Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (646)

Search Parameters:
Keywords = free-space optical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1214 KB  
Article
Microwave-Enabled Two-Step Scheme for Continuous Variable Quantum Communications in Integrated Superconducting
by Yun Mao, Lei Mao, Wanyi Wang, Yijun Wang, Hang Zhang and Ying Guo
Mathematics 2025, 13(20), 3263; https://doi.org/10.3390/math13203263 (registering DOI) - 12 Oct 2025
Abstract
Quantum secure direct communication (QSDC) is convenient for the direct transmission of secure messages without requiring a prior key exchange by two participants, offering an elegant advantage in transmission security. The traditional implementations usually focus on the discrete-variable (DV) system, whereas its continuous-variable [...] Read more.
Quantum secure direct communication (QSDC) is convenient for the direct transmission of secure messages without requiring a prior key exchange by two participants, offering an elegant advantage in transmission security. The traditional implementations usually focus on the discrete-variable (DV) system, whereas its continuous-variable (CV) counterpart has attracted much attention due to its compatibility with existing optical infrastructure. In order to address its practical deployment in harsh environments, we propose a microwave-based scheme for the CV-QSDC that leverages entangled microwave quantum states through free-space channels in cryogenic environments. The two-step scheme is designed for the secure direct communication, where the classical messages can be encoded by using Gaussian modulation and then transmitted via displacement operations on microwave quantum states. The data processing procedures involve microwave entangled state generation, channel detection, parameter estimation, and so on. Simulation results demonstrate the feasibility of the microwave-based CV-QSDC, highlighting its potential for secure communication in integrated superconducting and solid-state quantum technologies. Full article
(This article belongs to the Special Issue Quantum Information, Cryptography and Computation)
Show Figures

Figure 1

41 pages, 1713 KB  
Review
A Review of Pointing Modules and Gimbal Systems for Free-Space Optical Communication in Non-Terrestrial Platforms
by Dhruv and Hemani Kaushal
Photonics 2025, 12(10), 1001; https://doi.org/10.3390/photonics12101001 - 11 Oct 2025
Viewed by 48
Abstract
As the world is technologically advancing, the integration of FSO communication in non-terrestrial platforms is transforming the landscape of global connectivity. By enabling high-data-rate inter-satellite links, secure UAV–ground channels, and efficient HAPS backhaul, FSO technology is paving the way for sustainable 6G non-terrestrial [...] Read more.
As the world is technologically advancing, the integration of FSO communication in non-terrestrial platforms is transforming the landscape of global connectivity. By enabling high-data-rate inter-satellite links, secure UAV–ground channels, and efficient HAPS backhaul, FSO technology is paving the way for sustainable 6G non-terrestrial networks. However, the stringent requirement for precise line-of-sight (LoS) alignment between the optical transmitter and receivers poses a hindrance in practical deployment. As non-terrestrial missions require continuous movement across the mission area, the platform is subject to vibrations, dynamic motion, and environmental disturbances. This makes maintaining the LoS between the transceivers difficult. While fine-pointing mechanisms such as fast steering mirrors and adaptive optics are effective for microradian angular corrections, they rely heavily on an initial coarse alignment to maintain the LoS. Coarse pointing modules or gimbals serve as the primary mechanical interface for steering and stabilizing the optical beam over wide angular ranges. This survey presents a comprehensive analysis of coarse pointing and gimbal modules that are being used in FSO communication systems for non-terrestrial platforms. The paper classifies gimbal architectures based on actuation type, degrees of freedom, and stabilization strategies. Key design trade-offs are examined, including angular precision, mechanical inertia, bandwidth, and power consumption, which directly impact system responsiveness and tracking accuracy. This paper also highlights emerging trends such as AI-driven pointing prediction and lightweight gimbal design for SWap-constrained platforms. The final part of the paper discusses open challenges and research directions in developing scalable and resilient coarse pointing systems for aerial FSO networks. Full article
Show Figures

