Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (359)

Search Parameters:
Keywords = herb-herb interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3285 KiB  
Article
Ginsenosides as Potential Natural Ligands of SLC3A2: Computational Insights in Cancer
by Jing Lu
Life 2025, 15(6), 907; https://doi.org/10.3390/life15060907 - 4 Jun 2025
Viewed by 6
Abstract
Panax ginseng has been used as a traditional Oriental medicinal herb. This research investigates the potential of ginsenosides, bioactive phyto compounds derived from ginseng, as ligands of the solute carrier (SLC) family, including SLC3A2, SLC7A6, SLC7A11, SLC7A5, SLC7A8, SLC43A1, LCN2, SLC7A9, SLC7A7, [...] Read more.
Panax ginseng has been used as a traditional Oriental medicinal herb. This research investigates the potential of ginsenosides, bioactive phyto compounds derived from ginseng, as ligands of the solute carrier (SLC) family, including SLC3A2, SLC7A6, SLC7A11, SLC7A5, SLC7A8, SLC43A1, LCN2, SLC7A9, SLC7A7, and SLC7A10 proteins—which are overexpressed in various cancers and linked to metastasis. Using molecular docking (MD), ginsenosides (Km, Ro, compound K (CK), Rk1, and Ra1) with high binding affinities to SLC3A2 were identified, exhibiting binding energies of −9.3, −9.1, −8.7, −8.0, and −7.7 kcal/mol, respectively. Further molecular dynamics simulations (MDSs) conducted using GROMACS revealed improved stability, flexibility, and dynamic behavior of the selected ginsenosides, predicting their potential as natural ligands to bind with SLC3A2. Though this computational prediction underscores these ginsenosides as promising candidates as natural ligands to bind and interact with SLC family proteins during anti-cancer therapies, further in vitro and in vivo studies are needed to validate these interactions and anti-cancer effects. Full article
Show Figures

Figure 1

15 pages, 919 KiB  
Article
An Isobolographic Analysis of the Antinociceptive Effect of Salvia hispanica L. in Combination with Citrus × latifolia in Rats
by Lilian Dolores Chel-Guerrero, Rolffy Ortiz-Andrade, Enrique Sauri-Duch, Emilio Piña-Betancourt, Luis Hebert-Doctor and Myrna Déciga-Campos
Nutrients 2025, 17(11), 1884; https://doi.org/10.3390/nu17111884 - 30 May 2025
Viewed by 131
Abstract
This study aimed to evaluate the antinociceptive effect of Salvia hispanica L. seeds, Citrus × latifolia (Lime) juice, and the interaction of their combination in rats using the writhing test. Dose–response curves were constructed for an n-hexane extract of S. hispanica seeds [...] Read more.
This study aimed to evaluate the antinociceptive effect of Salvia hispanica L. seeds, Citrus × latifolia (Lime) juice, and the interaction of their combination in rats using the writhing test. Dose–response curves were constructed for an n-hexane extract of S. hispanica seeds (100–300 mg/kg; p.o.) and C. × latifolia juice (10–300 mg/kg; p.o.) administered individually or in combination to rats subjected to 1% acetic acid-induced writhing. Isobolographic analysis was used to assess the interaction between the combinations. Results showed that both medicinal plants exhibited dose-dependent antinociceptive effects. The antinociceptive effect of C. × latifolia (ED50 = 43.95 ± 1.9 mg/kg) exhibited greater potency than S. hispanica (ED50 = 112.9 ± 2.0 mg/kg). Their combination (1:1 ratio) showed a synergistic antinociceptive effect (Zexp = 4.9 ± 0.6 mg/kg vs. Zadd = 83.5 ± 1.7 mg/kg). Both extracts were non-toxic, according to the OECD-423 test. Antioxidant activity may have contributed to the observed antinociceptive synergy. This study demonstrates that the synergistic antinociceptive effects suggest that combining S. hispanica and C. × latifolia may be a promising therapeutic approach for managing inflammatory and visceral pain with potential clinical utility. Full article
Show Figures

