickens were also calculated weekly. At day 35, 10 birds per group were randomly selected for slaughter performance. In parallel, broiler chickens’ welfare was assessed according to the Welfare Quality Assessment Protocol. Caecal digest was also collected post mortem for short-chain fatty acids (SCFA) analyses, and jejunum samples were collected for ex vivo gut permeability assay. SNCE dietary supplementation enhanced broiler chickens’ performance, i.e., final bodyweight and EEI, compared to the CTL group. The carcass weight was also significantly higher in the SNCE group. In addition, the fat percentage was lower in the SNCE group. Regarding broiler chickens’ welfare and gut health parameters, Footpad Dermatitis (FPD) and gate score were also lower in birds supplemented with SNCE. The SCFA measurement showed a lower concentration of iso-butyric acid, iso-valeric acid, and total putrefactive SCFA in the SNCE group. The differences in gut permeability measured as TEER value indicate that using citrus extract lowered the risk of gut inflammation. This study provides valuable insights into the mechanisms of action that may underlie the observed effects of SNCE on performance, as demonstrated in this study and others. These effects could potentially be attributed to the reduction in inflammation and the enhanced utilization of nutrients. Further studies are needed to confirm these results. Full article
(This article belongs to the Special Issue Effects of Feed Additives on the Gut Health of Monogastric Animals)
Show Figures

Figure 1

22 pages, 5770 KiB  
Article
Layer-by-Layer Biopolymer-Coated Deformable Liposomes–In Situ Gel: A Hybrid Strategy for Enhanced Ocular Delivery of Itraconazole: In Vitro and In Vivo Appraisal
by Mohamed M. Badran, Areej Alsubaie, Mounir M. Salem Bekhit, Abdullah H. Alomrani and Aliyah Almomen
Gels 2025, 11(1), 19; https://doi.org/10.3390/gels11010019 - 31 Dec 2024
Cited by 3 | Viewed by 1018
Abstract
Itraconazole (ITZ) is a potent antifungal agent. Its oral administration is associated with systemic toxicity, and its efficacy in ocular formulations is limited. This study aims to enhance ITZ’s ocular permeation and antifungal efficacy by loading it into deformable liposomes (DLs) based on [...] Read more.
Itraconazole (ITZ) is a potent antifungal agent. Its oral administration is associated with systemic toxicity, and its efficacy in ocular formulations is limited. This study aims to enhance ITZ’s ocular permeation and antifungal efficacy by loading it into deformable liposomes (DLs) based on Tween 80 (T) or Poloxamer 188 (P). Moreover, ITZ was loaded into biopolymer-coated DLs to augment its ocular availability. ITZ-loaded DLs were coated with hyaluronic acid (HA-DLs), chitosan (CS-DLs), or a layer-by-layer coating (CS/HA-DLs). These formulations were further laden into pH-sensitive in situ gels to provide a hybrid system to intensify their ocular adhesion properties. The prepared DLs were successfully prepared with vesicle sizes in nonorange (<200 nm). The zeta potential values of DLS were negative before coating and shifted to high negativity with HA coating and positivity with CS and CS/HA bilayer coating. These variations of zeta potential indicate successful CS and HA coatings. The optimized A high EE% was achieved with DLs-T: 89% (CS/HA-DLs-T), 86% (CS-DLs-T), 85% (HA-DLs-T), and 79% (HA-DLs-T). Therefore, DLs-T were incorporated into in situ gels, displaying optimal gelling capacity and viscosity. The release rate of ITZ from the coated DLs-laden in situ gels was slower than that observed with the uncoated DLs-gel. CS/HA-DLs-T laden-in situ gels showed the highest ex vivo transcorneal permeability and antifungal efficacy. These data suggest that the layer-by-layer-CS/HA-DLs-T presents a hopeful strategy for the ocular delivery of ITZ, offering a promising approach for managing ocular fungal infections. Full article
(This article belongs to the Special Issue Designing Gels for Antibacterial and Antiviral Agents)
Show Figures

Graphical abstract

11 pages, 2334 KiB  
Article
Skin Barrier-Improving and Skin-Soothing Effects of Autophagy-Activating Peptide on Sensitive Skin
by Sohee Eun, Minhye Lim, Juyeon Jung, Kayoung Shin, Sungwoo Kim, Yeonjae Kim, Gaewon Nam, Sekyoo Jeong and Hyunjung Kim
Cosmetics 2024, 11(6), 223; https://doi.org/10.3390/cosmetics11060223 - 17 Dec 2024
Cited by 1 | Viewed by 2058
Abstract
Among the complex and diverse triggering and aggravating factors for sensitive skin syndrome, potential defects in skin barrier function are considered one of the most important ones. Previously, we have reported improvements in skin barrier function thanks to autophagy-activating peptide derivatives. Further investigation [...] Read more.
Among the complex and diverse triggering and aggravating factors for sensitive skin syndrome, potential defects in skin barrier function are considered one of the most important ones. Previously, we have reported improvements in skin barrier function thanks to autophagy-activating peptide derivatives. Further investigation revealed that the activation of autophagy signaling in skin cells also attenuated inflammatory responses induced by UV irradiation or exposure to pollution. In this study, in vitro and ex vivo human skin explant models were used to evaluate the potential benefits of the autophagy-activating peptide, pentasodium tetracarboxymethyl palmitoyl didpeptide-12 (PTPD-12), on sensitive skin-related parameters. Clinical efficacy testing was also performed to confirm the skin barrier-improving and skin-soothing activities of the autophagy-activating peptide. As a result, significant reductions in inflammatory cytokine (IL-8 and TNF-α) and enzyme activity (PDE4) were observed in the in vitro system. Increased expression of barrier marker proteins by PTPD-12 in UV-irradiated human skin tissue was observed ex vivo. In a clinical study, delayed response to topical capsaicin-induced vascular activation, which represents enhanced epidermal permeability barrier function, was observed after 4 weeks of application of PTPD-12 in healthy volunteers. In another clinical study with sensitive skin carriers identified via a lactic acid stinging test, a significant reduction in trans-epidermal water loss (TEWL) and skin erythema index was observed after 4 weeks of PTPD-12 usage. These results suggest that the activation of autophagy can be a potential treatment regimen for sensitive skin syndrome, specifically in terms of skin barrier function enhancement and skin soothing. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

15 pages, 3230 KiB  
Article
Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration
by Sa Huang, Yuan Xu, Yingyao Luo, Zhijiong Wang, Fan Li, Zhenmiao Qin and Junfeng Ban
Pharmaceutics 2024, 16(12), 1496; https://doi.org/10.3390/pharmaceutics16121496 - 21 Nov 2024
Cited by 1 | Viewed by 988
Abstract
Background: Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye’s complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional [...] Read more.
Background: Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye’s complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional eye drops suffer from low bioavailability primarily due to rapid clearance mechanisms. Methods: The novel ocular drug delivery system developed in this study utilizes poly(lactic-co-glycolic acid) (PLGA) nanoparticles modified with cell-penetrating peptides (CPPs). In vitro drug release studies were conducted to evaluate the sustained-release properties of the nanoparticles. Ex vivo experiments using MDCK cells assessed corneal permeability and uptake efficiency. Additionally, in vivo studies were performed in rabbit eyes to determine the nanoparticles’ resistance to elimination by tears and their retention time in the aqueous humor. Results: In vitro drug release studies demonstrated superior sustained-release properties of the nanoparticles. Ex vivo experiments revealed enhanced corneal permeability and increased uptake efficiency by MDCK cells. In vivo studies in rabbit eyes confirmed the nanoparticles’ resistance to elimination by lacrimal fluid and their ability to extend retention time in the aqueous humor. CPP modification significantly improved ocular retention, corneal penetration, and cellular endocytosis efficiency. Conclusions: The CPP-modified PLGA nanoparticles provide an effective and innovative solution for ocular drug delivery, offering improved bioavailability, prolonged retention, and enhanced drug penetration, thereby overcoming the challenges of traditional intraocular drug administration methods. Full article
(This article belongs to the Special Issue Polymer-Based Delivery System)
Show Figures