Figure 1

15 pages, 5717 KB  
Article
Towards a Twisted Atom Laser: Cold Atoms Released from Helical Optical Tube Potentials
by Amine Jaouadi, Andreas Lyras and Vasileios E. Lembessis
Photonics 2025, 12(10), 999; https://doi.org/10.3390/photonics12100999 - 10 Oct 2025
Viewed by 127
Abstract
We study the quantum dynamics of cold atoms initially confined in a helical optical tube (HOT) and subsequently released into free space. This helicoidal potential, engineered via structured light fields with orbital angular momentum, imposes a twisted geometry on the atomic ensemble during [...] Read more.
We study the quantum dynamics of cold atoms initially confined in a helical optical tube (HOT) and subsequently released into free space. This helicoidal potential, engineered via structured light fields with orbital angular momentum, imposes a twisted geometry on the atomic ensemble during confinement. We examine how this geometry shapes the initial quantum state—particularly its spatial localization and phase structure—and how these features influence the subsequent free evolution. Our analysis reveals that the overall confinement geometry supports the formation of spatially coherent, structured wavepackets, paving the way for the realization of twisted Bose–Einstein condensates and directed atom lasers. The results are of particular interest for applications in quantum technologies, such as coherent atom beam shaping, matter-wave interferometry, and guided transport of quantum matter. Full article
Show Figures

Figure 1

18 pages, 5477 KB  
Article
Advanced Beam Detection for Free-Space Optics Operating in the Mid-Infrared Spectra
by Janusz Mikolajczyk, Waldemar Gawron, Dariusz Szabra, Artur Prokopiuk and Zbigniew Bielecki
Sensors 2025, 25(19), 6112; https://doi.org/10.3390/s25196112 - 3 Oct 2025
Viewed by 184
Abstract
The article addresses the challenges of beam position tracking in Free-Space Optical Communication (FSOC) systems. A review of available photodetector technologies is presented, highlighting their operating principles and applications in optical links. The analysis indicates that most current monitoring devices function [...] Read more.
The article addresses the challenges of beam position tracking in Free-Space Optical Communication (FSOC) systems. A review of available photodetector technologies is presented, highlighting their operating principles and applications in optical links. The analysis indicates that most current monitoring devices function with the visible and near- or short-infrared ranges. However, due to the propagation characteristics of radiation in terrestrial environments, the mid-wave infrared (MWIR) region offers particularly promising opportunities. To the end, the work introduces a novel detector module based on an MWIR quadrant detector capable of simultaneously performing two essential tasks: monitoring beam position and receiving transmitted data. Such an integrated approach has the potential to significantly simplify the design of mobile FSOC systems, especially those requiring accurate transceivers’ tracking. The concept was validated through laboratory experiments on an MWIR link model, where both the signal bandwidth and position transfer function of the quadrant detector were examined. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
10 pages, 1464 KB  
Communication
A Signal Detection Method Based on BiGRU for FSO Communications with Atmospheric Turbulence
by Zhenning Yi, Zhiyong Xu, Jianhua Li, Jingyuan Wang, Jiyong Zhao, Yang Su and Yimin Wang
Photonics 2025, 12(10), 980; https://doi.org/10.3390/photonics12100980 - 2 Oct 2025
Viewed by 166
Abstract
In free space optical (FSO) communications, signals are affected by turbulence when transmitted through the atmosphere. Fluctuations in intensity caused by atmospheric turbulence lead to an increase in the bit error rate of FSO systems. Deep learning (DL), as a current research hotspot, [...] Read more.
In free space optical (FSO) communications, signals are affected by turbulence when transmitted through the atmosphere. Fluctuations in intensity caused by atmospheric turbulence lead to an increase in the bit error rate of FSO systems. Deep learning (DL), as a current research hotspot, offers a promising approach to improve the accuracy of signal detection. In this paper, we propose a signal detection method based on a bidirectional gated recurrent unit (BiGRU) neural network for FSO communications. The proposed detection method considers the temporal correlation of received signals due to the properties of the BiGRU neural network, which is not available in existing detection methods based on DL. In addition, the proposed detection method does not require channel state information (CSI) for channel estimation, unlike maximum likelihood (ML) detection technology with perfect CSI. Numerical results demonstrate that the proposed BiGRU-based detector achieves significant improvements in bit error rate (BER) performance compared with a multilayer perceptron (MLP)-based detector. Specifically, under weak turbulence conditions, the BiGRU-based detector achieves an approximate 2 dB signal-to-noise ratio (SNR) gain at a target BER of 106 compared to the MLP-based detector. Under moderate turbulence conditions, it achieves an approximate 6 dB SNR gain at the same target BER of 106. Under strong turbulence conditions, the proposed detector obtains a 6 dB SNR gain at a target BER of 104. Additionally, it outperforms conventional methods by more than one order of magnitude in BER under the same turbulence and SNR conditions. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