Graphical abstract

38 pages, 1484 KiB  
Review
Hazardous Interactions Between Food, Herbs, and Drugs in the First Stage of Biotransformation: Case Reports of Adverse Drug Interactions in Humans
by Bożena Bukowska, Anna Grzegorowska, Eliza Szczerkowska-Majchrzak, Karol Bukowski, Kornelia Kadac-Czapska, Małgorzata Grembecka and Marlena Broncel
Int. J. Mol. Sci. 2025, 26(11), 5188; https://doi.org/10.3390/ijms26115188 - 28 May 2025
Viewed by 149
Abstract
Food components and herbal substances can inhibit or enhance the therapeutic effects of drugs, thus influencing their efficacy and safety. As relatively little in known of these interactions, the aim of this review is to shed further light on the potentially dangerous influences [...] Read more.
Food components and herbal substances can inhibit or enhance the therapeutic effects of drugs, thus influencing their efficacy and safety. As relatively little in known of these interactions, the aim of this review is to shed further light on the potentially dangerous influences that food and herbs may have on cytochrome P450 enzyme (CYP) and monoamine oxidase (MAO) activity in the first stage of drug biotransformation. The review includes documented cases in which such interactions have led to health complications in patients. For example, fruit juices, such as grapefruit juice, cranberry juice, and pomegranate juice, have been found to interact with drugs, and to particularly inhibit CYP450 activity, and commonly used herbs are known to inhibit (e.g., Astragalus membranous) or induce (e.g., Hypericum perforatum) CYP enzymes involved in drug metabolism. CYP is also induced by polycyclic aromatic hydrocarbons (PAHs), found in grilled meat and tobacco smoke. The paper also discusses the toxic effects of tyramine, present in inter alia blue cheese, resulting from interactions with MAO-metabolised drugs. Most importantly, while the quantity of food and herbs consumed plays a significant role in the described drug interactions, it is possible for toxic effects to be observed even after the consumption of relatively small amounts. Patients are encouraged to consult a healthcare provider about any potential drug interactions that may occur when starting a new medication. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

20 pages, 3141 KiB  
Article
Post-Fire Recovery of Soil Multiple Properties, Plant Diversity, and Community Structure of Boreal Forests in China
by Xiting Zhang, Danqi She, Kai Wang, Yang Yang, Xia Hu, Peng Feng, Xiufeng Yan, Vladimir Gavrikov, Huimei Wang, Shijie Han and Wenjie Wang
Forests 2025, 16(5), 806; https://doi.org/10.3390/f16050806 - 12 May 2025
Viewed by 309
Abstract
Fire is important in boreal forest ecosystems, but comprehensive recovery analysis is lacking for soil nutrients and plant traits in China boreal forests, where the strict “extinguish at sight” fire prevention policy has been implemented. Based on over 50 years of forest fire [...] Read more.
Fire is important in boreal forest ecosystems, but comprehensive recovery analysis is lacking for soil nutrients and plant traits in China boreal forests, where the strict “extinguish at sight” fire prevention policy has been implemented. Based on over 50 years of forest fire recordings in the Daxing’anling Mts, 48 pairs of burnt and unburnt controls (1066 plots) were selected for 0–20 cm soil sampling and plant surveys. We recorded 18 plant parameters of the abundance of each tree, shrub, grass, and plant size (height, diameter, and coverage), 7 geo-topographic data parameters, and 2 fire traits (recovery year and burnt area). We measured eight soil properties (soil organic carbon, SOC; total nitrogen, TN; total phosphorus, TP; alkali-hydrolyzed P, AP; organic P, Po; inorganic P, Pi; total glomalin-related soil protein, T-GRSP; easily-extracted GRSP, EE-GRSP). Paired T-tests revealed that the most significant impact of the fire was a 25%–48% reduction in tree sizes, followed by decline in the plant diversity of arbors and shrubs but increasing plant diversity in herbs. GRSP showed an >18% increase and Po decreased by 17% (p < 0.05). Redundancy ordination showed that the post-fire recovery years and burnt area were the most potent explainer for the variations (p < 0.05), strongly interacting with latitudes and longitudes. Plant richness and tree size were directly affected by fire traits, while the burnt area and recovery times indirectly increased the GRSP via plant richness. A fire/control ratio chronosequence found that forest community traits (tree size and diversity) and soil nutrients could be recovered to the control level after ca. 30 years. This was relatively shorter than in reports on other boreal forests. The possible reasons are the low forest quality from overharvesting in history and the low fire severity from China’s fire prevention policy. This policy reduced the human mistake-related fire incidence to <10% in the 2010s in the studied region. Chinese forest fire incidences were 3% that of the USA. The burnt area/fire averaged 5 hm2 (while the USA averaged 46 hm2, Russia averaged 380 hm2, and Canada averaged 527 hm2). Overharvesting resulted in the forest height declining at a rate of >10 cm/year. Our finding supports forest management and the evaluation of forest succession after wildfires from a holistic view of plant–soil interactions. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

