Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = fluorescent macromolecules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3450 KB  
Article
A Constant Pressure-Driven Podocyte-on-Chip Model for Studying Hypertension-Induced Podocytopathy Pathomechanism and Drug Screening
by Yun-Jie Hao, Bo-Yi Yao, Qian-Ling Wang, Zong-Min Liu, Hao-Han Yu, Yi-Ching Ko, Hsiang-Hao Hsu and Fan-Gang Tseng
Micromachines 2025, 16(10), 1097; https://doi.org/10.3390/mi16101097 - 27 Sep 2025
Abstract
Podocytopathy, characterized by proteinuria, contributes significantly to kidney diseases, with hypertension playing a key role in damaging podocytes and the glomerular filtration barrier (GFB). The lack of functional in vitro models, however, impedes research and treatment development for hypertensive podocytopathy. We established a [...] Read more.
Podocytopathy, characterized by proteinuria, contributes significantly to kidney diseases, with hypertension playing a key role in damaging podocytes and the glomerular filtration barrier (GFB). The lack of functional in vitro models, however, impedes research and treatment development for hypertensive podocytopathy. We established a novel constant pressure-driven podocyte-on-chip model, utilizing our previously developed dynamic staining self-assembly cell array chip (SACA chip) and 3D printing. This platform features a differentiated podocyte monolayer under controlled hydrostatic pressures, mimicking the epithelial side of the GFB. Using this platform, we investigated mechanical force-dependent permeability to three sizes of fluorescent dextran under varying hydrostatic pressures, comparing the results with a puromycin aminonucleoside (PAN)-induced injury model. We observed that external pressures induced size-dependent permeability changes and altered cell morphology. Higher pressures led to greater macromolecule infiltration, especially for larger dextran (70 kDa, 500 kDa). Mature podocytes exhibited immediate, pressure-dependent cytoskeleton rearrangements, with better recovery at lower pressures (20 mmHg) but irreversible injury at higher pressures (40, 60 mmHg). These morphological changes were also corroborated by dynamic mRNA expression of cytoskeleton-associated proteins, Synaptopodin and ACTN4. This platform offers a promising in vitro tool for investigating the pathomechanisms of hypertension-induced podocytopathy, performing on-chip studies of the GFB, and conducting potential drug screening. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

18 pages, 1266 KB  
Review
The Usefulness of Indocyanine Green in Modern Gynecological Oncology—Analysis, Literature Review, and Future Perspectives
by Michał Kostrzanowski, Grzegorz Ziółkowski, Agata Mandes, Grzegorz Panek, Michał Ciebiera and Filip Dąbrowski
Cancers 2025, 17(18), 3081; https://doi.org/10.3390/cancers17183081 - 21 Sep 2025
Viewed by 425
Abstract
Indocyanine green (ICG) is a fluorescent agent which is characterized by a wide range of applications in the proper visualization of the operating field, differentiation of vital structures, and localization of lesions to be excised. An investigation and overview of novel approaches of [...] Read more.
Indocyanine green (ICG) is a fluorescent agent which is characterized by a wide range of applications in the proper visualization of the operating field, differentiation of vital structures, and localization of lesions to be excised. An investigation and overview of novel approaches of indocyanine green in modern gynecological oncology was conducted, including ovarian cancer surgery with its compartmental approach and compartmental surgery in endometrial cancer. Ureteral visualization and perfusion, lymphography, lymph node transfers, or the localization of anastomotic leakage in bowel surgery are examples of applications aimed at reducing the risk of surgical complications and improving the patients’ quality of life. The general use of indocyanine green in lymph node detection, subcategorized and analyzed, is constantly improved and reviewed. A therapeutic approach with macromolecules is being tested in preclinical models. Early results could suggest the future application of indocyanine green not only in broad-sense imaging but also as a cytotoxic agent conjugated with macromolecules. Further studies on the application of indocyanine green in laparoscopy, open surgery, and finally as a curative cytotoxic agent are needed. Full article
(This article belongs to the Special Issue Advances in Surgical Treatment of Gynecological Cancers)
Show Figures