21 pages, 4678 KB  
Article
Impact of Beacon Feedback on Stabilizing RL-Based Power Optimization in SLM-Controlled FSO Uplinks Under Turbulence
by Erfan Seifi and Peter LoPresti
Photonics 2025, 12(10), 979; https://doi.org/10.3390/photonics12100979 - 1 Oct 2025
Viewed by 341
Abstract
Atmospheric turbulence severely limits the stability and reliability of free-space optical (FSO) uplinks by inducing wavefront distortions and random intensity fluctuations. This study investigates the use of reinforcement learning (RL) with beacon-based feedback for adaptive beam shaping in a spatial light modulator (SLM)-controlled [...] Read more.
Atmospheric turbulence severely limits the stability and reliability of free-space optical (FSO) uplinks by inducing wavefront distortions and random intensity fluctuations. This study investigates the use of reinforcement learning (RL) with beacon-based feedback for adaptive beam shaping in a spatial light modulator (SLM)-controlled FSO link. The RL agent dynamically adjusts phase patterns to maximize received signal strength, while the beacon channel provides turbulence estimates that guide the optimization process. Experiments under low, moderate, and high turbulence levels demonstrate that incorporating beacon feedback can enhance link stability in severe conditions, reducing signal variability and suppressing extreme fluctuations. In low-turbulence scenarios, the performance is comparable to non-feedback operation, whereas under high turbulence, beacon-assisted control consistently achieves lower coefficients of variation and improved bit error rate (BER) performance. Under high turbulence replay experiments—where the best-performing RL-learned phase patterns are reapplied without learning—further show that configurations trained with feedback retain robustness, even without real-time turbulence measurements under high turbulence. These results highlight the potential of integrating contextual feedback with RL to achieve turbulence-resilient and stable optical uplinks in dynamic atmospheric environments. Full article
Show Figures

Graphical abstract

21 pages, 2749 KB  
Article
Performance Analysis of an Optical System for FSO Communications Utilizing Combined Stochastic Gradient Descent Optimization Algorithm
by Ilya Galaktionov and Vladimir Toporovsky
Appl. Syst. Innov. 2025, 8(5), 143; https://doi.org/10.3390/asi8050143 - 30 Sep 2025
Viewed by 317
Abstract
Wavefront aberrations caused by thermal flows or arising from the quality of optical components can significantly impair wireless communication links. Such aberrations may result in an increased error rate in the received signal, leading to data loss in laser communication applications. In this [...] Read more.
Wavefront aberrations caused by thermal flows or arising from the quality of optical components can significantly impair wireless communication links. Such aberrations may result in an increased error rate in the received signal, leading to data loss in laser communication applications. In this study, we explored a newly developed combined stochastic gradient descent optimization algorithm aimed at compensating for optical distortions. The algorithm we developed exhibits linear time and space complexity and demonstrates low sensitivity to variations in input parameters. Furthermore, its implementation is relatively straightforward and does not necessitate an in-depth understanding of the underlying system, in contrast to the Stochastic Parallel Gradient Descent (SPGD) method. In addition, a developed switch-mode approach allows us to use a stochastic component of the algorithm as a rapid, rough-tuning mechanism, while the gradient descent component is used as a slower, more precise fine-tuning method. This dual-mode operation proves particularly advantageous in scenarios where there are no rapid dynamic wavefront distortions. The results demonstrated that the proposed algorithm significantly enhanced the total collected power of the beam passing through the 10 μm diaphragm that simulated a 10 μm fiber core, increasing it from 0.33 mW to 2.3 mW. Furthermore, the residual root mean square (RMS) aberration was reduced from 0.63 μm to 0.12 μm, which suggests a potential improvement in coupling efficiency from 0.1 to 0.6. Full article
(This article belongs to the Section Information Systems)
Show Figures