16 pages, 5080 KiB  
Article
Exploring the Therapeutic Potential of Rehmannia glutinosa: A Network Pharmacology and Molecular Docking Analysis Across Multiple Diseases
by Jinyoung Park, Muhammad Yasir, Eun-Taek Han, Jin-Hee Han, Won Sun Park, Jongseon Choe and Wanjoo Chun
Curr. Issues Mol. Biol. 2025, 47(5), 329; https://doi.org/10.3390/cimb47050329 - 3 May 2025
Viewed by 418
Abstract
Rehmannia glutinosa (RG), a fundamental herb in traditional Chinese medicine belonging to the Orobanchaceae family, has been widely used for centuries due to its diverse therapeutic properties, including promoting blood circulation, enhancing immunity, managing diabetes, reducing inflammation, and supporting kidney function. Despite its [...] Read more.
Rehmannia glutinosa (RG), a fundamental herb in traditional Chinese medicine belonging to the Orobanchaceae family, has been widely used for centuries due to its diverse therapeutic properties, including promoting blood circulation, enhancing immunity, managing diabetes, reducing inflammation, and supporting kidney function. Despite its traditional significance, scientific studies on RG’s therapeutic mechanisms remain limited, and its underlying pharmacological pathways are not extensively elucidated. This study employed network pharmacology and molecular docking to identify RG’s active compounds and investigate their therapeutic potential in allergy, anemia, diabetes, and menopause. From an initial pool of 122 compounds, 50 bioactive compounds were screened based on bioavailability and drug-likeness, resulting in 40 active compounds and 11 target proteins closely associated with these conditions. Key active compounds identified included iridoid glycosides (rehmaglutin A, B, C, D, jioglutin A, B, C, jioglutolide) and other bioactive molecules such as caffeic acid, geraniol, 5-hydroxytryptamine, melatonin, and rhodioloside. Molecular docking technology was employed to verify the stable binding of target proteins with active compounds. Protein–protein interaction (PPI) analysis revealed that RG’s core target proteins are central to pathways regulating inflammation, cell survival, apoptosis, and immune response. Enrichment analyses demonstrated that RG’s target proteins intersect significantly with pathways including the AGE-RAGE signaling pathway in diabetic complications, IL-17, HIF-1 signaling, and neuroactive ligand-receptor interactions, all of which are essential in managing diabetes and menopause symptoms. These findings underscore RG’s multi-target therapeutic potential, particularly in modulating immunity, metabolism, and inflammation. This study highlights RG’s potential as a therapeutic agent and provides a framework for future research to further elucidate its mechanisms and support the development of targeted drugs based on RG’s active compounds. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

