Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (939)

Search Parameters:
Keywords = glass–ceramic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2956 KB  
Article
Research on Alkali-Activated, Spinelized Kaolin Cementitious Composite Materials
by Yuyang Feng, Chenyi Gao, Feng Yuan, Jun Sun and Qijiang Li
Materials 2025, 18(17), 4147; https://doi.org/10.3390/ma18174147 - 4 Sep 2025
Viewed by 270
Abstract
This study prepared alkali-activated cementitious composites using high-whiteness kaolin, sodium water glass, and NaOH as the main raw materials. Multiple methods, including FE-SEM, XRD, whiteness/light transmittance tests, shrinkage rate measurements, DSC-TG, flexural strength testing, and hydrolysis resistance testing, were used to investigate the [...] Read more.
This study prepared alkali-activated cementitious composites using high-whiteness kaolin, sodium water glass, and NaOH as the main raw materials. Multiple methods, including FE-SEM, XRD, whiteness/light transmittance tests, shrinkage rate measurements, DSC-TG, flexural strength testing, and hydrolysis resistance testing, were used to investigate the effects of curing temperature and time on material properties. The optimal parameters were determined as kaolin calcined at 1100 °C, activator modulus 1.25, calcined kaolin-to-activator ratio 1:1, and 2.5% deionized water added for molding. The optimal sample achieved a flexural strength of 23.81 MPa, with the bonding strength to porcelain 60.17 times that of gypsum and 1.90 times that of kaolin-bonded materials. Curing below 100 °C slowed polymerization, while temperatures exceeding 100 °C accelerated it, with violent reaction at 120 °C. Curing beyond 10 h reduced flexural strength. A large number of cage-like, ‘zeolite-like’ structures formed, closely relating to material properties. This study provides references for ceramic restoration materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 2449 KB  
Article
From Waste to Resource: Circular Economy Approaches to Valorize Fine Glass, Ceramic, and Plastic Residues in a Glass Recycling Plant
by Ewa Siedlecka, Jarosław Siedlecki, Beniamin Bednarski and Szymon Białek
Sustainability 2025, 17(17), 7966; https://doi.org/10.3390/su17177966 - 4 Sep 2025
Viewed by 349
Abstract
Waste glass recycling generates waste streams such as fine glass fraction, waste ceramics containing fine glass, and waste polyethylene plastics. All of the aforementioned streams contain contaminants of organic and inorganic origin that are difficult to remove. This research was conducted to determine [...] Read more.
Waste glass recycling generates waste streams such as fine glass fraction, waste ceramics containing fine glass, and waste polyethylene plastics. All of the aforementioned streams contain contaminants of organic and inorganic origin that are difficult to remove. This research was conducted to determine technological processes aimed at achieving a circular economy (CE) in the recycling of waste glass. Foam glass was made from the fine-grained, multicolored fraction of contaminated glass, an effective method for recycling glass waste at a low cost. A frothing system based on manganese oxide (MnO2) and silicon carbide (SiC) was proposed, and an optimum weight ratio of MnO2/SiC equal to 1.0 was determined. The possibility of controlling the process to achieve the desired foam glass densities was demonstrated. Statistical analysis was used to determine the effect of the MnO2/SiC ratio and MnO2 content on the density of the resulting foam glass products. Waste ceramics contaminated with different-colored glass were transformed into ceramic–glass granules. The characteristic temperature curve of the technological process was determined. The metal content in water extracts from ceramic–glass granules and pH value indicate their potential use for alkalizing areas degraded by industry and agriculture. Waste polyethylene-based plastics were converted into polyethylene waxes by thermal treatment carried out in two temperature ranges: low temperature (155–175 °C) and high temperature (optimum in 395 °C). The melting temperature range of the obtained waxes (95–105 °C) and their FTIR spectral characteristics indicate the potential application of these materials in the plastics and rubber industries. The integrated management of all material streams generated in the glass recycling process allowed for the development of a CE model for the glass recycling plant. Full article
Show Figures