Figure 1

15 pages, 4077 KB  
Article
Influence of Different Soil Types on Dissolved Organic Matter Spectral Characteristics of Soil Leachate After Green Manure Tilling in Saline Soils
by Chengjie Yin, Yuhao Wang, Xiaohui Ji, Wenjun Chi, Xiangjie Jiao, Yuejuan Yang and Xinwei Liu
Agronomy 2025, 15(5), 1049; https://doi.org/10.3390/agronomy15051049 - 26 Apr 2025
Viewed by 540
Abstract
To investigate the changes in the composition and structure of the dissolved organic matter (DOM) of the lysate solutions of different types of soil after green manure tilling treatment, we set up two types of soil materials (fluvo-aquic soil; coastal saline soil) and [...] Read more.
To investigate the changes in the composition and structure of the dissolved organic matter (DOM) of the lysate solutions of different types of soil after green manure tilling treatment, we set up two types of soil materials (fluvo-aquic soil; coastal saline soil) and three green manure tilling treatments (T1: CK—without green manure, T2: tilling Dongmu70 rye, and T3: tilling rapeseed green manure); then, the soil leachate was obtained with a soil column simulation test and its DOM spectral properties were determined. The rapeseed green manure leachate demonstrated a significantly higher humic macromolecule content and aromaticity compared to Dongmu70 rye leachate. Fluorescence Index (FI) values (1.5–2.2) suggest a mixed origin of dissolved organic matter (DOM) from both terrestrial and microbial-derived sources. All Humification Index (HIX) values remained below 1, indicating low humification levels and limited stabilization of DOM within the leachate system, and Biological Index (BIX) values exceeding 1 across all soil layers highlight the predominance of a recent biological metabolism in shaping DOM autochthonous origins. The SUVA260 values in Dongmu70 rye–moist soils and rapeseed green manure–coastal saline soil exhibited reductions of 0.020–2.573 L·(mg·m)−1 relative to pre-drenching levels. After tilling rapeseed green manure, the SUVA254 value of coastal saline soil at the 60–90 cm layer decreased by 1.941 L·(mg·m)−1. This study shows that differences in green manure and soil type affect DOM sources and composition, reducing DOM leaching, with coastal saline soil + rapeseed green manure and fluvo-aquic soil + Dongmu70 rye being the advantageous combinations. The study results provide theoretical guidance for applying green manure coupled with freshwater leaching technology in the context of saline and alkaline land with multiple soil types. Full article
Show Figures

Figure 1

30 pages, 5618 KB  
Review
High-Resolution Tracking of Aging-Related Small Molecules: Bridging Pollutant Exposure, Brain Aging Mechanisms, and Detection Innovations
by Keying Yu, Sirui Yang, Hongxu Song, Zhou Sun, Kaichao Wang, Yuqi Zhu, Chengkai Yang, Rongzhang Hao and Yuanyuan Cao
Biosensors 2025, 15(4), 242; https://doi.org/10.3390/bios15040242 - 11 Apr 2025
Viewed by 1141
Abstract
Brain aging is a complex process regulated by genetic, environmental, and metabolic factors, and increasing evidence suggests that environmental pollutants can significantly accelerate this process by interfering with oxidative stress, neuroinflammation, and mitochondrial function-related signaling pathways. Traditional studies have focused on the direct [...] Read more.
Brain aging is a complex process regulated by genetic, environmental, and metabolic factors, and increasing evidence suggests that environmental pollutants can significantly accelerate this process by interfering with oxidative stress, neuroinflammation, and mitochondrial function-related signaling pathways. Traditional studies have focused on the direct damage of pollutants on macromolecules (e.g., proteins, DNA), while the central role of senescence-associated small molecules (e.g., ROS, PGE2, lactate) in early regulatory mechanisms has been long neglected. In this study, we innovatively proposed a cascade framework of “small molecule metabolic imbalance-signaling pathway dysregulation-macromolecule collapse”, which reveals that pollutants exacerbate the dynamics of brain aging through activation of NLRP3 inflammatory vesicles and inhibition of HIF-1α. Meanwhile, to address the technical bottleneck of small molecule spatiotemporal dynamics monitoring, this paper systematically reviews the cutting-edge detection tools such as electrochemical sensors, genetically encoded fluorescent probes and antioxidant quantum dots (AQDs). Among them, AQDs show unique advantages in real-time monitoring of ROS fluctuations and intervention of oxidative damage by virtue of their ultra-high specific surface area, controllable surface modification, and free radical scavenging ability. By integrating multimodal detection techniques and mechanism studies, this work provides a new perspective for analyzing pollutant-induced brain aging and lays a methodological foundation for early intervention strategies based on small molecule metabolic networks. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