19 pages, 4449 KiB  
Article
Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry and Network Pharmacology Reveal the Mechanisms of Rhodiola crenulata in Improving Non-Alcoholic Fatty Liver Disease
by Xin Zeng, Jianwei Wang, Qinyi Xu, Chengdan Deng, Xi Yi, Shang Wang, Ling Yao and Wei Xiang
Curr. Issues Mol. Biol. 2025, 47(5), 324; https://doi.org/10.3390/cimb47050324 - 1 May 2025
Viewed by 332
Abstract
Rhodiola crenulata (RC) is a traditional herb and functional food that has demonstrated beneficial effects in improving physical function, enhancing work capacity, alleviating fatigue, and preventing altitude sickness. Additionally, RC has shown promising effects in the treatment of non-alcoholic fatty liver disease (NAFLD), [...] Read more.
Rhodiola crenulata (RC) is a traditional herb and functional food that has demonstrated beneficial effects in improving physical function, enhancing work capacity, alleviating fatigue, and preventing altitude sickness. Additionally, RC has shown promising effects in the treatment of non-alcoholic fatty liver disease (NAFLD), although its specific bioactive components and underlying mechanisms remain unclear. In this study, ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS) combined with network pharmacology was employed to identify six potential bioactive compounds from the serum of rats treated with RC—Salidroside, Tyrosol, Crenulatin, Catechin gallate, Eriodictyol, and Rhodiooctanoside—that may contribute to its therapeutic effects on NAFLD. The efficacy of these compounds in improving NAFLD was assessed in vitro using HepG2 cells exposed to Palmitic acid (PA), and it was found that Catechin gallate exhibited a significant effect in reducing lipid accumulation in HepG2 cells. Furthermore, based on network pharmacology predictions, molecular docking studies suggested that the primary targets of Catechin gallate in alleviating fatty liver might include ABCB1, DYRK1A, PGD, and FUT4. Molecular dynamics simulations revealed stable binding interactions between Catechin gallate and these four target proteins. This study clarifies the material basis of RC in the treatment of NAFLD and provides a theoretical foundation for the application of RC and Catechin gallate as functional additives for the management of NAFLD. Full article
Show Figures

Figure 1

29 pages, 3813 KiB  
Article
A Quaternary Sedimentary Ancient DNA (sedaDNA) Record of Fungal–Terrestrial Ecosystem Dynamics in a Tropical Biodiversity Hotspot (Lake Towuti, Sulawesi, Indonesia)
by Md Akhtar-E Ekram, Cornelia Wuchter, Satria Bijaksana, Kliti Grice, James Russell, Janelle Stevenson, Hendrik Vogel and Marco J. L. Coolen
Microorganisms 2025, 13(5), 1005; https://doi.org/10.3390/microorganisms13051005 - 27 Apr 2025
Viewed by 431
Abstract
Short-term observations suggest that environmental changes affect the diversity and composition of soil fungi, significantly influencing forest resilience, plant diversity, and soil processes. However, time-series experiments should be supplemented with geobiological archives to capture the long-term effects of environmental changes on fungi–soil–plant interactions, [...] Read more.
Short-term observations suggest that environmental changes affect the diversity and composition of soil fungi, significantly influencing forest resilience, plant diversity, and soil processes. However, time-series experiments should be supplemented with geobiological archives to capture the long-term effects of environmental changes on fungi–soil–plant interactions, particularly in undersampled, floristically diverse tropical forests. We recently conducted trnL-P6 amplicon sequencing to generate a sedimentary ancient DNA (sedaDNA) record of the regional catchment vegetation of the tropical waterbody Lake Towuti (Sulawesi, Indonesia), spanning over one million years (Myr) of the lake’s developmental history. In this study, we performed 18SV9 amplicon sequencing to create a parallel paleofungal record to (a) infer the composition, origins, and functional guilds of paleofungal community members and (b) determine the extent to which downcore changes in fungal community composition reflect the late Pleistocene evolution of the Lake Towuti catchment. We identified at least 52 members of Ascomycota (predominantly Dothiodeomycetes, Eurotiomycetes, and Leotiomycetes) and 12 members of Basidiomycota (primarily Agaricales and Polyporales). Spearman correlation analysis of the relative changes in fungal community composition, geochemical parameters, and paleovegetation assemblages revealed that the overwhelming majority consisted of soil organic matter and wood-decaying saprobes, except for a necrotrophic phytopathogenic association between Mycosphaerellaceae (Cadophora) and wetland herbs (Alocasia) in more-than-1-Myr-old silts and peats deposited in a pre-lake landscape, dominated by small rivers, wetlands, and peat swamps. During the lacustrine stage, vegetation that used to grow on ultramafic catchment soils during extended periods of inferred drying showed associations with dark septate endophytes (Ploettnerulaceae and Didymellaceae) that can produce large quantities of siderophores to solubilize mineral-bound ferrous iron, releasing bioavailable ferrous iron needed for several processes in plants, including photosynthesis. Our study showed that sedaDNA metabarcoding paired with the analysis of geochemical parameters yielded plausible insights into fungal-plant-soil interactions, and inferred changes in the paleohydrology and catchment evolution of tropical Lake Towuti, spanning more than one Myr of deposition. Full article
(This article belongs to the Special Issue Ancient Microbiomes in the Environment)
Show Figures

