Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,914)

Search Parameters:
Keywords = high-voltage systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1261 KB  
Article
All-Grounded Passive Component Mixed-Mode Multifunction Biquadratic Filter and Dual-Mode Quadrature Oscillator Employing a Single Active Element
by Natchanai Roongmuanpha, Jetwara Tangjit, Mohammad Faseehuddin, Worapong Tangsrirat and Tattaya Pukkalanun
Technologies 2025, 13(9), 393; https://doi.org/10.3390/technologies13090393 (registering DOI) - 1 Sep 2025
Abstract
This paper introduces a compact analog configuration that concurrently realizes a mixed-mode biquadratic filter and a dual-mode quadrature oscillator (QO) by employing a single differential differencing gain amplifier (DDGA) and all-grounded passive components. The proposed design supports four fundamental operation modes—voltage-mode (VM), current-mode [...] Read more.
This paper introduces a compact analog configuration that concurrently realizes a mixed-mode biquadratic filter and a dual-mode quadrature oscillator (QO) by employing a single differential differencing gain amplifier (DDGA) and all-grounded passive components. The proposed design supports four fundamental operation modes—voltage-mode (VM), current-mode (CM), trans-impedance-mode (TIM), and trans-admittance-mode (TAM)—utilizing the same circuit topology without structural modifications. In filter operation, it offers low-pass, high-pass, band-pass, band-stop, and all-pass responses with orthogonal and electronic pole frequency and quality factor. In oscillator operation, it delivers simultaneous voltage and current quadrature outputs with independent tuning of oscillator frequency and condition. The grounded-component configuration simplifies layout and enhances its suitability for monolithic integration. Numerical simulations in a 0.18-mm CMOS process with ±0.9 V supply confirm theoretical predictions, demonstrating precise gain-phase characteristics, low total harmonic distortion (<7%), modest sensitivity to 5% component variations, and stable operation from −40 °C to 120 °C. These results, combined with the circuit’s low component count and integration suitability, suggest strong potential for future development in low-power IoT devices, adaptive communication front-ends, and integrated biomedical systems. Full article
(This article belongs to the Section Information and Communication Technologies)
15 pages, 2164 KB  
Article
Coordinated Optimization of Multiple Reactive Power Sources for Transient Overvoltage Suppression for New Energy Sending-Out System
by Qinglei Zhang, Lei Luo, Xiaoping Wang, Dehai Zhang, Haibo Li, Zongxiang Lu and Ying Qiao
Inventions 2025, 10(5), 80; https://doi.org/10.3390/inventions10050080 (registering DOI) - 1 Sep 2025
Abstract
With the implementation of China’s “dual carbon” strategy, the installed capacity of new energy has grown rapidly. Wind power and photovoltaic power have accounted for more than 40%, but the integration of power electronic apparatus into the grid has resulted in the manifestation [...] Read more.
With the implementation of China’s “dual carbon” strategy, the installed capacity of new energy has grown rapidly. Wind power and photovoltaic power have accounted for more than 40%, but the integration of power electronic apparatus into the grid has resulted in the manifestation of a system with “low inertia and weak damping”, which can easily lead to transient overvoltage problems at transmitters when high-voltage direct-current (HVDC) latching faults occur. Although a variety of dynamic reactive power optimization strategies have been proposed in the existing research, most of them are aimed at single equipment, and multi-reactive power source collaborative control schemes are lacking. In this paper, we innovatively establish a transient voltage analysis model for a new energy transmitter, derive the expression of overvoltage amplitude, and propose a method for the construction of a multi-reactive source collaborative optimization model, which can effectively suppress transient overvoltage through capacity and initial output configuration. We provide a new idea for the safe operation of a significant percentage of new energy grids. The case analysis shows that the co-optimization method outlined in this paper is an effective solution to suppress the transient overvoltage triggered by AC faults and has wide application value. Full article
Show Figures