20 pages, 3049 KB  
Article
Coassembly of a Hybrid Synthetic–Biological Chitosan-g-Poly(N-isopropylacrylamide) Copolymer with DNAs of Different Lengths
by Maria Karayianni, Elena-Daniela Lotos, Marcela Mihai and Stergios Pispas
Polymers 2024, 16(21), 3101; https://doi.org/10.3390/polym16213101 - 4 Nov 2024
Cited by 1 | Viewed by 1422
Abstract
Natural polysaccharides can serve as carriers of genes owing to their intrinsic biocompatibility, biodegradability, and low toxicity. Additionally, they can be easily chemically modified, e.g., through grafting, leading to hybrid synthetic–biological copolymers with additional functionalities. In this work we report on the electrostatic [...] Read more.
Natural polysaccharides can serve as carriers of genes owing to their intrinsic biocompatibility, biodegradability, and low toxicity. Additionally, they can be easily chemically modified, e.g., through grafting, leading to hybrid synthetic–biological copolymers with additional functionalities. In this work we report on the electrostatic interaction between a chitosan-g-poly(N-isopropylacrylamide) (Chit-g-PNIPAM) copolymer and DNA macromolecules of different lengths (i.e., 50 and 2000 bp), towards the construction of polyplexes that can serve as potential gene delivery systems. At the basic science level, the work aims to elucidate the effects of DNA length on the structural and physicochemical properties of the thermoresponsive hybrid macromolecular assemblies. The protonated amino groups on the chitosan backbone enable electrostatic binding with the anionic phosphate groups of the DNA molecules, while the PNIPAM side chains are expected to impart thermoresponsive properties to the formed polyplexes. Different amino to phosphate group (N/P) mixing ratios were examined, aiming to produce stable dispersions. The physicochemical properties of the resulting polyplexes were investigated by dynamic and electrophoretic light scattering (DLS and ELS), while their morphology was studied by scanning-transmission electron microscopy (STEM). Moreover, their response to changes in temperature and ionic strength, as well as their stability against biological media, was also examined. Finally, the binding affinity of the copolymer towards DNA was evaluated through fluorescence spectroscopy, using ethidium bromide quenching assays, while infrared spectroscopy was used to investigate the structure of the incorporated DNA chains. Full article
(This article belongs to the Special Issue Recent Developments in Biodegradable and Biobased Polymers II)
Show Figures