Figure 1

22 pages, 6911 KiB  
Article
The Potential of Siraitia grosvenorii to Promote Bone Regeneration via Modulating Macrophage Polarization: A Network Pharmacology and Experimental Study
by Yuying Mai, Linhui Huang, Yang Qiao, Yuan Qin, Lufei Wang and Hongbing Liao
Int. J. Mol. Sci. 2025, 26(8), 3609; https://doi.org/10.3390/ijms26083609 - 11 Apr 2025
Viewed by 359
Abstract
Siraitia grosvenorii (SG), a traditional Chinese medicinal herb, possesses immunomodulatory and osteoinductive properties, yet its pharmacological mechanisms in bone defect repair remain largely unexplored. This study investigates the therapeutic potential of SG through a combination of network pharmacology and experimental approaches. Active compounds [...] Read more.
Siraitia grosvenorii (SG), a traditional Chinese medicinal herb, possesses immunomodulatory and osteoinductive properties, yet its pharmacological mechanisms in bone defect repair remain largely unexplored. This study investigates the therapeutic potential of SG through a combination of network pharmacology and experimental approaches. Active compounds were identified using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) Platform, and protein interaction targets were predicted. Molecular docking and dynamics simulations assessed interactions between SG compounds and critical targets. In vitro, RAW 264.7 macrophages treated with SG-conditioned medium exhibited enhanced M2 polarization and reduced inflammation, promoting osteogenic differentiation of co-cultured MC3T3-E1 cells as evidenced by increased alkaline phosphatase activity. In vivo, scaffolds loaded with low-dose or high-dose SG (LSG/HSG) significantly improved bone regeneration in rat calvarial defects, with HSG achieving near-complete repair and mature trabeculae at 8 weeks, alongside decreased CD86 and TNF-α levels and increased IL-10 expression. Network pharmacology identified 33 shared targets related to bone regeneration and macrophage polarization, with kaempferol and beta-sitosterol demonstrating strong binding affinities to targets such as TNF, PTGS2, and CASP3. These findings highlight the potential of SG in enhancing bone defect repair and its implications for regenerative medicine. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

21 pages, 5076 KiB  
Article
Origanum vulgare ssp. hirtum: From Plant to 3D-Printed Gummies with Antioxidant and Anti-Inflammatory Properties
by Brayan J. Anaya, Lina Raudone, Isabel Ureña-Vacas, Amadeo Sanz-Perez, Mindaugas Marksa, Gabriele Vilkickyte, Juan José García-Rodríguez, Dolores R. Serrano and Elena González-Burgos
Gels 2025, 11(4), 246; https://doi.org/10.3390/gels11040246 - 26 Mar 2025
Viewed by 530
Abstract
This study investigates the phytochemical profile, antioxidant and anti-inflammatory properties, and 3D-printing application of Origanum vulgare L. ssp. hirtum extract. The extract revealed a diverse range of phenolic compounds, with rosmarinic acid as the predominant compound (47.76%). The extract showed moderate to high [...] Read more.
This study investigates the phytochemical profile, antioxidant and anti-inflammatory properties, and 3D-printing application of Origanum vulgare L. ssp. hirtum extract. The extract revealed a diverse range of phenolic compounds, with rosmarinic acid as the predominant compound (47.76%). The extract showed moderate to high lipoxygenase inhibition (IC50 = 32.0 µg/mL), suggesting its potential as an anti-inflammatory agent. It also exhibited strong antioxidant activity, with hydrogen peroxide scavenging (SC50 = 99.2 µg/mL) and hydroxyl radical scavenging (IC50 = 64.12 µg/mL) capabilities. In cellular studies, high concentrations (50 µg/mL and 100 µg/mL) significantly decreased intracellular ROS production in Caco-2 cells (reductions exceeding 53% and 64%, respectively). Moreover, the extract suppressed NO production in LPS-stimulated J774A.1 macrophages in a concentration-dependent manner. The study also explores the incorporation of the extract into 3D-printed gummies. The gels exhibited a shear-thinning behavior, which was essential for successful extrusion-based 3D printing. The incorporation of Origanum extract significantly influenced the mechanical strength and compaction properties of the 3D-printed gummies before breaking (1.6-fold increase) allowing for a better mouth feeling. PXRD and FTIR analyses confirmed the amorphous nature of the 3D-printed gummies and the interaction between active ingredients and excipients utilized for printing. These findings demonstrated the potential for semisolid extrusion 3D printing at room temperature to transform a culinary herb (Origanum vulgare spp. hirtum) into a healthcare product with antioxidant and anti-inflammatory properties. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Pharmaceutical Applications of Gels)
Show Figures