Figure 1

12 pages, 2969 KB  
Article
A-Site Doping Effect on PLZT Relaxor Ferroelectric Glass-Free Medium-Temperature Sintering Ceramics
by Shuhan Zhang, Qingwei Liao, Yue Xu, Xinyu Liu, Haoran Zhang, Hongxian Wang, Heyu Dong and Lei Qin
Coatings 2025, 15(9), 1032; https://doi.org/10.3390/coatings15091032 - 3 Sep 2025
Viewed by 263
Abstract
The high-temperature sintering characteristics of PLZT not only lead to lead volatilization and component mismatch but also limit its compatibility with low-cost electrode materials (such as Cu), making it a key bottleneck in its industrialization. In this study, PLZT dielectric ceramics were prepared [...] Read more.
The high-temperature sintering characteristics of PLZT not only lead to lead volatilization and component mismatch but also limit its compatibility with low-cost electrode materials (such as Cu), making it a key bottleneck in its industrialization. In this study, PLZT dielectric ceramics were prepared using a glass-free densification process. Additionally, rare earth element Nd3+ was used for A-site doping to regulate the phase composition and domain structure of the material, and the relaxation characteristics and energy storage performance of PLZT were investigated. The results show that Nd3+ doping shifts the Raman 144 cm−1 peak redward by 2.7 cm−1. The P-E loop exhibits a narrow double-loop characteristic, with residual polarization reduced to 0.7 μC/cm2 and maximum polarization reaching 17.7 μC/cm2. When x = 0.07, a high energy storage density (Wrec = 3.98 J/cm3 and efficiency (η = 85%, x = 0.05) were achieved at 500 kV/cm. Through charge–discharge testing, the power density was determined to be 172.23 MW/cm3, with a discharge time τ0.9 = 9.17 ns. This work could facilitate its application in multilayer ceramic capacitors (MLCCs) and embedded energy storage devices. Full article
Show Figures

Figure 1

26 pages, 2981 KB  
Article
Mechanical Properties of Fly Ash Ceramsite Concrete Produced in a Single-Cylinder Rotary Kiln
by Weitao Li, Xiaorui Jia, Guowei Ni, Bo Liu, Jiayue Li, Zirui Wang and Juannong Chen
Buildings 2025, 15(17), 3124; https://doi.org/10.3390/buildings15173124 - 1 Sep 2025
Viewed by 325
Abstract
Fly ash, as the main solid waste of coal-fired power plants, is an environmental problem that needs to be solved due to its massive accumulation. The mechanical properties and optimization mechanism of lightweight aggregate concrete prepared by using new single-cylinder rotary kiln fly [...] Read more.
Fly ash, as the main solid waste of coal-fired power plants, is an environmental problem that needs to be solved due to its massive accumulation. The mechanical properties and optimization mechanism of lightweight aggregate concrete prepared by using new single-cylinder rotary kiln fly ash ceramic granules as aggregate were systematically investigated. Through orthogonal experimental design, combined with macro-mechanical testing and microscopic characterization techniques, the effects of cement admixture and ceramic granule admixture on the properties of concrete, such as compressive strength, split tensile strength, and modulus of elasticity, were analyzed, and the optimization scheme of key parameters was proposed. The results show that the new single rotary kiln fly ash ceramic particles significantly improve the mechanical properties of concrete by optimizing the porosity (water absorption ≤ 5%), and its 28-day compressive strength reaches 46~50.9 MPa, which is 53.3~69.7% higher than that of the ordinary ceramic concrete, and the apparent density is ≤1900 kg/m3, showing lightweight and high-strength characteristics. X-ray diffraction (XRD) analysis shows that the new ceramic grains form a more uniform, dense structure through the synergistic effect of internal mullite crystals and dense glass phase; computed tomography (CT) scanning shows that the total volume rate of cracks of the new ceramic concrete was reduced by up to 63.8% compared with that of ordinary ceramic concrete. This study provides technical support for the utilization of fly ash resources, and the prepared vitrified concrete meets the demand of green building while reducing structural deadweight (20~30%), which has significant environmental and economic benefits. Full article
Show Figures

Figure 1

17 pages, 777 KB  
Article
Bioactive Resin Cement Color Stability and Restoration Thickness as Determinants of the Final Shade in a Glass–Ceramic CAD/CAM Material
by Hanin E. Yeslam and Alaa Turkistani
J. Funct. Biomater. 2025, 16(9), 319; https://doi.org/10.3390/jfb16090319 - 31 Aug 2025
Viewed by 655
Abstract
Bioactive resin cements are gaining popularity for their clinical benefits, but concerns remain regarding their color stability. This study evaluated the color change (ΔE00) and whiteness change (ΔWID) in bioactive resin cements and how their potential discoloration affects the [...] Read more.
Bioactive resin cements are gaining popularity for their clinical benefits, but concerns remain regarding their color stability. This study evaluated the color change (ΔE00) and whiteness change (ΔWID) in bioactive resin cements and how their potential discoloration affects the shade of bonded CAD/CAM glass–ceramics at different ceramic thicknesses. VITA Mark II blocks were prepared in three thicknesses (0.5, 0.8, and 1.0 mm) and divided by resin cement: Panavia SA Universal (Pn), Predicta Bioactive Cement (Pr), and ACTIVA BioACTIVE Cement (Ac) (n = 10). Additionally, 10 specimens (10 × 2 mm) of each cement alone were prepared. Color was measured before and after 24 days of coffee immersion. Cement type significantly affected ΔE00 (p < 0.001). Pn had the highest color stability, followed by Pr and Ac, with significant differences between each. ΔWID also varied by cement (p = 0.004), with Pn and Pr differing significantly from Ac. Ceramic thickness alone had no significant effect on ΔE00 or ΔWID, but its interaction with cement type was significant (p < 0.001). While ceramic thickness does not directly affect the final shade, its combination with resin cement does. Choosing the right resin cement is key for long-term esthetic outcomes. Full article
(This article belongs to the Special Issue Latest Advances in Dental Materials)
Show Figures

Figure 1

12 pages, 1618 KB  
Article
Fast Quantification of Lithium Concentration in Non-Compliant Materials Using Laser-Induced Breakdown Spectroscopy
by Simona Raneri, Vincenzo Palleschi, Francesco Poggialini, Beatrice Campanella, Giulia Lorenzetti, Pilario Costagliola, Valentina Rimondi, Guia Morelli and Stefano Legnaioli
Appl. Sci. 2025, 15(17), 9583; https://doi.org/10.3390/app15179583 - 30 Aug 2025
Viewed by 320
Abstract
Although approximately half of global lithium consumption is used in the rechargeable battery industry, lithium is also in demand for other specialized applications, such as high-temperature lubricants, ceramics, glass, and pharmaceuticals. The growing need for efficient lithium recovery and recycling underscores the importance [...] Read more.
Although approximately half of global lithium consumption is used in the rechargeable battery industry, lithium is also in demand for other specialized applications, such as high-temperature lubricants, ceramics, glass, and pharmaceuticals. The growing need for efficient lithium recovery and recycling underscores the importance of fast and accurate analytical tools for determining lithium concentrations in non-compliant and waste materials generated by industrial processes. In this paper, we present a machine learning-based procedure utilizing Laser-Induced Breakdown Spectroscopy (LIBS) to accurately quantify lithium concentrations in lithium-rich non-compliant materials derived from the industrial production of enamels used for coating metallic surfaces. This procedure addresses challenges such as strong self-absorption and matrix effects, which limit the effectiveness of conventional univariate calibration methods. By employing a multivariate approach, we developed a single model capable of quantifying lithium content across a wide concentration range. A comparison of the LIBS results with those obtained using conventional laboratory analysis (Inductively Coupled Plasma–Optical Emission Spectrometry, ICP-OES) confirms that LIBS can deliver the speed, precision, and reliability required for potential routine applications in the lithium recovery and recycling industry. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

30 pages, 2009 KB  
Review
Innovative Smart Materials in Restorative Dentistry
by Roxana Ionela Vasluianu, Livia Bobu, Iulian-Costin Lupu, Magda Antohe, Bogdan Petru Bulancea, Antonia Moldovanu, Ovidiu Stamatin, Catalina Cioloca Holban and Ana Maria Dima
J. Funct. Biomater. 2025, 16(9), 318; https://doi.org/10.3390/jfb16090318 - 30 Aug 2025
Viewed by 691
Abstract
The growing challenge of biofilm-associated infections in dentistry necessitates advanced solutions. This review highlights the potential of smart bioactive and antibacterial materials—bioactive glass ceramics (BGCs), silver nanoparticle (AgNP)-doped polymers, and pH-responsive chitosan coatings—in transforming restorative dentistry. BGCs reduce biofilms by >90% while promoting [...] Read more.
The growing challenge of biofilm-associated infections in dentistry necessitates advanced solutions. This review highlights the potential of smart bioactive and antibacterial materials—bioactive glass ceramics (BGCs), silver nanoparticle (AgNP)-doped polymers, and pH-responsive chitosan coatings—in transforming restorative dentistry. BGCs reduce biofilms by >90% while promoting bone integration. AgNP-polymers effectively combat S. mutans and C. albicans but require controlled dosing (<0.3 wt% in PMMA) to avoid cytotoxicity. Chitosan coatings enable pH-triggered drug release, disrupting acidic biofilms. Emerging innovations like quaternary ammonium compounds, graphene oxide hybrids, and 4D-printed hydrogels offer on-demand antimicrobial and regenerative functions. However, clinical translation depends on addressing cytotoxicity, standardizing antibiofilm testing (≥3-log CFU/mL reduction), and ensuring long-term efficacy. These smart materials pave the way for self-defending restorations, merging infection control with tissue regeneration. Future advancements may integrate AI-driven design for multifunctional, immunomodulatory dental solutions. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

23 pages, 2303 KB  
Review
The Utilization of the Copper Smelting Slag: A Critical Review
by Jiaxing Liu, Haoyu Xie and Baisui Han
Minerals 2025, 15(9), 926; https://doi.org/10.3390/min15090926 - 30 Aug 2025
Viewed by 490
Abstract
As the primary method of obtaining metallic copper resources from copper ore, pyrometallurgical smelting usually produces a large amount of copper slag, which has good physical properties and contains many valuable metals. Therefore, how to fully recycle and utilize it has become a [...] Read more.
As the primary method of obtaining metallic copper resources from copper ore, pyrometallurgical smelting usually produces a large amount of copper slag, which has good physical properties and contains many valuable metals. Therefore, how to fully recycle and utilize it has become a research direction that has received much attention in recent years. To better understand the ‘artificial’ ore of copper slag, this article reviews the copper smelting process, the sources and properties of copper slag, and its resource potential. It introduces the method of recovering valuable metals from copper slag, including pyrometallurgical impoverishment, hydrometallurgical recovery, mineral processing methods, etc. Furthermore, it lists some applications of copper slag in the field of materials, primarily in cement, concrete aggregates, and glass-ceramic materials. Finally, based on the sustainable development background, copper slag’s efficient recycling is prospected. However, scalable, eco-friendly recovery technologies remain limited and warrant further research. Full article
Show Figures

Figure 1

22 pages, 9645 KB  
Review
Research Progress on the Application of Ionic Rare Earth Tailings in Silicate Materials
by Xue Wang, Wen Ni, Jiajie Li and Siqi Zhang
Separations 2025, 12(9), 230; https://doi.org/10.3390/separations12090230 - 29 Aug 2025
Viewed by 271
Abstract
With the continuous expansion of rare earth resource development, the large-scale accumulation of ionic rare earth tailings (IRETs) has exerted pressure on both environmental and resource management. Due to their inherent low reactivity, unstable composition, and potential environmental risks, their widespread engineering application [...] Read more.
With the continuous expansion of rare earth resource development, the large-scale accumulation of ionic rare earth tailings (IRETs) has exerted pressure on both environmental and resource management. Due to their inherent low reactivity, unstable composition, and potential environmental risks, their widespread engineering application faces many challenges. To achieve the resource utilization of this solid waste, scholars in recent years have conducted extensive research on their application in silicate materials. This study systematically reviews the existing research. Given that the trace rare earth oxides in IRETs exhibit excellent mineralization effects and that IRETs contain a significant amount of clay minerals, IRETs can be feasibly applied in the production of silicate materials, including clinker, tiles, ceramics, glass-ceramics, and geopolymers. The research findings aim to provide technical support and practical guidance for the large-scale resource utilization of IRETs, promoting their application in silicate material production. This study identifies the common issues found in the research and provides recommendations for the high-value and large-scale resource utilization of IRETs in the future. Full article
(This article belongs to the Special Issue Recent Advances in Rare Earth Separation and Extraction)
Show Figures

Figure 1

14 pages, 1299 KB  
Article
Life Cycle Assessment of Industrial Glass Cullet Recycling Process Based on Alkaline Activation
by Elena Battiston, Francesco Carollo, Giulia Tameni, Enrico Bernardo and Anna Mazzi
Ceramics 2025, 8(3), 109; https://doi.org/10.3390/ceramics8030109 - 29 Aug 2025
Viewed by 493
Abstract
To mitigate the issue of accumulating glass waste, an advanced process has been developed for the production of glass foams via alkaline activation, employing industrial glass cullet as the primary raw material. This method contributes to circular economy strategies by enabling high-value upcycling [...] Read more.
To mitigate the issue of accumulating glass waste, an advanced process has been developed for the production of glass foams via alkaline activation, employing industrial glass cullet as the primary raw material. This method contributes to circular economy strategies by enabling high-value upcycling of secondary raw materials. The aim of the study is to conduct an environmental assessment of this recycling process using the Life Cycle Assessment (LCA). The analysis is performed with SimaPro software, adopting the ReCiPe impact assessment method, which allows for the quantification of 18 impact categories. Four distinct foaming processes were compared to determine the most environmentally preferable option and a sensitivity analysis was conducted to assess how variations in energy sources influence the environmental performance. The findings indicate that the scenario involving hardening at 40 °C for seven days results in the highest environmental burdens. Specifically, in the Human Carcinogenic Toxicity category, the normalized impacts for this process are approximately an order of magnitude greater. Electricity consumption is identified as the primary contributor to the overall impact. The sensitivity analysis underscores that utilizing photovoltaic panels reduces impacts. Future developments will focus on expanding the system boundaries to provide a more comprehensive understanding and supporting informed decision-making. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

24 pages, 1928 KB  
Review
Alkali Activation of Glass for Sustainable Upcycling: An Overview
by Giulia Tameni and Enrico Bernardo
Ceramics 2025, 8(3), 108; https://doi.org/10.3390/ceramics8030108 - 27 Aug 2025
Viewed by 597
Abstract
The recycling of glass presently poses several challenges, predominantly to the heterogeneous chemical compositions of various glass types, along with the waste glass particle size distribution, both of which critically influence the efficiency and feasibility of recycling operations. Numerous studies have elucidated the [...] Read more.
The recycling of glass presently poses several challenges, predominantly to the heterogeneous chemical compositions of various glass types, along with the waste glass particle size distribution, both of which critically influence the efficiency and feasibility of recycling operations. Numerous studies have elucidated the potential of converting non-recyclable glass waste into valuable materials thanks to the up-cycling strategies, including stoneware, glass wool fibres, glass foams, glass-ceramics, and geopolymers. Among the promising alternatives for improving waste valorisation of glass, alkali-activated materials (AAMs) emerge as a solution. Waste glasses can be employed both as aggregates and as precursors, with a focus on its application as the sole raw material for synthesis. This overview systematically explores the optimisation of precursor selection from a sustainability standpoint, specifically addressing the mild alkali activation process (<3 mol/L) of waste glasses. The molecular mechanisms governing the hardening process associated with this emerging class of materials are elucidated. Formulating sustainable approaches for the valorisation of glass waste is becoming increasingly critical in response to the rising quantities of non-recyclable glass and growing priority on circular economy principles. In addition, the paper highlights the innovative prospects of alkali-activated materials derived from waste glass, emphasising their emerging roles beyond conventional structural applications. Environmentally relevant applications for alkali-activated materials are reported, including the adsorption of dyes and heavy metals, immobilisation of nuclear waste, and an innovative technique for hardening as microwave-assisted processing. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

18 pages, 3320 KB  
Article
Numerical and Experimental Investigation of Slot-Die Coating Regimes of Alumina Slurries on Glass and Dried Alumina Layer for Ceramic Additive Manufacturing
by Jeonghong Ha
Coatings 2025, 15(8), 977; https://doi.org/10.3390/coatings15080977 - 21 Aug 2025
Viewed by 530
Abstract
Slurry-based additive manufacturing (AM) enables the fabrication of dense and complex ceramic components through the layer-by-layer deposition of high-solid-content slurries. However, the reliable formation of uniform, defect-free slurry layers remains a bottleneck for process stability and final part quality. In this study, the [...] Read more.
Slurry-based additive manufacturing (AM) enables the fabrication of dense and complex ceramic components through the layer-by-layer deposition of high-solid-content slurries. However, the reliable formation of uniform, defect-free slurry layers remains a bottleneck for process stability and final part quality. In this study, the slot-die coating window for alumina slurry (50 wt%, viscosity = 34 Pa·s) was systematically investigated using volume-of-fluid simulations and experiments, with coating speed (0.7–2.8 mm/s), flow rate (0.6–0.8 mL/min), and coating gap (200–400 μm) as key variables. The coating process exhibited three distinct regimes, namely overflow, stable, and unstable, depending on process conditions. For a coating gap of 200 μm on a glass substrate, stable bead formation was observed over the widest coating speed range without overflow or air entrainment. At higher speeds, dynamic wetting failure induced air entrainment and bead breakage, while lower speeds led to overflow defects. When coating on a dried alumina layer (contact angle, CA = 137°), the stable window narrowed significantly compared to the glass substrate (CA = 66.7°), highlighting the substantial influence of substrate wettability on coating stability and defect formation. The results derived in this work offer practical guidance for optimizing process parameters to achieve uniform, defect-free films in multilayer ceramic AM. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 3rd Edition)
Show Figures

Figure 1

20 pages, 4966 KB  
Article
New Glass-Ceramics in the System Ca2SiO4-Ca3(PO4)2—Phase Composition, Microstructure, and Effect on the Cell Viability
by Irena Mihailova, Petya Dimitrova, Georgi Avdeev, Radostina Ivanova, Hristo Georgiev, Milena Nedkova-Shtipska, Ralitsa Teodosieva and Lachezar Radev
Materials 2025, 18(16), 3887; https://doi.org/10.3390/ma18163887 - 19 Aug 2025
Viewed by 632
Abstract
The CaO-SiO2-P2O5 system is one of the main systems studied aiming for the synthesis of new bioactive materials for bone regeneration. The interest in materials containing calcium-phosphate-silicate phases is determined by their biocompatibility, biodegradability, bioactivity, and osseointegration. The [...] Read more.
The CaO-SiO2-P2O5 system is one of the main systems studied aiming for the synthesis of new bioactive materials for bone regeneration. The interest in materials containing calcium-phosphate-silicate phases is determined by their biocompatibility, biodegradability, bioactivity, and osseointegration. The object of the present study is the synthesis by the sol-gel method of biocompatible glass-ceramics in the Ca2SiO4-Ca3(PO4)2 subsystem with the composition 6Ca2SiO4·Ca3(PO4)2 = Ca15(PO4)2(SiO4)6. The phase-structural evolution of the samples was monitored using X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and surface area analysis. A powder (20–30 µm) glass-ceramic material containing fine crystalline aggregates of dicalcium silicate and plates of silicon-substituted hydroxyapatite was obtained after heat treatment at 700 °C. After heat treatment at 1200 °C, Ca15(PO4)2(SiO4)6, silicocarnotite Ca5(PO4)2(SiO4), and pseudowollastonite CaSiO3 were identified by XRD, and the particle size varied between 20 and 70 µm. The compact glass-ceramic obtained at 1400 °C contained Ca2SiO4-Ca3(PO4)2 solid solutions with an α-Ca2SiO4 structure as a main crystalline phase. SEM showed the specific morphology of the crystalline phases and illustrated the trend of increasing particle size depending on the synthesis temperature. Effects of the glass-ceramic materials on cell viability of HL-60-derived osteoclast-like cells and on the expression of apoptotic and osteoclast-driven marker suggested that all materials at low concentrations, above 1 µg mL−1, are biocompatible, and S-1400 might have a potential application as a scaffold material for bone regeneration. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

18 pages, 16179 KB  
Article
Barium Titanate-Based Glass–Ceramics Crystallized from Multicomponent Oxide Glasses: Phase Composition and Microstructure
by Ruzha Harizanova, Wolfgang Wisniewski, Dragomir M. Tatchev, Georgi Avdeev, Svetlozar Nedev and Christian Rüssel
Materials 2025, 18(16), 3783; https://doi.org/10.3390/ma18163783 - 12 Aug 2025
Viewed by 417
Abstract
The interest in synthesizing new dielectric materials is caused by their potential application in various electronic and sensor devices as well as in a large variety of electronic components. The present work reports the synthesis of glasses in the Na2O/Al2 [...] Read more.
The interest in synthesizing new dielectric materials is caused by their potential application in various electronic and sensor devices as well as in a large variety of electronic components. The present work reports the synthesis of glasses in the Na2O/Al2O3/BaO/ZrO2/TiO2/B2O3/SiO2 system prepared by melt-quenching. These glasses were then crystallized to glass–ceramics by a controlled thermal treatment. X-ray diffraction experiments reveal the precipitation of Ba2TiSi2O8 (fresnoite) and BaTiO3, which probably forms a BaZrxTi1−xO3 solid solution. The microstructure is studied by scanning electron microscopy and shows the presence of mulberry-shaped, crystallized structures with a densely-branching morphology. Microcomputed X-ray tomography is used to gather information on the volume fraction and average size of the crystallized volume as an effect of the applied temperature–time schedule. Longer annealing times lead to a higher volume fraction and increasing average size of the crystallization structures obtained. The dielectric properties analyzed by impedance spectroscopy are insulating and show relatively high dielectric constants ≥ 100 and moderate loss tangent values at 10 kHz. Full article
Show Figures

Figure 1

12 pages, 923 KB  
Article
Effect of Ultraviolet Light on the Shear Bond Strength of Commercial Dental Adhesives
by Markus Heyder, Stefan Kranz, Johanna Sandra Woelfel, Tabea Raabe, André Guellmar, Anna Mrozinska, Michael Gottschaldt, Ulrich S. Schubert, Bernd W. Sigusch and Markus Reise
Materials 2025, 18(16), 3772; https://doi.org/10.3390/ma18163772 - 12 Aug 2025
Viewed by 349
Abstract
Background: In adhesive dentistry, debonding-on-demand is attractive for situations where no permanent attachment is required. Due to its destructive nature, ultraviolet (UV) light may be of interest for attenuating bond forces. The aim of this study was to investigate the impact of UV [...] Read more.
Background: In adhesive dentistry, debonding-on-demand is attractive for situations where no permanent attachment is required. Due to its destructive nature, ultraviolet (UV) light may be of interest for attenuating bond forces. The aim of this study was to investigate the impact of UV light on the shear bond strength (SBS) of etch-and-rinse (n = 4) and universal adhesives (n = 3). Methods: Glass-ceramic samples were bonded to bovine enamel surfaces (n = 10/adhesive) and subjected to shear bond testing before and after exposure to UV light (320–390 nm, 126 Jcm−2). Data was statistically analyzed by Mann–Whitney U test. Results: Initial photopolymerized etch-and-rinse adhesives showed superior SBS compared to universal adhesives. Highest values were recorded for iBOND® Total etch (15.48 MPa) and Syntac classic© (17.60 MPa). Lowest SBS was obtained for Ecosite Bond® (2.63 MPa). Additional UV exposure caused a significant decrease in SBS among iBOND Total etch (5.24 MPa, p = 0.009) and Solobond M© (3.65 MPa, p = 0.005), while for Syntac classic©, an increase (24.12 MPa, p = 0.047) was recorded. Among all other tested adhesives, no significant changes were observed. Conclusions: UV radiation impacted SBS of etch-and-rinse adhesives only (decrease: iBOND Total Etch, Solobond M; enhancement: Syntac classic©). Further research should focus on introducing sufficient light-triggered debonding mechanisms. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

Back to TopTop