Figure 1

15 pages, 7653 KB  
Article
End-to-End Performance Analysis of CCSDS O3K Optical Communication System Under Atmospheric Turbulence and Pointing Errors
by Seung Woo Sun and Jung Hoon Noh
Aerospace 2025, 12(10), 869; https://doi.org/10.3390/aerospace12100869 - 27 Sep 2025
Viewed by 293
Abstract
Free-space optical (FSO) communication systems face significant challenges from atmospheric turbulence, which induces time-correlated fading and burst errors that critically affect link reliability. This paper presents a comprehensive end-to-end CCSDS O3K simulation platform with detailed atmospheric channel and pointing error modeling, enabling realistic [...] Read more.
Free-space optical (FSO) communication systems face significant challenges from atmospheric turbulence, which induces time-correlated fading and burst errors that critically affect link reliability. This paper presents a comprehensive end-to-end CCSDS O3K simulation platform with detailed atmospheric channel and pointing error modeling, enabling realistic performance evaluation. The atmospheric channel model follows ITU-R P.1622-1 recommendations and incorporates amplitude scintillation with temporal correlation using Ornstein–Uhlenbeck processes, while the pointing error model captures beam misalignment effects inherent in satellite optical links. Through extensive Monte Carlo simulations, we investigate the impact of coherence time, and interleaving depth on system performance. Results show that deeper interleaving significantly improves reliability under realistic channel conditions, providing valuable design guidance for CCSDS-compliant optical communication systems. This study does not propose new algorithms or protocols; rather, it delivers the first end-to-end CCSDS-compliant simulation framework under realistically modeled turbulence and pointing errors. Accordingly, the results offer meaningful reference value and practical benchmarks for inter-satellite optical communication research and system design. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 3445 KB  
Article
Hybrid Actuation MEMS Micromirror with Decoupled Piezoelectric Fast Axis and Electromagnetic Slow Axis for Crosstalk Suppression
by Haoxiang Li, Jiapeng Hou, Zheng Gong, Huijun Yu, Yue Liu and Wenjiang Shen
Micromachines 2025, 16(9), 1072; https://doi.org/10.3390/mi16091072 - 22 Sep 2025
Viewed by 357
Abstract
Electromagnetic micro-electro-mechanical system (MEMS) micromirrors are widely used in optical scanning systems but often encounter mechanical crosstalk due to the use of shared drive coils. This phenomenon leads to parasitic motion along the slow axis during fast-axis operation, resulting in undesirable elliptical scanning [...] Read more.
Electromagnetic micro-electro-mechanical system (MEMS) micromirrors are widely used in optical scanning systems but often encounter mechanical crosstalk due to the use of shared drive coils. This phenomenon leads to parasitic motion along the slow axis during fast-axis operation, resulting in undesirable elliptical scanning patterns that degrade image quality. To tackle this issue, a hybrid actuation scheme is proposed in which a piezoelectric actuator drives the fast axis through an S-shaped spring structure, achieving a resonance frequency of 792 Hz, while the slow axis is independently driven by an electromagnetic actuator operating in quasi-static mode. Finite element simulations and experimental measurements validate that the proposed decoupled design significantly suppresses mechanical crosstalk. When the fast axis is driven to a 40° optical scan angle, the hybrid system reduces the parasitic slow-axis deflection (typically around 1.43°) to a negligible level, thereby producing a clean single-line scan. The piezoelectric fast axis exhibits a quality factor of Q = 110, while the electromagnetic slow axis achieves a linear 20° deflection at 20 Hz. This hybrid design facilitates a distortion-free field of view measuring 40° × 20° with uniform line spacing, presenting a straightforward and effective solution for high-precision scanning applications such as LiDAR (Light Detection and Ranging) and structured light projection. Full article
Show Figures