Graphical abstract

16 pages, 4273 KiB  
Review
Mechanism of Mycotoxin Contamination of Medicinal Herbs
by Abdelrahman Elamin and Shohei Sakuda
Toxins 2025, 17(3), 139; https://doi.org/10.3390/toxins17030139 - 14 Mar 2025
Viewed by 745
Abstract
Mycotoxin contamination in medicinal plants can lead to toxicity, reduced therapeutic efficacy, and economic losses. This contamination has emerged as a significant issue, drawing attention from researchers and research centers worldwide. Over recent decades, numerous analytical studies have addressed mycotoxin contamination in these [...] Read more.
Mycotoxin contamination in medicinal plants can lead to toxicity, reduced therapeutic efficacy, and economic losses. This contamination has emerged as a significant issue, drawing attention from researchers and research centers worldwide. Over recent decades, numerous analytical studies have addressed mycotoxin contamination in these herbs, evaluating various methods to determine their presence quantitatively and qualitatively. While several reviews have summarized these studies, they often overlook a comprehensive exploration of the mechanisms and influencing factors of mycotoxin contamination in medicinal herbs. Therefore, this review aims to delve into the mechanisms of aflatoxin and ochratoxin contamination in some of the most widespread medicinal herbs, including jujube fruits, lotus seeds, and licorice roots. The factors influencing these mechanisms were also examined, including the physical composition and maturity stages of the herbs. This review concluded that aflatoxin and ochratoxin A contamination of medicinal herbs involves complex interactions between the herbs’ natural defenses, fungal pathogenicity, chemical composition, physical characteristics, and individual plant differences at various maturity stages. Understanding these mechanisms of contamination, and their association with maturity, nutrient profile, and physical development, advances our comprehension of mycotoxin contamination in medicinal herbs. Full article
Show Figures

Figure 1

34 pages, 3999 KiB  
Review
Aromatic Herbs as a Source of Bioactive Compounds: An Overview of Their Antioxidant Capacity, Antimicrobial Activity, and Major Applications
by Leontina Grigore-Gurgu, Loredana Dumitrașcu and Iuliana Aprodu
Molecules 2025, 30(6), 1304; https://doi.org/10.3390/molecules30061304 - 14 Mar 2025
Cited by 1 | Viewed by 1112
Abstract
Many aromatic herbs are conventionally used for flavoring various foods, but receive wide attention because of the variety of health-related properties. The aromatic herbs can be used either fresh or as dried powders and in the form of extracts, essential oils, or purified [...] Read more.
Many aromatic herbs are conventionally used for flavoring various foods, but receive wide attention because of the variety of health-related properties. The aromatic herbs can be used either fresh or as dried powders and in the form of extracts, essential oils, or purified metabolites. In this review, the main functional properties, in terms of antioxidant and antimicrobial properties, and the applications of some of the commonly used aromatic herbs from the Lamiaceae family, are discussed. Herbs like oregano, rosemary, sage, thyme, summer savory, marjoram, and basil possess high levels of bioactive phytochemicals. They are particularly rich in phenolic acids, flavones, phenolic diterpenes, and flavanones, with various beneficial effects. The phytochemical profile of aromatic plants is highly influenced by genetic factors, environmental conditions, and their interaction. In cases of the extracts and essential oils, the extraction method has a strong effect on the final composition of the herb products. Most of the applications of these aromatic herbs are related to their antioxidant, antimicrobial, and flavoring properties. In particular, aromatic herb extracts and essential oils have multiple applications in fields like food, feed, pharmaceutical, cosmetics, biopesticides, and textile industries. Full article
Show Figures