Figure 1

12 pages, 5092 KB  
Article
MIRRORS ICG: Perfusion Assessment Using Indocyanine Green (ICG) Peritoneal Angiography during Robotic Interval Cytoreductive Surgery for Advanced Ovarian Cancer
by Christina Uwins, Agnieszka Michael, Simon S. Skene, Hersha Patel, Patricia Ellis, Jayanta Chatterjee, Anil Tailor and Simon Butler-Manuel
Cancers 2024, 16(15), 2689; https://doi.org/10.3390/cancers16152689 - 29 Jul 2024
Cited by 3 | Viewed by 2242
Abstract
Indocyanine green (ICG) is a fluorescent dye used for sentinel lymph node assessment and the assessment of perfusion in skin flaps and bowel anastomoses. ICG binds serum proteins and behaves as a macromolecule in the circulation. Tumour tissue has increased vascular permeability and [...] Read more.
Indocyanine green (ICG) is a fluorescent dye used for sentinel lymph node assessment and the assessment of perfusion in skin flaps and bowel anastomoses. ICG binds serum proteins and behaves as a macromolecule in the circulation. Tumour tissue has increased vascular permeability and reduced drainage, causing macromolecules to accumulate within it. MIRRORS ICG is designed to determine whether indocyanine green (ICG) helped identify metastatic deposits in women undergoing robotic interval cytoreductive surgery for advanced-stage (3c+) ovarian cancer. Peritoneal surfaces of the abdominal and pelvic cavity were inspected under white light and near-infrared light (da Vinci Si and Xi Firefly Fluorescence imaging, Intuitive Surgical Inc.) following intravenous injection of 20 mg ICG in sterile water. Visibly abnormal areas were excised and sent to histopathology, noting IGC positivity. In total, 102 biopsies were assessed using ICG. Intravenous ICG assessment following neoadjuvant chemotherapy had a sensitivity of 91.1% (95% CI [82.6–96.4%]), a specificity of 13.0% (95% CI [2.8–33.6%]), a positive predictive value of 78.3% (95% CI [68.4–86.2%]), and a negative predictive value of 30.0% (95% CI [6.7–65.2%]) False-positive samples were seen in 9/20 patients. Psammoma bodies were noted in the histopathology reports of seven of nine of these patients with false-positive results, indicating that a tumour had been present (chemotherapy-treated disease). This study demonstrates the appearance of metastatic peritoneal deposits during robotic cytoreductive surgery following the intravenous administration of ICG in women who have undergone neoadjuvant chemotherapy for stage 3c+ advanced ovarian cancer. A perfusion assessment using indocyanine green (ICG) peritoneal angiography during robotic interval cytoreductive surgery for advanced ovarian cancer did not clinically improve metastatic disease identification in patients with high-volume disease. The use of ICG in patients with excellent response to chemotherapy where few tumour deposits remained shows some promise. The potential of molecular imaging to enhance precision surgery and improve disease identification using the robotic platform is a novel avenue for future research. Full article
(This article belongs to the Special Issue Recent Advances in Ovarian Cancer Surgery)
Show Figures

Figure 1

16 pages, 3472 KB  
Article
Physicochemical and Spectroscopic Characterization of Glycogen and Glycogen Phosphorylase b Complexes
by Pandora Karakousi, Maria Karayianni, Evangelia D. Chrysina and Stergios Pispas
Polysaccharides 2024, 5(3), 225-240; https://doi.org/10.3390/polysaccharides5030017 - 7 Jul 2024
Cited by 1 | Viewed by 1954
Abstract
Glycogen is a natural polysaccharide used as an energy storage macromolecule. The role of glycogen metabolism in type 2 diabetes mellitus has been under investigation for several years, along with its implication in cancer and cardiovascular and neurodegenerative diseases. Previous studies using pig [...] Read more.
Glycogen is a natural polysaccharide used as an energy storage macromolecule. The role of glycogen metabolism in type 2 diabetes mellitus has been under investigation for several years, along with its implication in cancer and cardiovascular and neurodegenerative diseases. Previous studies using pig liver glycogen with rabbit muscle glycogen phosphorylase (RMGPb), which catalyzes the first step of glycogen degradation to glucose-1-phosphate, showed that the surface of an average glycogen molecule is covered by a total of 20 RMGPb dimeric molecules. In this work, we selected oyster glycogen (Glyc) to investigate its interaction with RMGPb by employing biophysical techniques. Dynamic, static, and electrophoretic light scattering were used to investigate the solution behaviors and structures of both the Glyc molecule itself and the formed complexes between Glyc and GPb at different mixing ratios. It was established that the interaction between oyster Glyc and RMGPb is similar to that previously reported for pig liver glycogen. Moreover, the structure of the complexed GPb was monitored by fluorescence and FTIR spectroscopy. Full article
(This article belongs to the Special Issue Latest Research on Polysaccharides: Structure and Applications)
Show Figures

Figure 1

20 pages, 7994 KB  
Article
Protopine and Allocryptopine Interactions with Plasma Proteins
by Aleksandra Marciniak, Aleksandra Kotynia, Edward Krzyżak, Żaneta Czyżnikowska, Sylwia Zielińska, Weronika Kozłowska, Marcel Białas, Adam Matkowski and Anna Jezierska-Domaradzka
Int. J. Mol. Sci. 2024, 25(10), 5398; https://doi.org/10.3390/ijms25105398 - 15 May 2024
Cited by 5 | Viewed by 1685
Abstract
A comprehensive study of the interactions of human serum albumin (HSA) and α-1-acid glycoprotein (AAG) with two isoquinoline alkaloids, i.e., allocryptopine (ACP) and protopine (PP), was performed. The UV-Vis spectroscopy, molecular docking, competitive binding assays, and circular dichroism (CD) spectroscopy were used for [...] Read more.
A comprehensive study of the interactions of human serum albumin (HSA) and α-1-acid glycoprotein (AAG) with two isoquinoline alkaloids, i.e., allocryptopine (ACP) and protopine (PP), was performed. The UV-Vis spectroscopy, molecular docking, competitive binding assays, and circular dichroism (CD) spectroscopy were used for the investigations. The results showed that ACP and PP form spontaneous and stable complexes with HSA and AAG, with ACP displaying a stronger affinity towards both proteins. Molecular docking studies revealed the preferential binding of ACP and PP to specific sites within HSA, with site 2 (IIIA) being identified as the favored location for both alkaloids. This was supported by competitive binding assays using markers specific to HSA’s drug binding sites. Similarly, for AAG, a decrease in fluorescence intensity upon addition of the alkaloids to AAG/quinaldine red (QR) complexes indicated the replacement of the marker by the alkaloids, with ACP showing a greater extent of replacement than PP. CD spectroscopy showed that the proteins’ structures remained largely unchanged, suggesting that the formation of complexes did not significantly perturb the overall spatial configuration of these macromolecules. These findings are crucial for advancing the knowledge on the natural product–protein interactions and the future design of isoquinoline alkaloid-based therapeutics. Full article
(This article belongs to the Special Issue Investigation of Natural Products as Sources of Bioactive Molecules)
Show Figures

Figure 1

21 pages, 4771 KB  
Article
Experimental and Computational Studies on the Interaction of DNA with Hesperetin Schiff Base CuII Complexes
by Federico Pisanu, Anna Sykula, Giuseppe Sciortino, Feliu Maseras, Elzbieta Lodyga-Chruscinska and Eugenio Garribba
Int. J. Mol. Sci. 2024, 25(10), 5283; https://doi.org/10.3390/ijms25105283 - 13 May 2024
Cited by 5 | Viewed by 2139
Abstract
The interactions with calf thymus DNA (CT-DNA) of three Schiff bases formed by the condensation of hesperetin with benzohydrazide (HHSB or L1H3), isoniazid (HIN or L2H3), or thiosemicarbazide (HTSC or L3H3) [...] Read more.
The interactions with calf thymus DNA (CT-DNA) of three Schiff bases formed by the condensation of hesperetin with benzohydrazide (HHSB or L1H3), isoniazid (HIN or L2H3), or thiosemicarbazide (HTSC or L3H3) and their CuII complexes (CuHHSB, CuHIN, and CuHTSC with the general formula [CuLnH2(AcO)]) were evaluated in aqueous solution both experimentally and theoretically. UV–Vis studies indicate that the ligands and complexes exhibit hypochromism, which suggests helical ordering in the DNA helix. The intrinsic binding constants (Kb) of the Cu compounds with CT-DNA, in the range (2.3–9.2) × 106, from CuHTSC to CuHHSB, were higher than other copper-based potential drugs, suggesting that π–π stacking interaction due to the presence of the aromatic rings favors the binding. Thiazole orange (TO) assays confirmed that ligands and Cu complexes displace TO from the DNA binding site, quenching the fluorescence emission. DFT calculations allow for an assessment of the equilibrium between [Cu(LnH2)(AcO)] and [Cu(LnH2)(H2O)]+, the tautomer that binds CuII, amido (am) and not imido (im), and the coordination mode of HTSC (O, N, S), instead of (O, N, NH2). The docking studies indicate that the intercalative is preferred over the minor groove binding to CT-DNA with the order [Cu(L1H2am)(AcO)] > [Cu(L2H2am)(AcO)] ≈ TO ≈ L1H3 > [Cu(L3H2am)(AcO)], in line with the experimental Kb constants, obtained from the UV–Vis spectroscopy. Moreover, dockings predict that the binding strength of [Cu(L1H2am)(AcO)] is larger than [Cu(L1H2am)(H2O)]+. Overall, the results suggest that when different enantiomers, tautomers, and donor sets are possible for a metal complex, a computational approach should be recommended to predict the type and strength of binding to DNA and, in general, to macromolecules. Full article
Show Figures

Figure 1

18 pages, 4409 KB  
Article
Four-Component Statistical Copolymers by RAFT Polymerization
by Dimitrios Vagenas and Stergios Pispas
Polymers 2024, 16(10), 1321; https://doi.org/10.3390/polym16101321 - 8 May 2024
Cited by 6 | Viewed by 2505
Abstract
This manuscript serves as the starting point for in-depth research of multicomponent, statistical, methacrylate-based copolymers that potentially mimic the behavior of proteins in aqueous solutions. These synthetic macromolecules are composed of specially chosen comonomers: methacrylic acid (MAA), oligoethylene glycol methyl ether methacrylate (OEGMA [...] Read more.
This manuscript serves as the starting point for in-depth research of multicomponent, statistical, methacrylate-based copolymers that potentially mimic the behavior of proteins in aqueous solutions. These synthetic macromolecules are composed of specially chosen comonomers: methacrylic acid (MAA), oligoethylene glycol methyl ether methacrylate (OEGMA475), 2-(dimethylamino)ethyl methacrylate (DMAEMA) and benzyl methacrylate (BzMA). Monomer choice was based on factors such as the chemical nature of pendant functional groups, the polyelectrolyte/polyampholyte and amphiphilic character and the overall hydrophobic–hydrophilic balance (HLB) of the obtained quaterpolymers. Their synthesis was achieved via a one-pot reversible addition fragmentation chain transfer (RAFT) polymerization in two distinct compositions and molecular architectures, linear and hyperbranched, respectively, in order to explore the effects of macromolecular topology. The resulting statistical quaterpolymers were characterized via 1H-NMR and ATR-FTIR spectroscopies. Their behavior in aqueous solutions was studied by dynamic (DLS) and electrophoretic light scattering (ELS) and fluorescence spectroscopy (FS), producing vital information concerning their self-assembly and the structure of the formed aggregates. The physicochemical studies were extended by tuning parameters such as the solution pH and ionic strength. Finally, the quaterpolymer behavior in FBS/PBS solutions was investigated to test their colloid stability and biocompatibility in an in vivo-mimicking, biological fluid environment. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

16 pages, 2477 KB  
Article
An Innovative Methodology to Characterize, at the Molecular Scale, Interactions in Polysaccharide Aqueous Solutions
by Alexandre Cordinier, Igor Petukhov, Nicolas Hucher and Michel Grisel
Molecules 2024, 29(8), 1787; https://doi.org/10.3390/molecules29081787 - 15 Apr 2024
Cited by 2 | Viewed by 1235
Abstract
Characterizing molecular interactions at the microscopic level remains difficult and, therefore, represents a key target to better understand macromolecule and biomacromolecule behaviors in solution, alone, or in mixtures with others. Therefore, accurate characterization in liquid media, especially in aqueous solutions, without causing any [...] Read more.
Characterizing molecular interactions at the microscopic level remains difficult and, therefore, represents a key target to better understand macromolecule and biomacromolecule behaviors in solution, alone, or in mixtures with others. Therefore, accurate characterization in liquid media, especially in aqueous solutions, without causing any perturbation of the system in which they are studied, is quite difficult. To this purpose, the present paper describes an innovative methodology based on fluorescence spectrophotometry. Two molecular fluorescent probes, namely 8-anilino-1-naphtalenesulfonic acid (ANS) and 2-benzofuryl-3-hydroxy-4(1H)-quinolone (3HQ-Bf), were selected to characterize, respectively, the dipole-dipole interactions and hydrophobic micro-domains, for the first one, and hydrogen bonding, for the second. As a support to study molecular interactions, xanthan, galactomannan, and corresponding mixtures of these substances which are well known to exhibit a synergy of interactions in well-defined mixture conditions were chosen. Once the methodology was set up, the existence of the three types of interactions in these systems was demonstrated, thus allowing the elucidation of the mechanisms of interactions at the molecular scale. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

19 pages, 3133 KB  
Article
Molecular Ballet: Investigating the Complex Interaction between Self-Assembling Dendrimers and Human Serum Albumin via Computational and Experimental Methods
by Gabriele Cavalieri, Domenico Marson, Nicoletta Giurgevich, Rachele Valeri, Fulvia Felluga, Erik Laurini and Sabrina Pricl
Pharmaceutics 2024, 16(4), 533; https://doi.org/10.3390/pharmaceutics16040533 - 12 Apr 2024
Cited by 4 | Viewed by 1846
Abstract
Dendrimers, intricate macromolecules with highly branched nanostructures, offer unique attributes including precise control over size, shape, and functionality, making them promising candidates for a wide range of biomedical applications. The exploration of their interaction with biological environments, particularly human serum albumin (HSA), holds [...] Read more.
Dendrimers, intricate macromolecules with highly branched nanostructures, offer unique attributes including precise control over size, shape, and functionality, making them promising candidates for a wide range of biomedical applications. The exploration of their interaction with biological environments, particularly human serum albumin (HSA), holds significant importance for biomedical utilization. In this study, the interaction between HSA and a recently developed self-assembling amphiphilic dendrimer (AD) was investigated using various experimental techniques. Fluorescence spectroscopy and isothermal titration calorimetry revealed moderate interactions between the protein and the AD nanomicelles (NMs), primarily attributed to favorable enthalpic contributions arising from electrostatic interactions and hydrogen bonding. Structural analysis indicated minimal changes in HSA upon complexation with the AD NMs, which was further supported by computational simulations demonstrating stable interactions at the atomistic level. These findings provide valuable insights into the binding mechanisms and thermodynamic parameters governing HSA/AD NM interactions, thereby contributing to the understanding of their potential biomedical applications. Full article
Show Figures

Figure 1

16 pages, 2649 KB  
Article
Interactions of CdSe Nanocrystals with Cationic Proteins Extracted from Moringa oleifera Seeds
by Likius Shipwiisho Daniel, Salatiel Kapofi, Martha Kandawa-Schulz and Habauka Majority Kwaambwa
Photochem 2024, 4(1), 24-39; https://doi.org/10.3390/photochem4010003 - 15 Jan 2024
Viewed by 1838
Abstract
Even with significant developments in nanoscience, relatively little is known about the interactions of nanocrystal semiconducting materials with bio-macromolecules. To investigate the interfacial phenomena of cadmium selenide quantum dot (CdSe QD) nanocrystals with proteins extracted from Moringa oleifera seeds, different concentrations of cadmium [...] Read more.
Even with significant developments in nanoscience, relatively little is known about the interactions of nanocrystal semiconducting materials with bio-macromolecules. To investigate the interfacial phenomena of cadmium selenide quantum dot (CdSe QD) nanocrystals with proteins extracted from Moringa oleifera seeds, different concentrations of cadmium selenide quantum dots–Moringa oleifera seed protein (CdSe–MSP) complexes were prepared. Respective CdSe QDs with hexagonal phase and crystalline size in the range of 4–7 nm were synthesized and labelled with the purified mesoporous MSP having a surface area of 8.4 m2/g. The interaction mechanism between CdSe QDs and MSP was studied using UV–Vis absorption, fluorescence emission and Fourier Transform Infrared spectroscopies. The UV–Vis absorption spectra showed absorption bands of CdSe–MSP complexes at 546.5 nm. The fluorescence intensity of CdSe QDs was found to decrease with increasing concentration of MSP. The thermodynamic potentials Hθ (−321.3 × 103 Jmol−1); Sθ (156.0 JK−1mol−1) and Gθ (−46.6 × 103 Jmol−1) were also calculated. The stability of the complex found is strongly influenced by electrostatics interaction and surface-bound complexation equilibrium attraction. This information can help to elucidate the surface characteristics of MSP and its potential interactions with other molecules or nanoparticles. Full article
Show Figures

Figure 1

20 pages, 4993 KB  
Article
A Comparative Analysis of Orthotopic and Subcutaneous Pancreatic Tumour Models: Tumour Microenvironment and Drug Delivery
by Jessica Lage Fernandez, Sara Årbogen, Mohammad Javad Sadeghinia, Margrete Haram, Sofie Snipstad, Sverre Helge Torp, Caroline Einen, Melina Mühlenpfordt, Matilde Maardalen, Krister Vikedal and Catharina de Lange Davies
Cancers 2023, 15(22), 5415; https://doi.org/10.3390/cancers15225415 - 14 Nov 2023
Cited by 17 | Viewed by 3674
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a challenging malignancy, mainly due to its resistance to chemotherapy and its complex tumour microenvironment characterised by stromal desmoplasia. There is a need for new strategies to improve the delivery of drugs and therapeutic response. Relevant preclinical tumour [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) remains a challenging malignancy, mainly due to its resistance to chemotherapy and its complex tumour microenvironment characterised by stromal desmoplasia. There is a need for new strategies to improve the delivery of drugs and therapeutic response. Relevant preclinical tumour models are needed to test potential treatments. This paper compared orthotopic and subcutaneous PDAC tumour models and their suitability for drug delivery studies. A novel aspect was the broad range of tumour properties that were studied, including tumour growth, histopathology, functional vasculature, perfusion, immune cell infiltration, biomechanical characteristics, and especially the extensive analysis of the structure and the orientation of the collagen fibres in the two tumour models. The study unveiled new insights into how these factors impact the uptake of a fluorescent model drug, the macromolecule called 800CW. While the orthotopic model offered a more clinically relevant microenvironment, the subcutaneous model offered advantages for drug delivery studies, primarily due to its reproducibility, and it was characterised by a more efficient drug uptake facilitated by its collagen organisation and well-perfused vasculature. The tumour uptake seemed to be influenced mainly by the structural organisation and the alignment of the collagen fibres and perfusion. Recognising the diverse characteristics of these models and their multifaceted impacts on drug delivery is crucial for designing clinically relevant experiments and improving our understanding of pancreatic cancer biology. Full article
(This article belongs to the Special Issue Advanced Pancreatic Cancer)
Show Figures

Figure 1

13 pages, 1875 KB  
Article
Increased Accumulation of Recombinant Proteins in Soybean Seeds via the Combination Strategy of Polypeptide Fusion and Suppression of Endogenous Storage Proteins
by Jing Yang, Yuanyu Zhang, Guojie Xing, Jia Wei, Lu Niu, Qianqian Zhao, Qinan Cai, Xiaofang Zhong and Xiangdong Yang
Agronomy 2023, 13(11), 2680; https://doi.org/10.3390/agronomy13112680 - 25 Oct 2023
Viewed by 2228
Abstract
Soybean seeds show great potential as a safe and cost-effective host for the large-scale production of biopharmaceuticals and industrially important macromolecules. However, the yields of desired recombinant proteins in soybean seeds are usually lower than the economic threshold for their potential commercialization. Our [...] Read more.
Soybean seeds show great potential as a safe and cost-effective host for the large-scale production of biopharmaceuticals and industrially important macromolecules. However, the yields of desired recombinant proteins in soybean seeds are usually lower than the economic threshold for their potential commercialization. Our previous study demonstrated that polypeptide fusion such as maize γ-zein or elastin-like polypeptide (ELP) could significantly increase the accumulation of foreign proteins. In the present study, a recombination strategy of polypeptide fusions (γ-zein or ELP) and suppression of intrinsic storage proteins (glycinin or conglycinin) via RNA interference was further exploited to improve the yield of the target protein in soybean seeds. Transgenic soybean plants harboring both polypeptide-fused green fluorescent protein (GFP) and glycinin/conglycinin RNAi expression cassettes were generated and confirmed by molecular analysis. The results showed that on both the glycinin and conglycinin suppression backgrounds, the average accumulation levels of recombinant zein-GFP and GFP-ELP proteins were significantly increased as compared to that of their counterparts without such suppressions in our previous study. Moreover, zein-GFP and GFP-ELP accumulation was also remarkably higher than unfused GFP on the glycinin suppression background. However, no significant differences were detected in the glycinin or conglycinin suppression backgrounds for the same polypeptide fusion constructs, though suppression of one of the storage proteins in soybean seeds led to a significant increase in the other. Additionally, the increases in the recombinant protein yield did not affect the total protein content and the protein/oil ratio in soybean seeds. Taken together, the results indicate that both the fusion of the foreign protein with polypeptide tags together with the depletion of endogenous storage proteins contributed to a higher accumulation of the recombinant proteins without affecting the total protein content or the protein/oil ratio in soybean seeds. Full article
(This article belongs to the Special Issue Functional Genomics and Molecular Breeding of Soybeans)
Show Figures

Figure 1

Back to TopTop