Figure 1

27 pages, 2883 KB  
Article
Design and Optimization of an FSO Network Under Practical Considerations
by Marios Melanitis, Petros S. Bithas, Athanassios Katsis and Hector E. Nistazakis
Photonics 2025, 12(9), 926; https://doi.org/10.3390/photonics12090926 - 17 Sep 2025
Viewed by 550
Abstract
This study investigates the design and optimization of a free-space optical (FSO) wireless communication network employing high-altitude platforms (HAPs). The objective is to explore the parameters that affect the quality and viability of such a network and to develop a method for minimizing [...] Read more.
This study investigates the design and optimization of a free-space optical (FSO) wireless communication network employing high-altitude platforms (HAPs). The objective is to explore the parameters that affect the quality and viability of such a network and to develop a method for minimizing installation costs while maximizing performance. The methodology includes clustering ground nodes using the k-means algorithm and adjusting the emission solid angles for each HAP. Furthermore, to more closely reflect real-world conditions, our analytical investigations also consider the effects of atmospheric turbulence. The network’s performance is evaluated under both daytime and nighttime operational scenarios, taking into account background noise and the layered effects of atmospheric turbulence. These considerations ensure that the results presented in this paper more accurately reflect real-world conditions. The results demonstrate significant performance gains through appropriate parameter selection. Additionally, deploying multiple HAPs enhances network flexibility and resilience. It was shown that in certain scenarios specific combinations of per-HAP configurations offer more than a 70% increase in throughput with a small increase in the cost. The paper’s insights fill an important gap between theoretical FSO network models and the practical design considerations needed for real deployments. Full article
Show Figures

Figure 1

22 pages, 4991 KB  
Review
Meta-Optics for Optical Engineering of Next-Generation AR/VR Near-Eye Displays
by Junoh Lee and Sun-Je Kim
Micromachines 2025, 16(9), 1026; https://doi.org/10.3390/mi16091026 - 7 Sep 2025
Viewed by 1357
Abstract
Meta-optics, enabled by metasurfaces consisting of two-dimensional arrays of meta-atoms, offers ultrathin and multi-functional control over the vectorial wavefront of light at subwavelength scales. The unprecedented optical element technology is a promising candidate to overcome key limitations in augmented reality (AR) and virtual [...] Read more.
Meta-optics, enabled by metasurfaces consisting of two-dimensional arrays of meta-atoms, offers ultrathin and multi-functional control over the vectorial wavefront of light at subwavelength scales. The unprecedented optical element technology is a promising candidate to overcome key limitations in augmented reality (AR) and virtual reality (VR) near-eye displays particularly in achieving compact, eyeglass-type form factors with a wide field-of-view, a large eyebox, high resolution, high brightness, and reduced optical aberrations, at the same time. This review highlights key performance bottlenecks of AR/VR displays in the perspective of optical design, with an emphasis on their practical significance for advancing current technologies. We then examine how meta-optical elements are applied to VR and AR systems by introducing and analyzing the major milestone studies. In case of AR systems, particularly, two different categories, free-space and waveguide-based architectures, are introduced. For each category, we summarize studies using metasurfaces as lenses, combiners, or waveguide couplers. While meta-optics enables unprecedented miniaturization and functionality, it also faces several remaining challenges. The authors suggest potential technological directions to address such issues. By surveying recent progress and design strategies, this review provides a comprehensive perspective on the role of meta-optics in advancing the optical engineering of next-generation AR/VR near-eye displays. Full article
(This article belongs to the Special Issue Advances in Nanophotonics: Physics, Materials, and Applications)
Show Figures