Figure 1

20 pages, 2666 KB  
Review
Recent Progress of Ion Implantation Technique in GaN-Based Electronic Devices
by Hao Lu, Xiaorun Hao, Yichi Zhang, Ling Yang, Bin Hou, Meng Zhang, Mei Wu, Xiaohua Ma and Yue Hao
Micromachines 2025, 16(9), 999; https://doi.org/10.3390/mi16090999 (registering DOI) - 29 Aug 2025
Viewed by 120
Abstract
Gallium nitride (GaN) offers exceptional material properties, making it indispensable in communications, defense, and power electronics. With high electron mobility and robust thermal conductivity, GaN-based devices excel in high-frequency, high-power applications. They are vital in wireless communication systems, radar, electronic warfare, and power [...] Read more.
Gallium nitride (GaN) offers exceptional material properties, making it indispensable in communications, defense, and power electronics. With high electron mobility and robust thermal conductivity, GaN-based devices excel in high-frequency, high-power applications. They are vital in wireless communication systems, radar, electronic warfare, and power electronics systems, offering superior performance, efficiency, and reliability. Further research is crucial for optimizing GaN-based devices performance and expanding their applications, driving innovation across industries. The application of ion implantation technology in GaN-based devices is a key process that can be used to improve device performance and characteristics, which enables process aspects such as electrical isolation, ion implantation for ohmic contacts, threshold voltage regulation, and terminal design. In this paper, we will focus on reviewing the principles and issues of the ion implantation process in GaN-based device preparation. This work aims to serve as a guide for ion implantation in future GaN-based devices. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing of Electronic Devices)
Show Figures

Figure 1

21 pages, 1634 KB  
Review
A Comprehensive Review of Condition Monitoring Technologies for Modular Multilevel Converter (MMC) HVDC Systems
by Zhoufei Yao, Xing Lei and Xizhou Du
Electronics 2025, 14(17), 3462; https://doi.org/10.3390/electronics14173462 - 29 Aug 2025
Viewed by 189
Abstract
This paper provides an in-depth review of degradation mechanisms and condition monitoring methods for critical components in modular multilevel converter (MMC) high-voltage direct current (HVDC) systems, including insulated gate bipolar transistors (IGBTs), metallized film capacitors, and cross-linked polyethylene (XLPE) DC cables. This study [...] Read more.
This paper provides an in-depth review of degradation mechanisms and condition monitoring methods for critical components in modular multilevel converter (MMC) high-voltage direct current (HVDC) systems, including insulated gate bipolar transistors (IGBTs), metallized film capacitors, and cross-linked polyethylene (XLPE) DC cables. This study systematically evaluates the strengths and limitations of existing technologies, while also projecting future trends in technological advancements. By exploring the multi-fields-coupled degradation processes of these components, the mechanisms of switching oscillations, and the flexible and controllable applications of MMC, this review offers valuable insights for improving the accuracy, real-time performance, and reliability of component condition monitoring. The findings aim to contribute to the advancement and broader application of MMC HVDC systems in modern power networks. Full article
Show Figures

Figure 1

19 pages, 6246 KB  
Article
Development and Test of a Novel High-Precision Inchworm Piezoelectric Motor
by Nan Huang, Jiahao Yin, Fuyuan Feng, Lanyu Zhang, Yuheng Luo and Jian Gao
Micromachines 2025, 16(9), 992; https://doi.org/10.3390/mi16090992 (registering DOI) - 29 Aug 2025
Viewed by 77
Abstract
The inchworm piezoelectric motor, with the advantages of long stroke and high resolution, is ideally suited for precise positioning in wafer-level electron beam inspection systems. However, the large number of piezoelectric actuators and the complex excitation signal sequences significantly increase the complexity of [...] Read more.
The inchworm piezoelectric motor, with the advantages of long stroke and high resolution, is ideally suited for precise positioning in wafer-level electron beam inspection systems. However, the large number of piezoelectric actuators and the complex excitation signal sequences significantly increase the complexity of system assembly and temporal control. A flexure-based actuation stator structure, along with simplified excitation signal sequences of a high-precision inchworm piezoelectric motor, is proposed. The alternating actuation of upper/lower clamping mechanisms and the driving mechanism fundamentally mitigates backstep effects while generating stepping linear displacement. The inchworm piezoelectric motor achieves precision linear motion operation using only two piezoelectric actuators. The actuation stator is analyzed via the compliance matrix method to derive its output compliance, input stiffness, and displacement amplification ratio. Furthermore, a kinematic model and natural frequency expression incorporating the pseudo-rigid-body method and Lagrange’s equations are established. The actuation stator and inchworm piezoelectric motor are analyzed through both simulations and experiments. The results show that the maximum step displacement of the motor is 16.3 μm, and the maximum speed is 9.78 mm/s, at a 600 Hz operation frequency with a combined alternating piezoelectric voltage of 135 V and 65 V. These findings validate the designed piezoelectric motor’s superior motion resolution, operational stability, and acceptable load capacity. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

24 pages, 4428 KB  
Article
Average Voltage Prediction of Battery Electrodes Using Transformer Models with SHAP-Based Interpretability
by Mary Vinolisha Antony Dhason, Indranil Bhattacharya, Ernest Ozoemela Ezugwu and Adeloye Ifeoluwa Ayomide
Energies 2025, 18(17), 4587; https://doi.org/10.3390/en18174587 - 29 Aug 2025
Viewed by 92
Abstract
Batteries are ubiquitous, with their presence ranging from electric vehicles to portable electronics. Research focused on increasing average voltage, improving stability, and extending cycle longevity of batteries is pivotal for the advancement of battery technology. These advancements can be accelerated through research into [...] Read more.
Batteries are ubiquitous, with their presence ranging from electric vehicles to portable electronics. Research focused on increasing average voltage, improving stability, and extending cycle longevity of batteries is pivotal for the advancement of battery technology. These advancements can be accelerated through research into battery chemistries. The traditional approach, which examines each material combination individually, poses significant challenges in terms of resources and financial investment. Physics-based simulations, while detailed, are both time-consuming and resource-intensive. Researchers aim to mitigate these concerns by employing Machine Learning (ML) techniques. In this study, we propose a Transformer-based deep learning model for predicting the average voltage of battery electrodes. Transformers, known for their ability to capture complex dependencies and relationships, are adapted here for tabular data and regression tasks. The model was trained on data from the Materials Project database. The results demonstrated strong predictive performance, with lower mean absolute error (MAE) and mean squared error (MSE), and higher R2 values, indicating high accuracy in voltage prediction. Additionally, we conducted detailed per-ion performance analysis across ten working ions and apply sample-wise loss weighting to address data imbalance, significantly improving accuracy on rare-ion systems (e.g., Rb and Y) while preserving overall performance. Furthermore, we performed SHAP-based feature attribution to interpret model predictions, revealing that gravimetric energy and capacity dominate prediction influence, with architecture-specific differences in learned feature importance. This work highlights the potential of Transformer architectures in accelerating the discovery of advanced materials for sustainable energy storage. Full article
Show Figures

Figure 1

38 pages, 14618 KB  
Review
Nanostructure-Engineered Optical and Electrochemical Biosensing Toward Food Safety Assurance
by Xinxin Wu, Zhecong Yuan, Shujie Gao, Xinai Zhang, Hany S. El-Mesery, Wenjie Lu, Xiaoli Dai and Rongjin Xu
Foods 2025, 14(17), 3021; https://doi.org/10.3390/foods14173021 - 28 Aug 2025
Viewed by 318
Abstract
Considering the necessity of food safety testing, various biosensors have been developed based on biological elements (e.g., antibodies, aptamers), chemical elements (e.g., molecularly imprinted polymers), physical elements (e.g., nanopores) as recognition substances. According to the sensing patterns of signal transduction, the biosensors could [...] Read more.
Considering the necessity of food safety testing, various biosensors have been developed based on biological elements (e.g., antibodies, aptamers), chemical elements (e.g., molecularly imprinted polymers), physical elements (e.g., nanopores) as recognition substances. According to the sensing patterns of signal transduction, the biosensors could be classified into optical and electrochemical biosensing, including fluorescence sensing, Raman sensing, colorimetric sensing, electrochemical sensing, etc. To enhance the sensing sensitivity, kinds of nanomaterials have been applied for signal amplification. With merits of high selectivity, sensitivity, and accuracy, the sensing strategies have been widely applied for food safety testing. This review highlights their signal output behavior, (e.g., fluorescence intensity shifts, Raman peak alterations, colorimetric changes, electrochemical current/voltage/impedance variations), nanostructure-mediated amplification mechanisms, and the fundamental recognition principles. Future efforts should prioritize multiplexed assay platforms, integration with microfluidics and smart devices, novel biorecognition elements, and sustainable manufacturing. Emerging synergies between biosensors and AI-driven data analytics promise intelligent monitoring systems for predictive food safety management, addressing challenges in food matrix compatibility and real-time hazard identification. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

23 pages, 1521 KB  
Article
Quantum-Enhanced Battery Anomaly Detection in Smart Transportation Systems
by Alexander Mutiso Mutua and Ruairí de Fréin
Appl. Sci. 2025, 15(17), 9452; https://doi.org/10.3390/app15179452 - 28 Aug 2025
Viewed by 165
Abstract
Ensuring the safety, reliability, and longevity of Lithium-ion (Li-ion) batteries is crucial for sustainable integration of Electric Vehicles (EVs) within Intelligent Transportation Systems (ITSs). However, thermal stress and degradation-induced anomalies can cause sudden performance failures, posing critical operational and safety risks. Capturing complex, [...] Read more.
Ensuring the safety, reliability, and longevity of Lithium-ion (Li-ion) batteries is crucial for sustainable integration of Electric Vehicles (EVs) within Intelligent Transportation Systems (ITSs). However, thermal stress and degradation-induced anomalies can cause sudden performance failures, posing critical operational and safety risks. Capturing complex, non-linear, and high-dimensional patterns remains challenging for traditional Machine Learning (ML) models. We propose a hybrid anomaly detection method that incorporates a Variational Quantum Neural Network (VQNN), which uses the principles of quantum mechanics, such as superposition, entanglement, and parallelism, to learn complex non-linear patterns. The VQNN is integrated with Isolation Forest (IF) and a Median Absolute Deviation (MAD)-based spike characterisation method to form a Quantum Anomaly Detector (QAD). This method distinguishes between normal and anomalous spikes in battery behaviour. Using an Arrhenius-based model, we simulate how the State of Health (SoH) and voltage of a Li-ion battery reduce as temperatures increase. We perform experiments on NASA battery datasets and detect abnormal spikes in 14 out of 168 cycles, corresponding to 8.3% of the cycles. The QAD achieves the highest Receiver Operating Characteristic Area Under the Curve (ROC-AUC) of 0.9820, outperforming the baseline IF model by 7.78%. We use ML to predict the SoH and voltage changes when the temperature varies. Gradient Boosting (GB) achieves a voltage Mean Squared Error (MSE) of 0.001425, while Support Vector Regression (SVR) achieves the highest R2 score of 0.9343. These results demonstrate that Quantum Machine Learning (QML) can be applied for anomaly detection in Battery Management Systems (BMSs) within intelligent transportation ecosystems and could enable EVs to autonomously adapt their routing and schedule preventative maintenance. With these capabilities, safety will be improved, downtime minimised, and public confidence in sustainable transport technologies increased. Full article
Show Figures

Figure 1

23 pages, 7901 KB  
Article
Coordination of Multiple BESS Units in a Low-Voltage Distribution Network Using Leader–Follower and Leaderless Control
by Margarita Kitso, Bagas Ihsan Priambodo, Joel Alpízar-Castillo, Laura Ramírez-Elizondo and Pavol Bauer
Energies 2025, 18(17), 4566; https://doi.org/10.3390/en18174566 - 28 Aug 2025
Viewed by 159
Abstract
High shares of photovoltaic energy in low-voltage distribution systems lead to voltage limit violations. Deploying energy storage systems in the network can compensate for the mismatch between the generation and the consumption; nevertheless, the mismatch is unevenly distributed throughout the network, suggesting aggregated [...] Read more.
High shares of photovoltaic energy in low-voltage distribution systems lead to voltage limit violations. Deploying energy storage systems in the network can compensate for the mismatch between the generation and the consumption; nevertheless, the mismatch is unevenly distributed throughout the network, suggesting aggregated control strategies as a solution. This paper proposes two coordination control strategies of batteries to address network overvoltage conditions caused by high penetration of photovoltaic systems. The leader–follower coordination strategy determines a battery’s utilization factor by using the node closest to a voltage violation as a reference. The leaderless control uses a shared utilization factor to avoid excessive usage of a particular agent in the network. We tested both approaches in the 18-node CIGRE network for scenarios when not all agents were available and when they had different starting states-of-charge. Our results demonstrate that both strategies are capable of voltage control; however, the leader–follower control leads to uneven storage usage, ultimately leading to short-time failure to comply with the voltage limits under extreme conditions where neighbouring agents must compensate for the unavailable one. Conversely, the leaderless approach presents more balanced use of the agents thanks to the distributed utilization factor, resulting in a more robust control strategy. Full article
Show Figures

Figure 1

20 pages, 3380 KB  
Article
The Real-Time Estimation of Respiratory Flow and Mask Leakage in a PAPR Using a Single Differential-Pressure Sensor and Microcontroller-Based Smartphone Interface in the Development of a Public-Oriented Powered Air-Purifying Respirator as an Alternative to Lockdown Measures
by Yusaku Fujii
Sensors 2025, 25(17), 5340; https://doi.org/10.3390/s25175340 - 28 Aug 2025
Viewed by 233
Abstract
In this study, a prototype system was developed as a potential alternative to lockdown measures against the spread of airborne infectious diseases such as COVID-19. The system integrates real-time estimation functions for respiratory flow and mask leakage into a low-cost powered air-purifying respirator [...] Read more.
In this study, a prototype system was developed as a potential alternative to lockdown measures against the spread of airborne infectious diseases such as COVID-19. The system integrates real-time estimation functions for respiratory flow and mask leakage into a low-cost powered air-purifying respirator (PAPR) designed for the general public. Using only a single differential-pressure sensor (SDP810) and a controller (Arduino UNO R4 WiFi), the respiratory flow (Q3e) is estimated from the differential pressure (ΔP) and battery voltage (Vb), and both the wearing status and leak status are transmitted to and displayed on a smartphone application. For evaluation, a testbench called the Respiratory Airflow Testbench was constructed by connecting a cylinder–piston drive to a mannequin head to simulate realistic wearing conditions. The estimated respiratory flow Q3e, calculated solely from ΔP and Vb, showed high agreement with the measured flow Q3m obtained from a reference flow sensor, confirming the effectiveness of the estimation algorithm. Furthermore, an automatic leak detection method based on the time-integrated value of Q3e was implemented, enabling the detection of improper wearing. This system thus achieves respiratory flow estimation and leakage detection based only on ΔP and Vb. In the future, it is expected to be extended to applications such as pressure control synchronized with breathing activity and health monitoring based on respiratory and coughing analysis. This platform also has the potential to serve as the foundation of a PAPR Wearing Status Network Management System, which will contribute to societal-level infection control through the networked sharing of wearing status information. Full article
Show Figures

Figure 1

17 pages, 2721 KB  
Article
Physics-Informed Neural Network Modeling of Inflating Dielectric Elastomer Tubes for Energy Harvesting Applications
by Mahdi Askari-Sedeh, Mohammadamin Faraji, Mohammadamin Baniardalan, Eunsoo Choi, Alireza Ostadrahimi and Mostafa Baghani
Polymers 2025, 17(17), 2329; https://doi.org/10.3390/polym17172329 - 28 Aug 2025
Viewed by 241
Abstract
A physics-informed neural network (PINN) framework is developed to model the large deformation and coupled electromechanical response of dielectric elastomer tubes for energy harvesting. The system integrates incompressible neo-Hookean elasticity with radial electric loading and compressible gas inflation, leading to nonlinear equilibrium equations [...] Read more.
A physics-informed neural network (PINN) framework is developed to model the large deformation and coupled electromechanical response of dielectric elastomer tubes for energy harvesting. The system integrates incompressible neo-Hookean elasticity with radial electric loading and compressible gas inflation, leading to nonlinear equilibrium equations with deformation-dependent boundary conditions. By embedding the governing equations and boundary conditions directly into its loss function, the PINN enables accurate, mesh-free solutions without requiring labeled data. It captures realistic pressure–volume interactions that are difficult to address analytically or through conventional numerical methods. The results show that internal volume increases by over 290% during inflation at higher reference pressures, with residual stretch after deflation reaching 9.6 times the undeformed volume. The axial force, initially tensile, becomes compressive at high voltages and pressures due to electromechanical loading and geometric constraints. Harvested energy increases strongly with pressure, while voltage contributes meaningfully only beyond a critical threshold. To ensure stable training across coupled stages, the network is optimized using the Optuna algorithm. Overall, the proposed framework offers a robust and flexible tool for predictive modeling and design of soft energy harvesters. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 16115 KB  
Article
Fully DC Aggregation Topology with Power Self-Balancing Capacitors for Offshore Wind Power Transmission: Simulation Study
by Huan Li, Qingming Xin, Ruoqing Hong and Qingmin Li
Electronics 2025, 14(17), 3422; https://doi.org/10.3390/electronics14173422 - 27 Aug 2025
Viewed by 159
Abstract
This paper focuses on the Input-Independent Output-Series (IIOS) DC converters within fully DC aggregation systems, which enable independent submodule control and high voltage gain. DC aggregation systems experience output voltage imbalance among submodules due to offshore wind power fluctuations. The proposed isolated DC/DC [...] Read more.
This paper focuses on the Input-Independent Output-Series (IIOS) DC converters within fully DC aggregation systems, which enable independent submodule control and high voltage gain. DC aggregation systems experience output voltage imbalance among submodules due to offshore wind power fluctuations. The proposed isolated DC/DC converter topology incorporates power-balancing capacitors, leveraging intrinsic characteristics to achieve self-power balancing within the system. In addition, this paper proposes an innovative PFMT-PSMN hybrid control strategy that is well-suited for the proposed topology. Firstly, this study performs a time-domain analysis of the intrinsically power-balanced DC series-connected aggregation topology and elucidates the corresponding power-balancing principle. Secondly, based on soft-switching boundary conditions, a hybrid control strategy, PFMT-PSMN, adjusts phase-shift duty cycles to maintain soft-switching conditions while minimizing the system operating frequency. Finally, MATLAB/Simulink simulations validate the power-balancing capability of the intrinsically balanced DC series-connected aggregation system and the effectiveness of the proposed PFMT-PSMN control strategy. Full article
Show Figures

Figure 1

26 pages, 8623 KB  
Article
Voltage Fluctuation Enhancement of Grid-Connected Power System Using PV and Battery-Based Dynamic Voltage Restorer
by Tao Zhang, Yao Zhang, Zhiwei Wang, Zhonghua Yao and Zhicheng Zhang
Electronics 2025, 14(17), 3413; https://doi.org/10.3390/electronics14173413 - 27 Aug 2025
Viewed by 217
Abstract
The Dynamic Voltage Restorer (DVR), which is connected in series between the power grid and the load, can rapidly compensate for voltage disturbances to maintain stable voltage at the load end. To enhance the energy supply capacity of the DVR and utilize its [...] Read more.
The Dynamic Voltage Restorer (DVR), which is connected in series between the power grid and the load, can rapidly compensate for voltage disturbances to maintain stable voltage at the load end. To enhance the energy supply capacity of the DVR and utilize its shared circuit topology with photovoltaic (PV) inverters—which enables the dual functions of voltage compensation and PV-storage power generation—this study integrates PV and energy storage as a coordinated energy unit into the DVR, forming a PV-storage-integrated DVR system. The core innovation of this system lies in extending the voltage disturbance detection capability of the DVR to include harmonics. By incorporating a Butterworth filtering module and voltage fluctuation tracking technology, high-precision disturbance identification is achieved, thereby supporting power balance control and functional coordination. Furthermore, a multi-mode-power coordinated regulation method is proposed, enabling dynamic switching between operating modes based on PV output. Simulation and experimental results demonstrate that the proposed system and strategy enable smooth mode transitions. This approach not only ensures reliable voltage compensation for sensitive loads but also enhances the grid-support capability of PV systems, offering an innovative technical solution for the integration of renewable energy and power quality management. Full article
Show Figures

Figure 1

15 pages, 4292 KB  
Article
Research on Medium Voltage Energy Storage Inverter Control Based on Hybrid Variable Virtual Vectors
by Zhimin Mei, Kai Xiong and Jiang Liu
Electronics 2025, 14(17), 3372; https://doi.org/10.3390/electronics14173372 - 25 Aug 2025
Viewed by 271
Abstract
Medium-voltage energy storage converter equipment is an important component of the new generation of ship power and power systems. Virtual space vector pulse width modulation, as a modulation optimization method to improve the neutral-point voltage imbalance in medium- and high-voltage multilevel energy storage [...] Read more.
Medium-voltage energy storage converter equipment is an important component of the new generation of ship power and power systems. Virtual space vector pulse width modulation, as a modulation optimization method to improve the neutral-point voltage imbalance in medium- and high-voltage multilevel energy storage converters, has become a research hotspot for T-type three-level energy storage inverter modulation methods due to its significant balancing effect and simple implementation. However, the current research method of constructing virtual vectors through redundant small vectors has limitations in regulating the neutral-point potential under full (especially high) modulation ratios. This paper proposes a modulation method that uses hybrid variable virtual small vectors and virtual medium vectors through optimization selection and reconstruction of basic vectors. This method ensures that the neutral-point charge change of the vector is zero and the common-mode voltage is minimized within the switching period under the full modulation ratio, achieving the purpose of controlling the neutral-point voltage balance and suppressing the common-mode voltage. Finally, simulation and experimental results show that the proposed method has good neutral-point voltage regulation and common-mode voltage suppression capabilities within the full modulation ratio range, and the system also has strong robustness and adaptability under different load conditions. Full article
Show Figures

Figure 1

18 pages, 2756 KB  
Article
Triboelectric-Enhanced Piezoelectric Nanogenerator with Pressure-Processed Multi-Electrospun Fiber-Based Polymeric Layer for Wearable and Flexible Electronics
by Inkyum Kim, Jonghyeon Yun, Geunchul Kim and Daewon Kim
Polymers 2025, 17(17), 2295; https://doi.org/10.3390/polym17172295 - 25 Aug 2025
Viewed by 425
Abstract
A triboelectricity-enhanced piezoelectric nanogenerator (PENG) based on pressure-processed multi-electrospun polymeric layers is herein developed for efficient vibrational energy harvesting. The hybridization of piezoelectric and triboelectric mechanisms through electrospinning has been utilized to enhance electrical output by increasing contact areas and promoting alignment within [...] Read more.
A triboelectricity-enhanced piezoelectric nanogenerator (PENG) based on pressure-processed multi-electrospun polymeric layers is herein developed for efficient vibrational energy harvesting. The hybridization of piezoelectric and triboelectric mechanisms through electrospinning has been utilized to enhance electrical output by increasing contact areas and promoting alignment within piezoelectric materials. A multi-layer structure comprising alternating poly (vinylidene fluoride) (PVDF) and poly (hexamethylene adipamide) (PA 6/6) exhibits superior electrical performance. A lateral Janus configuration, providing distinct positive and negative triboelectric polarities, has further optimized device efficiency. This approach introduces a novel operational mechanism, enabling superior performance compared to conventional methods. The fiber-based architecture ensures exceptional flexibility, low weight, and a high surface-to-volume ratio, enabling enhanced energy harvesting. Experimentally, the PENG achieved an open-circuit voltage of 14.59 V, a short-circuit current of 205.7 nA, and a power density of 7.5 mW m−2 at a resistance of 30 MΩ with a five-layer structure subjected to post-processing under pressure. A theoretical model has mathematically elucidated the output results. Long-term durability (over 345,600 cycles) has confirmed its robustness. Demonstrations of practical applications include monitoring human joint motion and respiratory activity. These results highlight the potential of the proposed triboelectricity-enhanced PENG for vibrational energy harvesting in flexible and wearable electronic systems. Full article
(This article belongs to the Special Issue Advances in Polymer Composites for Nanogenerator Applications)
Show Figures

Graphical abstract

Back to TopTop