Graphical abstract

16 pages, 3822 KiB  
Article
Enhanced Ocular Drug Delivery of Dexamethasone Using a Chitosan-Coated Soluplus®-Based Mixed Micellar System
by Samer Adwan, Faisal Al-Akayleh, Madeiha Qasmieh and Teiba Obeidi
Pharmaceutics 2024, 16(11), 1390; https://doi.org/10.3390/pharmaceutics16111390 - 29 Oct 2024
Cited by 2 | Viewed by 1591
Abstract
Background: This study introduces a novel dexamethasone (DEX) mixed micellar system (DEX-MM) using Soluplus® and Pluronic F-127 (PF127) to enhance ocular drug delivery. The enhancement of ocular application properties was achieved by creating a chitosan-coated DEX-MM (DEX-CMM), which promotes better adherence to [...] Read more.
Background: This study introduces a novel dexamethasone (DEX) mixed micellar system (DEX-MM) using Soluplus® and Pluronic F-127 (PF127) to enhance ocular drug delivery. The enhancement of ocular application properties was achieved by creating a chitosan-coated DEX-MM (DEX-CMM), which promotes better adherence to the ocular surface, thereby improving drug absorption. Methods: Using the solvent evaporation method, a formulation was developed with a Soluplus®-to-drug ratio of 1:10, enhanced with 0.25% PF127. After dispersing in water, 1% chitosan (CS) was added. The stability and integrity of DEX within the micelles were verified using attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC). Additionally, in vitro and ex vivo drug release studies were conducted. Results: DEX-CMM (F6) demonstrated a particle size of 151.9 ± 1 nm and a polydispersity index (PDI) of 0.168 ± 0.003, suggesting uniformity and high electrostatic stability with a zeta potential of +35.96 ± 2.13 mV. The non-Fickian drug release mechanism indicated prolonged drug retention. Comparative analyses showed DEX-CMM outperforming a standard DEX suspension in drug release and ocular tissue permeation, with flux measurements significantly higher than the DEX suspension. Conclusion: The study confirmed the efficacy of DEX-CMM in enhancing drug delivery to ocular tissues, evidenced by improved permeability. Safety evaluations using the HET-CAM test demonstrated that DEX-CMM was non-irritant, supporting its potential for effective ocular drug delivery. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 3rd Edition)
Show Figures

Graphical abstract

20 pages, 3892 KiB  
Article
Exploring the Antifungal Effectiveness of a Topical Innovative Formulation Containing Voriconazole Combined with Pinus sylvestris L. Essential Oil for Onychomycosis
by Safaa Halool Mohammed Al-Suwaytee, Olfa Ben Hadj Ayed, Raja Chaâbane-Banaoues, Tahsine Kosksi, Maytham Razaq Shleghm, Leila Chekir-Ghedira, Hamouda Babba, Souad Sfar and Mohamed Ali Lassoued
Colloids Interfaces 2024, 8(5), 56; https://doi.org/10.3390/colloids8050056 - 17 Oct 2024
Cited by 1 | Viewed by 1855
Abstract
(1) Background: The present study aimed to assess the antifungal effectiveness of a topical innovative formulation containing the association of an antifungal agent, voriconazole (VCZ), and the essential oil of Pinus sylvestris L. (PSEO). (2) Methods: Pseudo-ternary phase diagram and D-optimal mixture design [...] Read more.
(1) Background: The present study aimed to assess the antifungal effectiveness of a topical innovative formulation containing the association of an antifungal agent, voriconazole (VCZ), and the essential oil of Pinus sylvestris L. (PSEO). (2) Methods: Pseudo-ternary phase diagram and D-optimal mixture design approaches were applied for the development and the optimization of the o/w nanoemulsion. The optimized formulation (NE) was subjected to physicochemical characterization and to physical stability studies. In vitro permeation studies were carried out using the Franz cell diffusion system. The antimycotic efficacy against Microsporum canis was carried out in vitro. (3) Results: Optimal nanoemulsion showed great physical stability and was characterized by a small droplet size (19.015 nm ± 0.110 nm), a PDI of 0.146 ± 0.011, a zeta potential of −16.067 mV ± 1.833 mV, a percentage of transmittance of 95.352% ± 0.175%, and a pH of 5.64 ± 0.03. Furthermore, it exhibited a significant enhancement in apparent permeability coefficient (p < 0.05) compared to the VCZ free drug. Finally, NE presented the greatest antifungal activity against Microsporum canis in comparison with VCZ and PSEO tested alone. (4) Conclusions: These promising results suggest that this topical innovative formulation could be a good candidate to treat onychomycosis. Further ex vivo and clinical investigations are needed to support these findings. Full article
Show Figures

Figure 1

Back to TopTop