Figure 1

28 pages, 23013 KB  
Review
On-Chip OPA: Progress and Prospects in Liquid Crystal, Lithium Niobate, and Silicon Material Platforms
by Xiaobin Wang, Junliang Guo, Zixin Yang, Yuqiu Zhang, Jinyong Leng, Qiang Yu and Jian Wu
Nanomaterials 2025, 15(17), 1374; https://doi.org/10.3390/nano15171374 - 5 Sep 2025
Viewed by 1065
Abstract
Non-mechanical beam steering is required for holographic displays, free-space optical communication, and chip-scale LiDAR. Optical phased arrays (OPAs), which allow for inertia-free, high-speed beam control via electronic phase control, are an important research topic. The present study investigates the primary material platform for [...] Read more.
Non-mechanical beam steering is required for holographic displays, free-space optical communication, and chip-scale LiDAR. Optical phased arrays (OPAs), which allow for inertia-free, high-speed beam control via electronic phase control, are an important research topic. The present study investigates the primary material platform for on-chip OPAs: Liquid crystal OPAs (LC-OPAs) employ electrically tunable refractive indices for low-voltage operation; lithium niobate OPAs (LN-OPAs) utilize high electro-optic coefficients for high-speed, low-power consumption, and large-bandwidth operation; and silicon-based OPAs (Si-OPAs) apply mature photonic integration to achieve high integration density and GHz-range steering. The paper thoroughly examines OPA basics, recent material-specific advancements, performance benchmarks, outstanding issues, and future prospects. Full article
Show Figures

Figure 1

21 pages, 3182 KB  
Article
High-Resolution Chaos Maps for Optically Injected Lasers
by Gerardo Antonio Castañón Ávila, Alejandro Aragón-Zavala, Ivan Aldaya and Ana Maria Sarmiento-Moncada
Appl. Sci. 2025, 15(17), 9724; https://doi.org/10.3390/app15179724 - 4 Sep 2025
Viewed by 531
Abstract
Deterministic chaos in optically injected semiconductor lasers (OILs) has attracted significant attention due to its relevance in secure communications, entropy generation, and photonic applications. However, existing studies often rely on low-resolution parameter sweeps or include noise contributions that obscure the intrinsic nonlinear dynamics. [...] Read more.
Deterministic chaos in optically injected semiconductor lasers (OILs) has attracted significant attention due to its relevance in secure communications, entropy generation, and photonic applications. However, existing studies often rely on low-resolution parameter sweeps or include noise contributions that obscure the intrinsic nonlinear dynamics. To address this gap, we investigate a noise-free OIL model and construct high-resolution chaos maps across the injection strength and frequency detuning parameter space. Chaos is characterized using two complementary approaches for computing the largest Lyapunov exponent: the Rosenstein time-series method and the exact variational method. This dual approach provides reliable and reproducible detection of deterministic chaotic regimes and reveals a rich attractor landscape with alternating bands of periodicity, quasi-periodicity, and chaos. The novelty of this work lies in combining high-resolution mapping with rigorous chaos indicators, enabling fine-grained identification of dynamical transitions. The results not only deepen the fundamental understanding of nonlinear laser dynamics but also provide actionable guidelines for exploiting or avoiding chaos in photonic devices, with potential applications in random chaos-based communications, number generation, and optical security systems. Full article
(This article belongs to the Special Issue Optical Communications Systems and Optical Sensing)
Show Figures