Figure 1

18 pages, 3577 KiB  
Article
Utilizing Microbial Inoculants to Alleviate Continuous Cropping Obstacles: Insights into the Metabolites and Transcriptomic Responses of Pinellia ternata
by Xinyu Wang, Mohammad Murtaza Alami, Shuqi Gong, Qinglin Cheng, Chaoqun Chen, Xinghui Li, Shumei Zhong, Zhigang He, Dilin Chen, Shengqiu Feng, Shenghu Chen and Shaohua Shu
Metabolites 2025, 15(3), 189; https://doi.org/10.3390/metabo15030189 - 11 Mar 2025
Viewed by 656
Abstract
Pinellia ternata (Thunb.) Breit is a widely used medicinal herb in Traditional Chinese Medicine (TCM). Still, its sustainable cultivation is threatened by continuous cropping obstacles, which disrupt soil ecosystems, reduce yield, and degrade quality. Objectives: This study explores the potential of microbial inoculants [...] Read more.
Pinellia ternata (Thunb.) Breit is a widely used medicinal herb in Traditional Chinese Medicine (TCM). Still, its sustainable cultivation is threatened by continuous cropping obstacles, which disrupt soil ecosystems, reduce yield, and degrade quality. Objectives: This study explores the potential of microbial inoculants to mitigate these challenges through integrated metabolomic and transcriptomic analyses. Methods: Soil samples from fields with and without continuous cropping issues were used to compare the effects of microbial inoculants on the secondary metabolism and gene expression of P. ternata. Results and Discussion: Metabolomic profiling identified 20,969 metabolites, with significant changes in lipid-like molecules (22.2%), organic acids (9.1%), and phenylpropanoids (7.0%) under microbial treatment. Notable increases in phenylalanine and caffeic acid levels were observed in microbial-inoculated plants. Correspondingly, transcriptomic analysis revealed the upregulation of phenylalanine ammonia-lyase (PAL) and other stress-related genes, confirming the metabolic shifts. Clustering and machine learning analyses highlighted the critical roles of metabolites and genes in enhancing plant resilience. Microbial inoculants improved secondary metabolite production. Implications: These findings provide valuable insights into the mechanisms of microbial-plant interactions and establish a sustainable approach for cultivating P. ternata, addressing the challenges of continuous cropping while improving crop productivity and quality. Full article
(This article belongs to the Section Microbiology and Ecological Metabolomics)
Show Figures

Figure 1

20 pages, 3693 KiB  
Article
Analysis of Understory Plant Community Assembly Differences in Moso Bamboo Forests in the Subtropical Evergreen Broad-Leaved Forest Region of Eastern China
by Zhiwei Ge, Tao Yu, Xuying Tian, Xiangxiang Chen, Yiwen Yao and Lingfeng Mao
Forests 2025, 16(3), 478; https://doi.org/10.3390/f16030478 - 8 Mar 2025
Viewed by 686
Abstract
Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) forests are a vital forest type in subtropical China. This study investigates the diversity, floristic composition, and phylogenetic structure of understory vegetation in these bamboo forests within evergreen broad-leaved forests of eastern subtropical China. Using [...] Read more.
Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) forests are a vital forest type in subtropical China. This study investigates the diversity, floristic composition, and phylogenetic structure of understory vegetation in these bamboo forests within evergreen broad-leaved forests of eastern subtropical China. Using grid-based sampling, we calculated species diversity and phylogenetic indices, and employed correlation analysis, redundancy analysis, and structural equation modeling to assess the effects of canopy closure, soil properties, and topography. The understory exhibited high species richness, with shrub layer demonstrating phytogeographic characteristics predominantly associated with tropical distribution types, while the herbaceous layer is characterized by temperate distribution types. Canopy closure and environmental factors significantly influenced shrub diversity, showing a clustered phylogenetic structure (NTI > 0, NRI > 0) and a negative correlation with species diversity. In contrast, the herb layer displayed a divergent phylogenetic structure (NTI < 0, NRI < 0), shaped by neutral stochastic processes, reflecting endemic taxa and interspecific interactions. These findings emphasize the need for targeted management practices to conserve understory biodiversity, focusing on enhancing floristic and phylogenetic diversity while protecting endemic species and their ecological interactions. Full article
(This article belongs to the Special Issue Sustainable Management of Forest Stands)
Show Figures

