Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,067)

Search Parameters:
Keywords = immobilization techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1643 KiB  
Article
Flow Synthesis of Pharmaceutical Intermediate Catalyzed by Immobilized DERA: Comparison of Different Immobilization Techniques and Reactor Designs
by Dino Skendrović, Anita Šalić, Ivan Karlo Cingesar, Marta Pinčić and Ana Vrsalović Presečki
Molecules 2025, 30(11), 2276; https://doi.org/10.3390/molecules30112276 - 22 May 2025
Viewed by 154
Abstract
The enzymatic synthesis of statin intermediates offers a sustainable alternative to traditional multistep chemical methods. This study investigates the continuous flow synthesis of statin precursors in a millireactor using 2-deoxy-D-ribose-5-phosphate aldolase (DERA) immobilized on mesoporous silica foam (MCF) and magnetic nanoparticles (MNPs). Two [...] Read more.
The enzymatic synthesis of statin intermediates offers a sustainable alternative to traditional multistep chemical methods. This study investigates the continuous flow synthesis of statin precursors in a millireactor using 2-deoxy-D-ribose-5-phosphate aldolase (DERA) immobilized on mesoporous silica foam (MCF) and magnetic nanoparticles (MNPs). Two types of flow millireactors, a fixed bed millireactor for MCF and a fluidized bed millireactor for MNP, were designed. Key performance indicators including conversion, selectivity, yield, and productivity were analyzed and compared with the batch reactor results. The MNP-based fluidized bed millisystem demonstrated superior conversion (97.78%) and yield (95.85%) under optimized conditions, outperforming both batch and MCF-based millisystems. This work highlights the importance of optimizing immobilization techniques and reactor configurations to enhance enzyme stability and catalytic efficiency in continuous biocatalytic processes, particularly for pharmaceutical applications. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

15 pages, 2677 KiB  
Article
Enzyme-Based Solid-Phase Electrochemiluminescence Sensors with Stable, Anchored Emitters for Sensitive Glucose Detection
by Chunyin Wei, Yanyan Zheng, Fei Yan and Lifang Xu
Biosensors 2025, 15(5), 332; https://doi.org/10.3390/bios15050332 - 21 May 2025
Viewed by 121
Abstract
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel [...] Read more.
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel array film (bp-SNA), enabling sensitive glucose detection. The sensor was constructed using an electrochemical-assisted self-assembly (EASA) method with various siloxane precursors to quickly modify the surface of indium tin oxide (ITO) electrodes with a bilayer SNA of different charge properties. The inner layer, including negatively charged SNA (n-SNA), attracted the positively charged ECL emitter tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via electrostatic interaction, while the outer layer, including positively charged SNA (p-SNA), repelled it, forming a barrier that efficiently concentrated the Ru(bpy)32+ emitter in a stable manner. After modifying the amine groups on the p-SNA surface with aldehyde groups, glucose oxidase (GOx) was covalently immobilized, forming the enzyme electrode. In the presence of glucose, GOx catalyzed the conversion of glucose to hydrogen peroxide (H2O2), which acted as a quencher for the Ru(bpy)32+/triethanolamine (TPA) system, reducing the ECL signal and enabling quantitative glucose analysis. The sensor exhibited a wide linear range from 10 μM to 7.0 mM and a limit of detection (LOD) of 1 μM (S/N = 3). Glucose detection in fetal bovine serum was realized. By replacing the enzyme type on the electrode surface, this sensing strategy holds the potential to provide a universal platform for the detection of different metabolites. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Figure 1