Figure 1

12 pages, 4113 KB  
Communication
Optical Communication Performance of Cylindrical Vector Partially Coherent Laguerre–Gaussian Beams in Atmospheric Turbulence
by Meng Liu, Linxuan Yao, Yaru Gao, Hui Zhang, Yangsheng Yuan, Bohan Guo and Huimin Shi
Photonics 2025, 12(9), 883; https://doi.org/10.3390/photonics12090883 - 2 Sep 2025
Viewed by 738
Abstract
The optical communication performance of cylindrical vector partially coherent Laguerre–Gaussian (PCLG) beams in different atmospheric turbulence models are investigated. Based on the unified theory of coherence and polarization and turbulence theory, analytical formulas for the signal-to-noise ratio (SNR), crosstalk equivalent intensity and bit [...] Read more.
The optical communication performance of cylindrical vector partially coherent Laguerre–Gaussian (PCLG) beams in different atmospheric turbulence models are investigated. Based on the unified theory of coherence and polarization and turbulence theory, analytical formulas for the signal-to-noise ratio (SNR), crosstalk equivalent intensity and bit error rate (BER) of cylindrical vector PCLG beams are derived in Kolmogorov turbulence, non-Kolmogorov turbulence and strong turbulence, respectively. Numerical analyses indicate that selecting a smaller azimuthal index l0 or a larger radial index p0 of beams can effectively enhance the SNR. In addition, selecting appropriate beam width, coherence length, wavelength of the beam, propagation distance and receiving aperture diameter enables the acquisition of the optimal signal detection position. Our results are conducive to the application of cylindrical vector PCLG beams in FSO communication. Full article
Show Figures

Figure 1

19 pages, 2770 KB  
Article
Spatio-Temporal Distribution of Visibility over Nigeria Using Kernel Density Estimation Techniques for Fog-Induced Attenuation
by Yusuf Babatunde Lawal, Pius Adewale Owolawi, Chunling Tu, Joseph Sunday Ojo, Olakunle Lawrence Ojo and Mobolaji Aduramo Sodunke
Telecom 2025, 6(3), 62; https://doi.org/10.3390/telecom6030062 - 1 Sep 2025
Viewed by 455
Abstract
The continuous demand for uninterrupted super-fast wireless communication services can only be fulfilled by transmitting electromagnetic waves at high frequencies. This study investigates the impacts of atmospheric visibility on Free Space Optical (FSO) Communication links operating at three Near-Infrared (NIR) frequencies, 353 THz [...] Read more.
The continuous demand for uninterrupted super-fast wireless communication services can only be fulfilled by transmitting electromagnetic waves at high frequencies. This study investigates the impacts of atmospheric visibility on Free Space Optical (FSO) Communication links operating at three Near-Infrared (NIR) frequencies, 353 THz (850 nm), 273 THz (1100 nm), and 194 THz (1550 nm), in some selected business-hub cities (Ikeja, Calabar, Abuja and Kano) in Nigeria. Fifteen years (2009–2023) of visibility data retrieved from the archive of the National Oceanic and Atmospheric Administration (NOAA) were utilized to investigate the impacts of seasonal visibility on fog-induced specific attenuation. Kernel density estimation (KDE) was used to estimate and categorize seasonal visibility as low-visibility (LV) and high-visibility (HV) during wet and dry seasons. The triangular kernel provides the best estimation across all the stations with lowest Integrated Square Errors (ISEs). Similar seasonal trends were observed for the computed fog-induced specific attenuations at the selected wavelengths. Specific attenuation shows double peaks noticed in LV dry and LV wet seasons. Maximum specific attenuations of about 0.27 dB/km, 0.22 dB/km, 0.23 dB/km, and 0.27 were observed at 850 nm in Ikeja, Calabar, Abuja, and Kano, respectively, during the LV dry season. The variability of visibility and its effects on specific attenuation is moderate in Abuja compared to other stations. The results will find applications in the design and implementation of the FSO communication link for optimum performance in tropical regions. Full article
Show Figures

Figure 1

Back to TopTop