Figure 1

19 pages, 6999 KiB  
Article
Discovery of Herbal Remedies and Key Components for Major Depressive Disorder Through Biased Random Walk Analysis on a Multiscale Network
by Jun-Ho Lee, Sungyoul Choi, Do-Eun Lee, Hyung Won Kang, Jin-Seok Lee and Ji-Hwan Kim
Int. J. Mol. Sci. 2025, 26(5), 2162; https://doi.org/10.3390/ijms26052162 - 28 Feb 2025
Viewed by 679
Abstract
Major depressive disorder (MDD) is a widespread psychiatric condition with substantial socioeconomic impacts, yet single-target pharmacotherapies often yield responses. To address its multifactorial nature, this study employed a multiscale network analysis of herbs, their active components, and MDD-associated protein targets. Using a biased [...] Read more.
Major depressive disorder (MDD) is a widespread psychiatric condition with substantial socioeconomic impacts, yet single-target pharmacotherapies often yield responses. To address its multifactorial nature, this study employed a multiscale network analysis of herbs, their active components, and MDD-associated protein targets. Using a biased random walk with restart, we calculated interactions between disease-related and herb-derived targets, identifying herbs highly correlated with MDD. Enrichment analysis further revealed key signaling pathways, including oxidative stress, neuroinflammation, and hormone metabolism, underlying these herbs’ therapeutic effects. We identified Ephedrae herba, Glehniae radix, Euryales semen, and Campsitis flos as promising candidates, each containing multiple bioactive compounds (such as ephedrine, psoralen, xanthine, and ursolic acid) that modulate critical processes like oxidation–reduction, inflammatory cytokine regulation, and transcriptional control. Network visualization showed how these herbs collectively target both shared and distinct pathways, supporting a synergistic, multi-target therapeutic strategy. This approach underscores the significance of network-based methodologies in addressing complex disorders such as MDD, where focusing on a single target may overlook synergistic interactions. By integrating diverse molecular data, this study provides a systematic framework for identifying novel interventions. Future experimental validation will be crucial to confirm these predictions and facilitate the translation of findings into effective MDD therapies. Full article
(This article belongs to the Special Issue New Research on Bioactive Natural Products)
Show Figures

Figure 1

29 pages, 6612 KiB  
Review
Artificial Intelligence Models and Tools for the Assessment of Drug–Herb Interactions
by Marios Spanakis, Eleftheria Tzamali, Georgios Tzedakis, Chryssalenia Koumpouzi, Matthew Pediaditis, Aristides Tsatsakis and Vangelis Sakkalis
Pharmaceuticals 2025, 18(3), 282; https://doi.org/10.3390/ph18030282 - 20 Feb 2025
Cited by 2 | Viewed by 2347
Abstract
Artificial intelligence (AI) has emerged as a powerful tool in medical sciences that is revolutionizing various fields of drug research. AI algorithms can analyze large-scale biological data and identify molecular targets and pathways advancing pharmacological knowledge. An especially promising area is the assessment [...] Read more.
Artificial intelligence (AI) has emerged as a powerful tool in medical sciences that is revolutionizing various fields of drug research. AI algorithms can analyze large-scale biological data and identify molecular targets and pathways advancing pharmacological knowledge. An especially promising area is the assessment of drug interactions. The AI analysis of large datasets, such as drugs’ chemical structure, pharmacological properties, molecular pathways, and known interaction patterns, can provide mechanistic insights and identify potential associations by integrating all this complex information and returning potential risks associated with these interactions. In this context, an area where AI may prove valuable is in the assessment of the underlying mechanisms of drug interactions with natural products (i.e., herbs) that are used as dietary supplements. These products pose a challenging problem since they are complex mixtures of constituents with diverse and limited information regarding their pharmacological properties, especially their pharmacokinetic data. As the use of herbal products and supplements continues to grow, it becomes increasingly important to understand the potential interactions between them and conventional drugs and the associated adverse drug reactions. This review will discuss AI approaches and how they can be exploited in providing valuable mechanistic insights regarding the prediction of interactions between drugs and herbs, and their potential exploitation in experimental validation or clinical utilization. Full article
(This article belongs to the Special Issue Therapeutic Drug Monitoring and Adverse Drug Reactions: 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop