Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,869)

Search Parameters:
Keywords = flower stage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 13361 KiB  
Article
Vase-Life Monitoring System for Cut Flowers Using Deep Learning and Multiple Cameras
by Ji Yeong Ham, Yong-Tae Kim, Suong Tuyet Thi Ha and Byung-Chun In
Plants 2025, 14(7), 1076; https://doi.org/10.3390/plants14071076 (registering DOI) - 1 Apr 2025
Viewed by 24
Abstract
Here, we developed a vase-life monitoring system (VMS) to automatically and accurately assess the post-harvest quality and vase life (VL) of cut roses. The VMS integrates camera imaging with the YOLOv8 (You Only Look Once version 8) deep learning algorithm to continuously monitor [...] Read more.
Here, we developed a vase-life monitoring system (VMS) to automatically and accurately assess the post-harvest quality and vase life (VL) of cut roses. The VMS integrates camera imaging with the YOLOv8 (You Only Look Once version 8) deep learning algorithm to continuously monitor major physiological parameters including flower opening, fresh weight, water uptake, and gray mold disease incidence. Our results showed that the VMS can automatically measure the main physiological factors of cut roses by obtaining precise and consistent data. The values measured for physiology and disease by the VMS closely correlated with those measured by observation (OBS). Additionally, YOLOv8 achieved a high performance in the model by obtaining an object detection accuracy of 90%. Additionally, the mAP0.5 supported the high accuracy of the model in evaluating the VL of cut roses. Regression analysis revealed a strong correlation between the VL, VMS, and OBS. The VMS incorporating the microscope detected physiological and disease factors in the early stages of development. These results show that the plant monitoring system incorporating a microscope is highly effective for evaluating the post-harvest quality of cut roses. The early detection method using the VMS could also be applied to the flower breeding process, which requires rapid measurements of important characteristics of flower species, such as VL and disease resistance, to develop superior cultivars. Full article
Show Figures

Figure 1

23 pages, 1101 KiB  
Review
Regulation of Anthocyanins and Quality in Strawberries Based on Light Quality
by Fang Wang, Jingxuan Wang, Guangsi Ji, Xinna Kang, Yali Li, Jiangtao Hu, Chun Qian and Sen Wang
Horticulturae 2025, 11(4), 377; https://doi.org/10.3390/horticulturae11040377 (registering DOI) - 31 Mar 2025
Viewed by 16
Abstract
Strawberry fruits accumulate nutritionally critical anthocyanins and phytochemicals through light=quality-dependent metabolic regulation. This review systematically examines spectral modulation strategies for enhancing anthocyanin biosynthesis and fruit quality parameters. We demonstrate that dual red (660 nm) and blue (450 nm) irradiation optimally activates the flavonoid [...] Read more.
Strawberry fruits accumulate nutritionally critical anthocyanins and phytochemicals through light=quality-dependent metabolic regulation. This review systematically examines spectral modulation strategies for enhancing anthocyanin biosynthesis and fruit quality parameters. We demonstrate that dual red (660 nm) and blue (450 nm) irradiation optimally activates the flavonoid pathway, co-upregulating structural genes (CHS, F3H, DFR, ANS) and regulatory factors (FaMYB10, FaHY5). Mechanistic analyses reveal that blue light preferentially induces upstream phenylpropanoid enzymes (PAL, C4H, CHI), while red light enhances proanthocyanidin production through differential induction of LAR and ANR. Strategic supplementation with UV-C (254 nm, 1–2 kJ/m2/d) and far-red (730 nm, 15 μmol·m−2·s−1) improves anthocyanin spatial distribution via stress-mediated epidermal accumulation. Spectral optimization further coordinates flavor development by (1) balancing sucrose–hexose ratios through FaSPS1 modulation, (2) reducing organic acid content via FaMYB44.2 suppression, and (3) amplifying volatile esters (e.g., methyl anthranilate) through SAAT induction. Postharvest UV-C treatment (4 kJ/m2) extends shelf life by 30–35% through microbial inhibition and antioxidant system activation. Practical implementation frameworks propose phase-specific LED protocols related to vegetative growth (R:B = 3:1), flowering (R:B = 1:1), and maturation (R:B = 4:1) stages integrated with environmental sensors in controlled agriculture systems. These findings establish an actionable paradigm for photonic crop management, synergizing molecular precision with commercial horticultural operations to achieve sustainable yield enhancement (projected 22–28% increase) and nutraceutical enrichment. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Graphical abstract