14 pages, 3298 KiB  
Article
Foam Splint—The Comfortable Way of Postoperative Immobilization After Surgical Hip Reconstruction in Children—A Randomized Clinical Trial
by Manuel Gahleitner, Christina Haas, Gerhard Großbötzl, Matthias Christoph Michael Klotz, Tobias Gotterbarm and Lorenz Pisecky
J. Clin. Med. 2025, 14(10), 3485; https://doi.org/10.3390/jcm14103485 - 16 May 2025
Viewed by 130
Abstract
Hip joint reconstruction is often necessary for children and adolescents with conditions like developmental dysplasia of the hip (DDH), neurogenic dislocation of the hip (NDH), or Legg–Calvé–Perthes disease (LCPD) when non-surgical treatments are ineffective. Background: Post-operative immobilization after hip reconstruction in children is [...] Read more.
Hip joint reconstruction is often necessary for children and adolescents with conditions like developmental dysplasia of the hip (DDH), neurogenic dislocation of the hip (NDH), or Legg–Calvé–Perthes disease (LCPD) when non-surgical treatments are ineffective. Background: Post-operative immobilization after hip reconstruction in children is crucial to promote proper healing and reduce the risk of complications. While spica casting has been the traditional method, it can lead to various issues. Foam splinting has emerged as an alternative approach. This study aimed to compare the effectiveness and satisfaction of the patient and the caregivers of spica casting and foam splinting after pelvic osteotomies in young patients with DDH, NDH, and LCPD. Methods: A prospective randomized clinical trial included patients aged 3 to 16 undergoing pelvic reconstruction (iliac and proximal femoral osteotomy, open reduction, and soft tissue procedures). Participants were randomized into two groups: one receiving spica casts and the other foam splints, both for a six-week period post-surgery. Quality of life (QOL) assessments like CPCHILD, SF-36, and EQ-5D were conducted using various scores to measure patient and caregiver satisfaction preoperative and at six and twelve weeks postoperative. The surgical techniques were consistent across both groups. Results: The study included 34 patients, with one excluded due to non-adherence. The spica cast group experienced statistically significant declines in QOL scores, while the foam splint group showed decreases that were not statistically significant. Complications were reported in 11 patients, with a higher prevalence in the spica cast group. Conclusions: The foam splint group demonstrated superior satisfaction levels and fewer complications, which leads to the conclusion that foam splinting should be the preferred option to spica casting for post-operative immobilization in these cases. Full article
(This article belongs to the Special Issue Hip Diseases: From Joint Preservation to Hip Arthroplasty Revision)
Show Figures

Figure 1

30 pages, 1761 KiB  
Review
Review of Treatment Techniques for Dredged Sediments in the Context of Valorization as Secondary Raw Materials
by Ayodele Afolayan, Robert Černý and Jan Fořt
Buildings 2025, 15(10), 1639; https://doi.org/10.3390/buildings15101639 - 13 May 2025
Viewed by 287
Abstract
The valorization of dredged sediments (DS) presents a sustainable solution for managing waste while addressing resource scarcity and environmental concerns. This review explores treatment techniques and reuse options for DS, focusing on applications in the construction industry. However, disposal poses challenges due to [...] Read more.
The valorization of dredged sediments (DS) presents a sustainable solution for managing waste while addressing resource scarcity and environmental concerns. This review explores treatment techniques and reuse options for DS, focusing on applications in the construction industry. However, disposal poses challenges due to potential contamination with heavy metals and organic pollutants. The study categorizes treatment approaches into physical, chemical, biological, and thermal processes. Physical methods, such as separation and dewatering, offer volume reduction but have limited capacities against chemically bound contaminants. Chemical treatments, including oxidation and immobilization, target specific pollutants but often entail high costs and environmental risks. Biological approaches, such as bioremediation and phytoremediation, provide sustainable, low-cost alternatives but require longer timescales. Thermal processes like pyrolysis and vitrification efficiently destroy or stabilize contaminants but involve high energy demands. Pyrolysis emerges as a particularly promising technology, combining effective decontamination with energy recovery and biochar production. Despite the advances in the area, the review identifies key barriers to large-scale DS reuse: contamination variability, lack of standardized guidelines, and limited long-term performance data. Future research should focus on integrated treatment strategies, such as combining DS with other industrial by-products, and optimization of processing, aiming to attain cost-effective, sustainable reuse. Overall, the valorization of treated DS supports circular-economy principles and offers significant environmental and economic benefits. Full article
Show Figures

Figure 1

13 pages, 2800 KiB  
Article
Using BiOI/BiOCl Composite-Enhanced Cathodic Photocurrent and Amplifying Signal Variation in AgI for Developing a Highly Sensitive Photoelectrochemical Immunosensing Platform
by Mengyang Zhang, Weikang Wan, Shurui Wang, Huiyu Zeng, Yang Wu, Zhihui Dai and Wenwen Tu
Chemosensors 2025, 13(5), 164; https://doi.org/10.3390/chemosensors13050164 - 5 May 2025
Viewed by 227
Abstract
Photoelectrochemical (PEC) sensors have emerged as potential analysis techniques in recent years due to PEC’s benefits, which include straightforward operation, quick response times, and basic equipment. In this work, a new PEC sandwich immunoassay was fabricated, which was based on low-toxicity BiOI/BiOCl composites [...] Read more.
Photoelectrochemical (PEC) sensors have emerged as potential analysis techniques in recent years due to PEC’s benefits, which include straightforward operation, quick response times, and basic equipment. In this work, a new PEC sandwich immunoassay was fabricated, which was based on low-toxicity BiOI/BiOCl composites accompanied by enhanced signal detection via AgI-conjugated antibodies (Ab2-AgI). Specifically, the low-toxicity inorganic semiconductor BiOI/BiOCl composites were first utilized in PEC bioanalysis. Owing to the unique configuration of energy levels between BiOI and BiOCl, the photoelectric response was more excellent than those of BiOI or BiOCl alone. Moreover, the Ab2-AgI conjugates were utilized as signal amplification components through the specific antibody–antigen immunoreaction. In the presence of target Ag, the immobilized Ab2-AgI conjugates clearly improve the steric hindrance of the sensing electrode and effectively hinder the transfer of photo-induced holes; meanwhile, AgI NPs can competitively absorb excitation light. A new PEC immunosensing platform for detecting tumor markers at 0 V under visible light excitation was developed, and using carcinoembryonic antigen (CEA) as a model analyte demonstrated an ultra-low detection limit of 4.9 fg·mL−1. Meanwhile, it demonstrated excellent specificity and stability, potentially opening up a novel and promising platform for detecting other critical biomarkers. Full article
(This article belongs to the Special Issue Electrochemical Biosensors: Advances and Prospects)
Show Figures

Figure 1

22 pages, 2532 KiB  
Review
A Review on Xanthine Oxidase-Based Electrochemical Biosensors: Food Safety and Quality Control Applications
by Totka Dodevska
Chemosensors 2025, 13(5), 159; https://doi.org/10.3390/chemosensors13050159 - 1 May 2025
Viewed by 370
Abstract
Electrochemical biosensors are integrated bio-receptor–transducer devices that convert specific biological interactions into measurable electrical signals. Over the past decade, the use of novel nanomaterials, advanced enzyme immobilization techniques, and enhanced sensor architectures have been extensively studied, yielding significant progress in the design of [...] Read more.
Electrochemical biosensors are integrated bio-receptor–transducer devices that convert specific biological interactions into measurable electrical signals. Over the past decade, the use of novel nanomaterials, advanced enzyme immobilization techniques, and enhanced sensor architectures have been extensively studied, yielding significant progress in the design of highly sensitive, rapid, and reliable electrochemical biosensors. In the modern food industry various types of electrochemical biosensors are used, playing essential roles in the processes monitoring and optimization. This review highlights the strategies implemented to improve the analytical performance of electrochemical enzyme biosensors based on xanthine oxidase (XOx) for the quantitative detection of xanthine (X) and hypoxanthine (Hx), analytes relevant to the field of food quality control. The article covers recent developments (mainly original studies reported from 2010 to date) in the substrate materials, different electrode designs, working principles, advantages, limitations, and applications of XOx biosensors for meat freshness assessment. The article is meant to be a valuable resource that provides insights for improving design for the next generation bio-electroanalytical platforms to ensure food safety. Full article
Show Figures

Graphical abstract

16 pages, 3251 KiB  
Article
Optimizing the Nitrogen Removal Efficiency of an Intermittent Biological Sponge Iron Reactor by Immobilizing Aerobic Denitrifying Bacteria in the Biological Sponge Iron System
by Jing Li, Jie Li, Yae Wang, Hao Mu, Huina Xie and Wei Zhao
Water 2025, 17(9), 1308; https://doi.org/10.3390/w17091308 - 27 Apr 2025
Viewed by 303
Abstract
This study investigates the enhancement of nitrogen removal performance in an intermittent biological sponge iron system (BSIS) through the immobilization of aerobic denitrifying bacteria. The aim is to improve the efficiency of simultaneous nitrification and denitrification (SND) in the BSIS by optimizing the [...] Read more.
This study investigates the enhancement of nitrogen removal performance in an intermittent biological sponge iron system (BSIS) through the immobilization of aerobic denitrifying bacteria. The aim is to improve the efficiency of simultaneous nitrification and denitrification (SND) in the BSIS by optimizing the microbial community involved in nitrogen conversion. The immobilization technique not only stabilizes the microbial activity and abundance of aerobic denitrifying bacteria, but also promotes a more efficient denitrification process. The optimal material ratio of polyvinyl alcohol–sodium alginate gel beads was determined as 10 g/100 mL PVA, 4 g/100 mL SA, 2 g/100 mL CaCl2, and 2 g/100 mL of bacterial suspension, achieving a maximum NO3-N removal rate of 91.73%. A response surface model (RSM), established for the operational conditions, (shaker speed, temperature, and pH) showed a high fitting degree (R2 = 0.9960) and predicted the optimal conditions for maximum NO3-N removal as 109.24 rpm, 23.6 °C, and pH 7.9. Compared to R1 (47.82%), R3 achieved a higher average total nitrogen (TN) removal rate of 95.49%, following the addition of immobilized aerobic denitrifying bacteria to the BSIS. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

17 pages, 220 KiB  
Article
Oral Care Experiences of Children with Down Syndrome: Caregiver and Dentist Perspectives
by Marinthea Richter, Elizabeth Isralowitz, José C. Polido, Sharon A. Cermak and Leah I. Stein Duker
Healthcare 2025, 13(9), 999; https://doi.org/10.3390/healthcare13090999 - 26 Apr 2025
Viewed by 343
Abstract
Background/Objectives: Children with Down syndrome (DS) have distinct oral care needs and challenges, yet research on their care experiences, exploring caregiver and provider perspectives, is limited. Therefore, this study aimed to describe the barriers and facilitators to oral care for children with [...] Read more.
Background/Objectives: Children with Down syndrome (DS) have distinct oral care needs and challenges, yet research on their care experiences, exploring caregiver and provider perspectives, is limited. Therefore, this study aimed to describe the barriers and facilitators to oral care for children with DS, as reported by caregivers and dental professionals. Methods: In this qualitative inquiry, semi-structured questions were used to elicit narratives describing oral care experiences from one caregiver focus group (n = 5), individual caregiver interviews (n = 9), and individual dentist interviews (n = 8). The transcripts were coded and thematically analyzed. Results: Three themes emerged in both groups. The first theme, Access, described the challenges in locating a dentist willing and knowledgeable about how to treat children with DS, and the variability in experiences between different contexts (i.e., community-based vs. specialty clinics). The second theme, Pre-visit Preparation, noted the potential impact of dental trauma on dental visits and recommended the use of preparation strategies, such as desensitization appointments, strategic scheduling, and visual or verbal scripts or social stories, to introduce dental encounters. The final theme, Dental Encounters, dealt with the importance of communication and interpersonal connection, as well as concerns about and support for active/passive immobilization techniques and pharmacological intervention. Sensory strategies for auditory, tactile, and vestibular input were discussed, in addition to distraction techniques, the timing and pacing of dental encounters, and parental presence/absence. Conclusions: Tailoring dental care around the unique sensory and behavioral needs of children with DS and building effective partnerships between children, parents, and dentists were emphasized for optimizing the dental care experiences of children with DS. Full article
(This article belongs to the Special Issue Oral Health Care and Services for Patients)
19 pages, 2074 KiB  
Review
Biphasic Catalytic Conversion of Olefins in Aqueous Media: A Systematic Review
by Angeliki Chira and Nikolaos C. Kokkinos
Int. J. Mol. Sci. 2025, 26(9), 4028; https://doi.org/10.3390/ijms26094028 - 24 Apr 2025
Viewed by 400
Abstract
Aqueous biphasic catalysis has gained recognition as a sustainable and efficient method that combines the advantages of both homogeneous and heterogeneous catalytic systems. This approach enables the separation and recycling of catalysts, leading to reduced environmental impact and lower operational costs. A key [...] Read more.
Aqueous biphasic catalysis has gained recognition as a sustainable and efficient method that combines the advantages of both homogeneous and heterogeneous catalytic systems. This approach enables the separation and recycling of catalysts, leading to reduced environmental impact and lower operational costs. A key component of this method is the use of transition metal catalysts, which are crucial for facilitating various reactions when paired with different types of ligands, primarily hydrophiles. This combination is essential for achieving high success rates in recyclable catalytic systems. The reaction conditions, including temperature, pressure, and pH, significantly influence catalytic performance. However, challenges such as limited substrate solubility and catalyst leaching persist, underscoring the need for further research into advanced ligand design, catalyst immobilization techniques, and scalable process integration. This review systematically examines recent experiments in the aqueous biphasic catalysis of olefins, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework. From an initial pool of 597 articles, 104 were found to be relevant and focused specifically on aqueous biphasic catalysis. The study investigates key reactions, the factors that influence these biphasic reactions, and the catalytic systems that facilitate them. By highlighting both progress and ongoing challenges, this work underscores the potential of aqueous biphasic catalysis to bridge the gap between green chemistry principles and industrial applications. Full article
(This article belongs to the Special Issue Advanced Catalytic Materials (Second Edition))
Show Figures

Figure 1

36 pages, 1745 KiB  
Review
The Role of Whey in Functional Microorganism Growth and Metabolite Generation: A Biotechnological Perspective
by Iuliu Gabriel Malos, Andra-Ionela Ghizdareanu, Livia Vidu, Catalin Bogdan Matei and Diana Pasarin
Foods 2025, 14(9), 1488; https://doi.org/10.3390/foods14091488 - 24 Apr 2025
Viewed by 571
Abstract
The valorization of cheese whey, a rich by-product of the dairy industry that is rich in lactose (approx. 70%), proteins (14%), and minerals (9%), represents a promising approach for microbial fermentation. With global whey production exceeding 200 million tons annually, the high biochemical [...] Read more.
The valorization of cheese whey, a rich by-product of the dairy industry that is rich in lactose (approx. 70%), proteins (14%), and minerals (9%), represents a promising approach for microbial fermentation. With global whey production exceeding 200 million tons annually, the high biochemical oxygen demand underlines the important need for sustainable processing alternatives. This review explores the biotechnological potential of whey as a fermentation medium by examining its chemical composition, microbial interactions, and ability to support the synthesis of valuable metabolites. Functional microorganisms such as lactic acid bacteria (Lactobacillus helveticus, L. acidophilus), yeasts (Kluyveromyces marxianus), actinobacteria, and filamentous fungi (Aspergillus oryzae) have demonstrated the ability to efficiently convert whey into a wide range of bioactive compounds, including organic acids, exopolysaccharides (EPSs), bacteriocins, enzymes, and peptides. To enhance microbial growth and metabolite production, whey fermentation can be carried out using various techniques, including batch, fed-batch, continuous and immobilized cell fermentation, and membrane bioreactors. These bioprocessing methods improve substrate utilization and metabolite yields, contributing to the efficient utilization of whey. These bioactive compounds have diverse applications in food, pharmaceuticals, agriculture, and biofuels and strengthen the role of whey as a sustainable biotechnological resource. Patents and clinical studies confirm the diverse bioactivities of whey-derived metabolites and their industrial potential. Whey peptides provide antihypertensive, antioxidant, immunomodulatory, and antimicrobial benefits, while bacteriocins and EPSs act as natural preservatives in foods and pharmaceuticals. Also, organic acids such as lactic acid and propionic acid act as biopreservatives that improve food safety and provide health-promoting formulations. These results emphasize whey’s significant industrial relevance as a sustainable, cost-efficient substrate for the production of high-quality bioactive compounds in the food, pharmaceutical, agricultural, and bioenergy sectors. Full article
Show Figures

Figure 1

21 pages, 11004 KiB  
Review
Mitigating Lead Toxicity in Halide Perovskite Solar Cells: Strategies for Sustainable Development
by Wenguang Li, Tianci Mi, Tian Tian, Meifang Yang and Huan Pang
Inorganics 2025, 13(4), 123; https://doi.org/10.3390/inorganics13040123 - 13 Apr 2025
Viewed by 784
Abstract
Halide perovskite solar cells (PSCs) exhibit remarkable potential for addressing global energy challenges due to their exceptional photovoltaic properties and cost-effectiveness. However, their widespread adoption is hindered by the presence of toxic lead in the perovskite materials, posing risks to both human health [...] Read more.
Halide perovskite solar cells (PSCs) exhibit remarkable potential for addressing global energy challenges due to their exceptional photovoltaic properties and cost-effectiveness. However, their widespread adoption is hindered by the presence of toxic lead in the perovskite materials, posing risks to both human health and the environment. This review comprehensively examines the environmental safety concerns associated with PSCs, focusing on the toxicity of lead and its potential for leakage during device operation and end-of-life disposal. Strategies to mitigate lead leakage are explored, including advanced external encapsulation methods, internal lead immobilization techniques, and innovative recycling approaches. These strategies are evaluated based on their effectiveness, feasibility, and potential challenges, highlighting the need for a multi-pronged approach to ensure the responsible and sustainable development of PSC technology. By addressing the toxicity issue and implementing robust prevention and recycling strategies, PSCs can become a driving force for the global transition towards clean and renewable energy while minimizing environmental and health risks. Full article
(This article belongs to the Special Issue Recent Progress in Perovskites)
Show Figures

Figure 1

29 pages, 873 KiB  
Review
Patient Positioning and Treatment Techniques in Total Skin Irradiation: A Scoping Review
by Andrea Lastrucci, Emanuele Canzani, Neda Haghighatjou, Livia Marrazzo, Nicola Iosca, Yannick Wandael, Daniele Giansanti, Renzo Ricci, Monica Mangoni, Stefania Pallotta, Gabriele Simontacchi and Lorenzo Livi
Cancers 2025, 17(8), 1276; https://doi.org/10.3390/cancers17081276 - 9 Apr 2025
Viewed by 470
Abstract
Introduction: Total skin irradiation (TSI) is a radiotherapy technique used to treat cutaneous lymphomas, such as mycosis fungoides. A key aspect of the success of the treatment is the correct positioning of the patient, which ensures a homogeneous distribution of radiation over [...] Read more.
Introduction: Total skin irradiation (TSI) is a radiotherapy technique used to treat cutaneous lymphomas, such as mycosis fungoides. A key aspect of the success of the treatment is the correct positioning of the patient, which ensures a homogeneous distribution of radiation over the skin surface, minimizing exposure to the surrounding healthy tissues. Materials and Methods: Following the preferred reporting items for systematic review and meta-analysis (PRISMA) extension for scoping reviews and the Arksey and O’Malley framework, electronic searches of EMBASE, PubMed, SCOPUS, and the Web of Science were conducted to identify original studies detailing positioning techniques for TSI in clinical practice. Results: A total of 44 studies were included, reporting a range of positioning techniques used in TSI. The selected articles were divided into four categories: Stanford, rotational, tomotherapy, and mixed (including studies comparing two or more of the previously mentioned techniques). Articles concerning the Stanford technique were predominant (n = 33; 75.0%), followed by those addressing the rotational technique (n = 5; 11.4%), tomotherapy (n = 3; 6.8%), and mixed (n = 3; 6.8%). Studies on the Stanford technique described both the original method and its modifications, including variations such as the lying position, and analyzed its strengths and limitations. Research on the rotational method examined different device configurations and implementation strategies to optimize dose distribution and treatment efficiency. Mixed articles compared the Stanford and rotational techniques, highlighting their similar dose uniformity while examining differences in treatment efficiency and practical implementation. Conclusions: Despite its widespread use, the Stanford technique is associated with challenges that have led to the exploration of alternative positioning strategies. The rotational technique addresses some of these limitations, while tomotherapy offers advanced immobilization but raises toxicity concerns. Future research should focus on optimizing the balance between efficacy, safety, and practicality of treatment in clinical settings. Full article
(This article belongs to the Special Issue New Approaches in Radiotherapy for Cancer)
Show Figures

Figure 1

26 pages, 4932 KiB  
Review
Affinity Electrophoresis of Proteins for Determination of Ligand Affinity and Exploration of Binding Sites
by Patrick Masson and Tatiana Pashirova
Int. J. Mol. Sci. 2025, 26(7), 3409; https://doi.org/10.3390/ijms26073409 - 5 Apr 2025
Viewed by 463
Abstract
Affinity gel electrophoresis was introduced about 50 years ago. Proteins interact with a ligand immobilized in the support. Specific interactions cause a decrease in electrophoretic mobility. The presence of a free ligand, competing with an immobilized ligand, restores electrophoretic mobility. In affinity capillary [...] Read more.
Affinity gel electrophoresis was introduced about 50 years ago. Proteins interact with a ligand immobilized in the support. Specific interactions cause a decrease in electrophoretic mobility. The presence of a free ligand, competing with an immobilized ligand, restores electrophoretic mobility. In affinity capillary electrophoresis, the ligand is mobile, and its interaction with a specific protein changes the mobility of the protein–ligand complex. This review mostly focuses on gel affinity electrophoresis. The theoretical basis of this technique, ligand immobilization strategies, and principles for determination of ligand affinity are addressed. Factors affecting specificity and strength of interactions are discussed, in particular, the structure of the affinity matrix, pH, temperature, hydrostatic pressure, solvent, co-solvents, electric field, and other physico-chemical conditions. Capillary affinity electrophoresis principles and uses are also briefly introduced. Affinity gel electrophoresis can be used for qualitative and quantitative purposes. This includes detection of specific proteins in complex media, investigation of specific interactions, protein heterogeneity, molecular and genetic polymorphism, estimation of dissociation constants of protein–ligand complexes, and conformational stability of binding sites. Future prospects, in particular for screening of engineered mutants and potential new drugs, coupling to other analytical methods, and ultra-microtechnological developments, are addressed in light of trends and renewal of this old technique. Full article
(This article belongs to the Special Issue Mechanism of Enzyme Catalysis: When Structure Meets Function)
Show Figures

Figure 1

24 pages, 5828 KiB  
Article
Aluminum Microspheres Coated with Copper and Nickel Nanoparticles: Catalytic Activity in the Combustion of Ammonium Perchlorate
by Yi Wang and Xiaolan Song
Catalysts 2025, 15(4), 354; https://doi.org/10.3390/catal15040354 - 4 Apr 2025
Viewed by 384
Abstract
This study employed an in-situ displacement technique to eliminate the oxide layer present on the surface of micron aluminum (μAl). Utilizing the exposed metallic aluminum, we facilitated the displacement of copper and nickel nanoparticles. These nanoparticles, approximately 90 nanometers in size, were densely [...] Read more.
This study employed an in-situ displacement technique to eliminate the oxide layer present on the surface of micron aluminum (μAl). Utilizing the exposed metallic aluminum, we facilitated the displacement of copper and nickel nanoparticles. These nanoparticles, approximately 90 nanometers in size, were densely adhered to the surface of the μAl particles. The elemental composition and structural characteristics of the composite particles were meticulously analyzed using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS), Vibrating Sample Magnetometry (VSM), and X-Ray Photoelectron Spectroscopy (XPS). Subsequently, thermal analysis and combustion performance assessments were conducted to elucidate the catalytic effects of the composite particles ([nCu+nNi]/μAl) on the thermal decomposition and combustion efficiency of ammonium perchlorate (AP). The results elucidate that the nanoparticles immobilized on the surface of μAl are unequivocally metallic copper (nCu) and metallic nickel (nNi). Following the application of nCu and nNi, the oxidation reaction of μAl accelerated by nearly 400 °C; furthermore, the incorporation of [nCu+nNi]/μAl raised the thermal decomposition peak temperature of AP by approximately 130 °C. Notably, the thermal decomposition activation energy of raw AP reached as high as 241.7 kJ/mol; however, upon doping with [nCu+nNi]/μAl, this activation energy significantly diminished to 161.4 kJ/mol. The findings of the combustion experiments revealed that both the raw AP and the AP modified solely with μAl were impervious to ignition via the hot wire method. In contrast, the AP doped with [nCu+nNi]/μAl demonstrated pronounced combustion characteristics, achieving an impressive peak flame temperature of 1851 °C. These results substantiate that the nCu and nNi, when deposited on the surface of μAl, not only facilitate the oxidation and combustion of μAl but also significantly enhance the thermal decomposition and combustion dynamics of ammonium perchlorate. Consequently, the [nCu+nNi]/μAl composite shows considerable promise for application in high-burn-rate hydroxyl-terminated polybutadiene (HTPB) propellants. Full article
(This article belongs to the Collection Nanotechnology in Catalysis)
Show Figures

Figure 1

20 pages, 2819 KiB  
Review
Research Progress on Nanotechnology-Driven Enzyme Biosensors for Electrochemical Detection of Biological Pollution and Food Contaminants
by Liang Qu, Xue Zhang, Yanhong Chu, Yuyang Zhang, Zhiyuan Lin, Fanzhuo Kong, Xing Ni, Yani Zhao, Qiongya Lu and Bin Zou
Foods 2025, 14(7), 1254; https://doi.org/10.3390/foods14071254 - 3 Apr 2025
Viewed by 477
Abstract
Electrochemical biosensors have attracted widespread attention from researchers due to their simple and rapid operation. Recent advancements in nanobiotechnology have further enhanced their performance, with nanomaterials like graphene, carbon nanotubes, and metal nanoparticles being widely used as carriers for immobilizing enzymes, cells, and [...] Read more.
Electrochemical biosensors have attracted widespread attention from researchers due to their simple and rapid operation. Recent advancements in nanobiotechnology have further enhanced their performance, with nanomaterials like graphene, carbon nanotubes, and metal nanoparticles being widely used as carriers for immobilizing enzymes, cells, and DNA molecules. These materials improve stability, sensitivity, and selectivity, making biosensors more effective. This article reviews the introduction, principles, and classification of enzyme-based electrode sensors, as well as their research and application progress in the detection of food risk factors (including foodborne pathogens, biotoxins, drug residues, food additives, allergens, etc.). It also explores future prospects, including advancements in nanotechnology and enzyme immobilization techniques, highlighting their potential in food safety and beyond. Full article
(This article belongs to the Special Issue Food Grade Immobilisation Systems for Enzymes)
Show Figures

Figure 1

Back to TopTop