16 pages, 5944 KiB  
Article
Stem Coloration in Alfalfa: Anthocyanin Accumulation Patterns and Nutrient Profiles of Red- and Green-Stemmed Variants
by Zhengfeng Cao, Jiaqing Li, Chuanjie Wang, Xueyang Min and Zhenwu Wei
Agronomy 2025, 15(4), 862; https://doi.org/10.3390/agronomy15040862 - 29 Mar 2025
Viewed by 155
Abstract
Anthocyanins, crucial flavonoids in plants, enhance stress tolerance in alfalfa and are attracting attention due to their antioxidant properties. This study analyzed red- and green-stemmed alfalfa using spectrophotometry, frozen sections, and LC-MS/MS. Anthocyanins were concentrated in stem vascular cambium, with red stems peaking [...] Read more.
Anthocyanins, crucial flavonoids in plants, enhance stress tolerance in alfalfa and are attracting attention due to their antioxidant properties. This study analyzed red- and green-stemmed alfalfa using spectrophotometry, frozen sections, and LC-MS/MS. Anthocyanins were concentrated in stem vascular cambium, with red stems peaking at 61.08 mg g−1 DW during the bud stage. Seven anthocyanidins were identified, with their corresponding aglycones including cyanidin, peonidin, and malvidin. At early flowering, red-stemmed alfalfa contained 35 classes of anthocyanins compared to 17 in green-stemmed varieties, with cyanidin-3-O-glucoside levels significantly higher in red stems (4.423 μg g−1, p < 0.05). Red-stemmed alfalfa also showed higher contents of acid detergent fiber, crude fat, Cu, Fe, and Zn (p < 0.05), especially Zn (p < 0.01). Correlation analysis revealed a strong positive link between cyanidin and crude fat (Spearman’s ρ = 0.93, p < 0.01) and a significant negative correlation with neutral detergent fiber (ρ = −0.88, p < 0.05). Cyanidin and peonidin are associated with stem color differentiation, with cyanidin contributing predominantly to red pigmentation, whereas zinc and crude fat exhibit a synergistic correlation with anthocyanin accumulation. These findings may inform breeding strategies to develop anthocyanin-enriched alfalfa. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

26 pages, 7101 KiB  
Article
Transcriptome Analysis Reveals Key Genes Involved in Fatty Acid and Triacylglycerol Accumulation in Developing Sunflower Seeds
by Wanqiu Meng, Linglu Zeng, Xiuli Yang, Dawei Chen and Li Sun
Genes 2025, 16(4), 393; https://doi.org/10.3390/genes16040393 (registering DOI) - 29 Mar 2025
Viewed by 167
Abstract
Background/Objectives: Sunflower (Helianthus annuus L.) is one of the four major global oilseed crops. Understanding the molecular mechanisms regulating fatty acid synthesis and triacylglycerol (TAG) accumulation is crucial for improving oil yield and quality. In this study, the oilseed sunflower cultivar ‘T302’, [...] Read more.
Background/Objectives: Sunflower (Helianthus annuus L.) is one of the four major global oilseed crops. Understanding the molecular mechanisms regulating fatty acid synthesis and triacylglycerol (TAG) accumulation is crucial for improving oil yield and quality. In this study, the oilseed sunflower cultivar ‘T302’, which was wild-cultivated in the northwestern region of China, was analyzed for fatty acid content by targeted lipidomic analysis. RNA sequencing (RNA-seq) was performed on 15 cDNA libraries from sunflower embryos at five developmental stages (10, 17, 24, 31, and 38 days after flowering) to investigate gene expression patterns during oil accumulation. Differentially expressed genes (DEGs) related to fatty acid and triacylglycerol accumulation in developing sunflower seeds were identified. WGCNA was used to gain deeper insights into the mechanisms underlying lipid metabolism. Results: The oil composition of ‘T302’ consisted of 86.61% unsaturated fatty acids (UFA), mainly linoleic acid (48.47%) and oleic acid (37.25%). Saturated fatty acids (SFAs) accounted for 13.39%, with palmitic acid (7.46%) and stearic acid (5.04%) being the most abundant. A total of 81,676 unigenes were generated from RNA-seq data, and 91 DEGs associated with lipid metabolism were identified, including key enzymes such as FAD2-1, SAD, FATA, LACS, PDAT2, and DGAT2. In addition, we identified several novel candidate transcription factor genes, including WRI1, LEC1, FUS3, and ABI3, which were found to regulate TAG synthesis during seed maturation and are worthy of further investigation. This study provides valuable insights into the molecular mechanisms of seed oil biosynthesis in oilseed sunflower. The identified key genes and transcription factors provide potential targets for molecular breeding strategies to increase oil content and modify fatty acid compositions in sunflower and other oilseed crops. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1002 KiB  
Article
The Effect of Low Temperature and Low Illumination Intensity on the Photosynthetic Characteristics and Antioxidant Enzyme Activity in the Strawberry
by Xinlong Hu, Chao Xu, Huihui Tao, Siyu Wang, Meng Zhang, Qian Chen, Huanxin Zhang, Guoquan Li and Chengpu Yan
Agronomy 2025, 15(4), 860; https://doi.org/10.3390/agronomy15040860 - 29 Mar 2025
Viewed by 58
Abstract
Low temperature (LT) and low illumination (LI) are common meteorological factors posing a great risk to plants. This study aimed to clarify and quantify the effects of LT, LI, and their combined stress (LTLI) on the photosynthetic physiological processes of strawberry plants during [...] Read more.
Low temperature (LT) and low illumination (LI) are common meteorological factors posing a great risk to plants. This study aimed to clarify and quantify the effects of LT, LI, and their combined stress (LTLI) on the photosynthetic physiological processes of strawberry plants during the flowering stage. The results indicated that LI stress increased Chla and b levels in strawberry plants while lowering the chlorophyll a/b ratio. In contrast, LT and LTLI stress reduced chlorophyll content. All stress conditions (LT, LI, and LTLI) decreased net photosynthetic rate, stomatal conductance, transpiration rate, the maximum photochemical efficiency of photosystem II, photosynthetic electron transport rate, and actual photochemical quantum efficiency. These stresses also raised intercellular carbon dioxide concentration, non-photochemical quenching coefficient, and levels of malondialdehyde, proline, hydrogen peroxide, and peroxide ion content. Moreover, LI stress treatment boosted the activity of superoxide dismutase, peroxidase, and catalase, while LT and LTLI stress initially raised the activity of these enzymes before it eventually declined. Importantly, the previously mentioned photosynthetic physiological parameters showed notable changes under the combined stress conditions. Ultimately, the TOPSIS model was used to quantitatively evaluate the impact levels of different stressors and treatment durations on the photosynthetic system of strawberry plants. In conclusion, the synergistic impact of LT and LI results in a reduction in photosynthetic rate and photosystem II activity, a disruption in the equilibrium of the antioxidant system, and an intensification of photoinhibition, ultimately leading to diminished photosynthetic efficiency in plants. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

14 pages, 6295 KiB  
Article
Anther Transcriptome Analysis of Two Heat Tolerance-Differentiated Indica Rice Restorer Lines Reveals the Importance of Non-Structural Carbohydrates and ATP in the Regulation of Heat Tolerance
by Jieqiang Zhou, Yingfeng Wang, Jiangfeng Li, Zijian Song, Yunhua Xiao, Huabing Deng, Xiong Liu, Qiuhong Chen, Wenbang Tang and Guilian Zhang
Int. J. Mol. Sci. 2025, 26(7), 3161; https://doi.org/10.3390/ijms26073161 - 29 Mar 2025
Viewed by 98
Abstract
Screening and breeding more resistant heat stress restorer lines represent an effective approach to addressing the decline in hybrid rice seed production caused by heat stress (HS). However, the molecular mechanisms affecting the differences in the heat resistance of anthers under HS remain [...] Read more.
Screening and breeding more resistant heat stress restorer lines represent an effective approach to addressing the decline in hybrid rice seed production caused by heat stress (HS). However, the molecular mechanisms affecting the differences in the heat resistance of anthers under HS remain unclear. This study compared the gene expression patterns of two hybrid rice restorer lines with differing heat resistances under HS and discusses the mechanisms of the heat response in rice. Under heat stress, 247 DEGs were co-expressed across varieties and were involved in biological processes such as protein processing and carbon metabolism, with heat shock proteins being the most ubiquitous. Interestingly, a substantial enrichment of genes related to non-structural carbohydrates and ATP was observed among the unique DEGs in R996 and R4628. Simultaneously, the contents of non-structural carbohydrates and ATP levels in the young spikes of R996 were significantly higher than those in R4628. This suggests that starch, soluble sugars and ATP play significant roles in heat tolerance during the flowering stage of rice. Overall, this study provides novel insights into the molecular mechanisms underlying heat stress resistance in indica rice restorer lines and informs future strategies for the genetic improvement of heat tolerance in these varieties. Full article
Show Figures

Figure 1

16 pages, 19344 KiB  
Article
Influence of Temperature, Humidity, and Photophase on the Developmental Stages of Spodoptera litura (Lepidoptera: Noctuidae) and Prediction of Its Population Dynamics
by Chun Fu, Zhiqian Liu, Danping Xu, Tingjiang Gan, Xinqi Deng, Honghua Zhang and Zhihang Zhuo
Insects 2025, 16(4), 355; https://doi.org/10.3390/insects16040355 - 27 Mar 2025
Viewed by 149
Abstract
Spodoptera litura (Fabricius, 1775) is a major agricultural pest that primarily targets vegetables, cash crops, peanuts, and sugarcane. It causes damage to leaves, flower buds, and fruits, leading to significant reductions in crop yields. Global climate change may profoundly affect the population dynamics [...] Read more.
Spodoptera litura (Fabricius, 1775) is a major agricultural pest that primarily targets vegetables, cash crops, peanuts, and sugarcane. It causes damage to leaves, flower buds, and fruits, leading to significant reductions in crop yields. Global climate change may profoundly affect the population dynamics and biological traits of this pest. This research employs a meta-analysis to systematically investigate the impact of temperature variation on the developmental parameters of S. litura. A detailed review of 17 relevant studies reveals that within an optimal temperature range (30 °C to 35 °C), higher temperatures expedite the developmental processes of S. litura, shorten its life cycle, and enhance the reproductive potential of female adults. In contrast, temperatures exceeding 35 °C slow down its development, increase mortality rates, and markedly reduce the egg-laying capacity of females, highlighting the adverse effects of heat stress on growth and reproduction. Furthermore, different life stages of S. litura exhibit varying degrees of temperature sensitivity, with the larval stage being particularly vulnerable to high temperatures, while extreme heat significantly suppresses adult survival. These meta-analysis findings shed light on the biological responses of S. litura to climate change and provide a scientific basis for developing future pest management strategies. As global temperatures rise, moderate warming may facilitate the spread of S. litura populations, exacerbating their threat to crop production, whereas extreme heat conditions could constrain their growth. Consequently, pest control strategies must be more region-specific and aligned with local climatic trends. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Figure 1

25 pages, 5619 KiB  
Article
Digital Repeat Photography Application for Flowering Stage Classification of Selected Woody Plants
by Monika A. Różańska, Kamila M. Harenda, Damian Józefczyk, Tomasz Wojciechowski and Bogdan H. Chojnicki
Sensors 2025, 25(7), 2106; https://doi.org/10.3390/s25072106 - 27 Mar 2025
Viewed by 85
Abstract
Digital repeat photography is currently applied mainly in geophysical studies of ecosystems. However, its role as a tool that can be utilized in conventional phenology, tracking a plant’s seasonal developmental cycle, is growing. This study’s main goal was to develop an easy-to-reproduce, single-camera-based [...] Read more.
Digital repeat photography is currently applied mainly in geophysical studies of ecosystems. However, its role as a tool that can be utilized in conventional phenology, tracking a plant’s seasonal developmental cycle, is growing. This study’s main goal was to develop an easy-to-reproduce, single-camera-based novel approach to determine the flowering phases of 12 woody plants of various deciduous species. Field observations served as binary class calibration datasets (flowering and non-flowering stages). All the image RGB parameters, designated for each plant separately, were used as plant features for the models’ parametrization. The training data were subjected to various transformations to achieve the best classifications using the weighted k-nearest neighbors algorithm. The developed models enabled the flowering classifications at the 0, 1, 2, 3, and 5 onset day shift (absolute values) for 2, 3, 3, 2, and 2 plants, respectively. For 9 plants, the presented method enabled the flowering duration estimation, which is a valuable yet rarely used parameter in conventional phenological studies. We found the presented method suitable for various plants, despite their petal color and flower size, until there is a considerable change in the crown color during the flowering stage. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

18 pages, 3189 KiB  
Article
Preharvest and Postharvest Applications of Fe-Based Nanomaterials: A Potent Strategy for Improving Pepper Storage
by Zhuang Cheng, Xianzheng Yuan, Xuesong Cao, Zhemin Jia, Fang Hao, Jiayi Chen, Le Yue and Zhenyu Wang
Nanomaterials 2025, 15(7), 497; https://doi.org/10.3390/nano15070497 - 26 Mar 2025
Viewed by 97
Abstract
Nanomaterials (NMs) hold significant potential for enhancing agricultural production, extending the shelf life, and maintaining the quality of postharvest vegetables and fruits. In this study, after foliar spraying with 1, 10, and 50 mg of L−1 Fe-P NMs at different stages (seedling, [...] Read more.
Nanomaterials (NMs) hold significant potential for enhancing agricultural production, extending the shelf life, and maintaining the quality of postharvest vegetables and fruits. In this study, after foliar spraying with 1, 10, and 50 mg of L−1 Fe-P NMs at different stages (seedling, flowering, and fruit stage), the pepper plant growth was significantly improved. In particular, the foliar application of 10 mg of L−1 Fe-P NMs during the flowering stage was found to be an optimal cultivation approach to promote the growth, yield, and freshness of peppers. Compared with the control group, Fe-P NMs increased net photosynthetic rate, plant height, and fruit number by 132.7%, 40.4%, and 265.7%, respectively. The applied Fe-P NMs, at the flowering stage, altered the capsaicin metabolic pathway, upregulating the genes for the synthesis of total phenols, flavonoids, lignans, and capsaicinoids. Consequently, these metabolites, which are beneficial for maintaining the freshness of pepper fruits, were increased. Furthermore, Fe-P NMs at the flowering stage downregulated the abundance of rot-causing microorganisms (Enterobacter and Chryseobacterium) and upregulated beneficial microorganisms (Pseudomonas, Arthrobacter, Sphingobacterium, and Paenibacillus) to change the microbial community structure. This ultimately created a micro-ecological environment conducive to the preservation of pepper fruits. For comparison, during pepper fruit storage, dipping and spraying with Fe-P NM suspensions effectively delayed weight loss and enhanced the growth of beneficial bacteria. Nevertheless, the effect was less pronounced than preharvest foliar application. This study provides insights into the pre- or postharvest application of NMs for improving the preservation performance of pepper fruits. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

25 pages, 1090 KiB  
Article
Cell-Type-Specific Heat-Induced Changes in the Proteomes of Pollen Mother Cells and Microspores Provide New Insights into Tomato Pollen Production Under Elevated Temperature
by Priya Thapa, Jun Guo, Kajol Pradhan, Dibya Thapa, Sudhakar Madhavarapu, Jing Zou, Jesse Potts, Hui Li, Joshua O’Hair, Chen Wang, Suping Zhou, Yong Yang, Tara Fish and Theodore W. Thannhauser
Proteomes 2025, 13(2), 13; https://doi.org/10.3390/proteomes13020013 - 25 Mar 2025
Viewed by 91
Abstract
Background: Tomatoes are self-pollinating plants, and successful fruit set depends on the production of functional pollen within the same flower. Our previous studies have shown that the ‘Black Vernissage’ tomato variety exhibits greater resilience to heat stress in terms of pollen productivity compared [...] Read more.
Background: Tomatoes are self-pollinating plants, and successful fruit set depends on the production of functional pollen within the same flower. Our previous studies have shown that the ‘Black Vernissage’ tomato variety exhibits greater resilience to heat stress in terms of pollen productivity compared to the ‘Micro-Tom’ variety. Pollen productivity is determined by meiotic activity during microsporogenesis and the development of free microspores during gametogenesis. This study focused on identifying heat stress (HS)-induced proteomes in pollen mother cells (PMCs) and microspores. Methods: Tomato plants were grown under two temperature conditions: 26 °C (non-heat-treated control) and 37 °C (heat-treated). Homogeneous cell samples of meiotic PMCs (prior to the tetrad stage) and free microspores were collected using laser capture microdissection (LCM). The heat-induced proteomes were identified using tandem mass tag (TMT)–quantitative proteomics analysis. Results: The enrichment of the meiotic cell cycle in PMCs and the pre-mitotic process in free microspores confirmed the correlation between proteome expression and developmental stage. Under HS, PMCs in both tomato varieties were enriched with heat shock proteins (HSPs). However, the ‘Black Vernissage’ variety exhibited a greater diversity of HSP species and a higher level of enrichment compared to the ‘Micro-Tom’ variety. Additionally, several proteins involved in gene expression and protein translation were downregulated in PMCs and microspores of both varieties. In the PMC proteomes, the relative abundance of proteins showed no significant differences between the two varieties under normal conditions, with very few exceptions. However, HS induced significant differential expression both within and between the varieties. More importantly, these heat-induced differentially abundant proteins (DAPs) in PMCs are directly involved in meiotic cell division, including the meiosis-specific protein ASY3 (Solyc01g079080), the cell division protein kinase 2 (Solyc11g070140), COP9 signalosome complex subunit 1 (Solyc01g091650), the kinetochore protein ndc80 (Solyc01g104570), MORC family CW-type zinc finger 3 (Solyc02g084700), and several HSPs that function in protecting the fidelity of the meiotic processes, including the DNAJ chaperone (Solyc04g009770, Solyc05g055160), chaperone protein htpG (Solyc04g081570), and class I and class II HSPs. In the microspores, most of the HS-induced DAPs were consistently observed across both varieties, with only a few proteins showing significant differences between them under heat stress. These HS-induced DAPs include proteases, antioxidant proteins, and proteins related to cell wall remodeling and the generation of pollen exine. Conclusions: HS induced more dynamic proteomic changes in meiotic PMCs compared to microspores, and the inter-varietal differences in the PMC proteomes align with the effects of HS on pollen productivity observed in the two varieties. This research highlights the importance of the cell-type-specific proteomics approach in identifying the molecular mechanisms that are critical for the pollen developmental process under elevated temperature conditions. Full article
(This article belongs to the Section Plant Proteomics)
Show Figures

Graphical abstract

14 pages, 3413 KiB  
Article
Cultivating Callus from Anthers and Regenerating Haploid Plants in Lilium longiflorum
by Yingyang Li, Yufan Li, Xuanke Dong, Yanfang Cai, Jiren Chen, Rong Liu and Fan Zhu
Horticulturae 2025, 11(4), 349; https://doi.org/10.3390/horticulturae11040349 - 24 Mar 2025
Viewed by 203
Abstract
In vitro anther culture is a technique used to produce haploid plants when regenerating varieties with specific traits. To generate haploid plants with preferred characteristics, an anther culture technique was established for Lilium longiflorum “Show Up”. Morphological characteristics were recorded, including the flower [...] Read more.
In vitro anther culture is a technique used to produce haploid plants when regenerating varieties with specific traits. To generate haploid plants with preferred characteristics, an anther culture technique was established for Lilium longiflorum “Show Up”. Morphological characteristics were recorded, including the flower bud length and anther color corresponding to different stages of microspore development. The effects of different flower bud lengths, various concentrations of exogenous plant growth regulators (PGRs), low-temperature pretreatment at 4 °C, and incubation under dark conditions on the induction of callus formation were studied. When the flower buds were 2.2–2.4 cm in length and the microspores were in the mononuclear development phase, callus induction reached the highest rate (15.6%). Callus was not induced when the PGRs 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KT) were added separately to the growth medium, but the highest callus induction rate occurred when anthers were cultured on the medium containing 2,4-D (0.75–1.0 mg/L) and KT (4 mg/L). The low-temperature pretreatment significantly enhanced the induction rate of anthers, but prolonged low-temperature pretreatment reduced the induction rate. The optimal period of cultivation in darkness was 6 d. After 15 days of cultivation, the number of swollen anthers was recorded, and these were transferred onto the differentiation medium Murashige and Skoog (MS) + 1-naphthaleneacetic acid (NAA) (2.0 mg/L), sucrose (30 g/L), and agar (7 g/L) at pH 5.8, whereon 100% differentiation was recorded. Overall, 14 regenerated lines were obtained by in vitro anther culture. Chromosome ploidy was determined by counting chromosomes in the root tips of ten regenerated plants, and four were found to be haploids. This study lays the foundation for anther culture in lilies to shorten the breeding cycle, improve selection efficiency, facilitate efficient genetic transformation, and enable the effective production of both haploid and double-haploid plants. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

24 pages, 4805 KiB  
Article
A Computational Analysis Based on Automatic Digitization of Movement Tracks Reveals the Altered Diurnal Behavior of the Western Flower Thrips, Frankliniella occidentalis, Suppressed in PKG Expression
by Chunlei Xia, Gahyeon Jin, Falguni Khan, Hye-Won Kim, Yong-Hyeok Jang, Nam Jung, Yonggyun Kim and Tae-Soo Chon
Insects 2025, 16(3), 320; https://doi.org/10.3390/insects16030320 - 19 Mar 2025
Viewed by 204
Abstract
The western flower thrips, Frankliniella occidentalis, a worldwide insect pest with its polyphagous feeding behavior and capacity to transmit viruses, follows a diurnal rhythmicity driven by expression of the circadian clock genes. However, it remained unclear how the clock signal triggers the [...] Read more.
The western flower thrips, Frankliniella occidentalis, a worldwide insect pest with its polyphagous feeding behavior and capacity to transmit viruses, follows a diurnal rhythmicity driven by expression of the circadian clock genes. However, it remained unclear how the clock signal triggers the thrips behaviors. This study posed a hypothesis that the clock signal modulates cGMP-dependent protein kinase (PKG) activity to mediate the diurnal behaviors. A PKG gene is encoded in F. occidentalis and exhibits high sequence homologies with those of honeybee and fruit fly. Interestingly, its expression followed a diel pattern with high expression during photophase in larvae and adults of F. occidentalis. It is noteworthy that PKG expression was clearly observed in the midgut during photophase but not in scotophase from our fluorescence in situ hybridization analysis. A prediction of protein–protein interaction suggested its functional association with clock genes. To test this functional link, RNA interference (RNAi) of the PKG gene expression was performed by feeding a gene-specific double-stranded RNA, which led to significant alteration of the two clock genes (Clock and Period) in their expression levels. The RNAi treatment caused adverse effects on early-life development and adult fecundity. To further analyze the role of PKG in affecting diurnal behavior, the adult females were continuously observed for a 24 h period with an automatic digitization device to obtain movement parameters and durations (%) in different micro-areas in the observation arena. Diel difference was observed with speed in RNAi-control females at 0.16 mm/s and 0.08 mm/s, in photo- and scotophase, respectively, whereas diel difference was not observed for the PKG-specific RNAi-treated females, which showed 0.07 mm/s and 0.06 mm/s, respectively. The diel difference was also observed in durations (%) in the control females, more strongly in the intermediate area in the observation arena. Speed and durations in the different micro-areas in mid-scotophase were significantly different from most photophase in the control females, while speed was significantly different mainly during late photophase when comparing effects of control and RNAi treatments in each light phase. Three sequential stages consisting of high activity followed by feeding and visiting of micro-areas were observed for the control females. For RNAi-treated females, the three phases were disturbed with irregular speed and visits to micro-areas. These results suggest that PKG is associated with implementing the diurnal behavior of F. occidentalis by interacting with expressions of the circadian clock genes. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

14 pages, 2835 KiB  
Article
Marigold, Tagetes patula, a Trap Plant for Western Flower Thrips, Frankliniella occidentalis, in Ornamental Bedding Plants Under Controlled Greenhouse Conditions
by Cheryl Frank Sullivan, Bruce L. Parker and Margaret Skinner
Insects 2025, 16(3), 319; https://doi.org/10.3390/insects16030319 - 19 Mar 2025
Viewed by 180
Abstract
Western flower thrips (WFT), Frankliniella occidentalis (Pergande) [Thysanoptera: Thripidae], is a destructive pest of greenhouse ornamentals. Flowering yellow marigolds, Tagetes patula (L.) [Asterales: Asteraceae], have been shown to be attractive to WFT, implicating their suitability as a trap plant. However, functionality may vary [...] Read more.
Western flower thrips (WFT), Frankliniella occidentalis (Pergande) [Thysanoptera: Thripidae], is a destructive pest of greenhouse ornamentals. Flowering yellow marigolds, Tagetes patula (L.) [Asterales: Asteraceae], have been shown to be attractive to WFT, implicating their suitability as a trap plant. However, functionality may vary in part due to crop variety, the growth stage of the crop in which the marigold trap plant is deployed and whether or not the crop plants have flowers present. The attractiveness of yellow marigolds was tested within several varieties of mature, flowering ornamental bedding plants that were flowering or had their flowers removed: Calibrachoa spp. Petunia spp. Verbena spp., Osteospermum spp., Impatiens haekeri and other marigolds. Trials were conducted in cages under controlled greenhouse conditions for six weeks. The effectiveness of orange vs. yellow marigolds as a trap plant was also assessed. The results showed that WFT were attracted to flowering marigolds and, over time, were present in greater numbers on these than crop plants for all crop species and varieties tested at varying levels of significance. Yellow marigold trap plants were the least effective when deployed within other marigold varieties. In crops with flowers, it took up to five weeks for the number of WFT on trap plants to surpass numbers on crop plants. In contrast, in crop varieties with their flowers removed, trap plants attracted WFT earlier, within one to two weeks, and harbored them in greater numbers over time. Orange, flowering marigolds were a less effective trap plant compared to yellow marigolds. These results confirm that flowering yellow marigolds are attractive to WFT and have potential as a trap plant in greenhouse ornamentals, particularly when crop plants do not have flowers. Full article
Show Figures

Graphical abstract

17 pages, 5179 KiB  
Article
Salinity-Induced VOC Modulation and Physiological Adaptations in Adenosma indiana
by Jinnawat Manasathien, Woraporn Laojinda and Piyanut Khanema
Int. J. Plant Biol. 2025, 16(1), 36; https://doi.org/10.3390/ijpb16010036 - 19 Mar 2025
Viewed by 165
Abstract
Saline environments shape plant metabolism, driving ecological and biochemical adaptations. This study investigated the impact of salinity on Adenosma indiana (Indian scent-wort), a medicinal herb known for its volatile organic compounds (VOCs) and anti-inflammatory and antimicrobial properties, to elucidate its adaptive strategies. During [...] Read more.
Saline environments shape plant metabolism, driving ecological and biochemical adaptations. This study investigated the impact of salinity on Adenosma indiana (Indian scent-wort), a medicinal herb known for its volatile organic compounds (VOCs) and anti-inflammatory and antimicrobial properties, to elucidate its adaptive strategies. During the flowering stage, samples were collected from four saline microhabitats in Kalasin Province, Thailand. We analyzed soil properties, plant growth, photosynthetic pigments, compatible solutes (anthocyanins, proline, total sugars), and elemental concentrations (K, Na, Ca, Mg) across different tissues. Results showed that A. indiana maintained stable growth while enhancing chlorophyll and β-carotene levels under increasing salinity. GC-MS identified 47 VOCs, including 3-cyclopenten-1-one (first reported in this species) and β-bisabolene, both strongly linked to soil salinity. In low-salinity soils, leaves accumulated high sodium, inducing osmoprotectants (proline, total sugars) and VOCs (D-limonene, α-pinene, terpinolene, 1-octen-3-ol) in peltate glandular trichomes. Conversely, in high-salinity soils, lower leaf sodium levels were associated with increased β-bisabolene and β-caryophyllene production, suggesting distinct biochemical pathways. These findings reveal salinity-driven VOC modulation in A. indiana, highlighting its adaptive potential for medicinal applications in saline environments and its role as a source of salt-tolerant bioactive compounds. Full article
Show Figures

Graphical abstract

20 pages, 3313 KiB  
Article
Developmental Stages of Bell Pepper Influence the Response to Far-Red Light Supplements in a Controlled Environment
by Awa Marina Mouliom-Ntapnze, Georges Yannick Fangue-Yapseu and Tagnon D. Missihoun
Agronomy 2025, 15(3), 732; https://doi.org/10.3390/agronomy15030732 - 18 Mar 2025
Viewed by 196
Abstract
Far-red (FR) additions to white or red/blue light resulted in improved dry biomass and fruit nutritional quality. Despite these positive effects, FR supplementation was also found to induce the abortion of flowers and fruits. We hypothesized that the timing and duration of the [...] Read more.
Far-red (FR) additions to white or red/blue light resulted in improved dry biomass and fruit nutritional quality. Despite these positive effects, FR supplementation was also found to induce the abortion of flowers and fruits. We hypothesized that the timing and duration of the FR supplements determine the positive or negative effects of the FR supplement on the plant. To examine this hypothesis, we compared the effect of a gradient of FR supplements (5.5, 12, and 18.1 μmol m−2 s−1) on bell pepper plants (Capsicum annuum cv. Margrethe) when they were exposed to the FR supplements at the beginning of their vegetative growth phase to when FR supplementation only began at the generative phase. We found that 12 and 18.1 μmol m−2 s−1 of FR supplements resulted in a higher yield than 5.5 μmol m−2 s−1 of FR supplements, but FR supplementation from the onset of flowering delayed fruit ripening by 5–8 days and decreased fruit yield compared to FR supplementation that began at seedling transplantation. These results indicate that the positive effect of the FR supplements on the pepper plants of the cultivar Margrethe depends on the plant’s stages of development, and a much lower FR intensity may suffice to enhance growth and yield. Full article
Show Figures

Figure 1

Back to TopTop