Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (151)

Search Parameters:
Keywords = insect herbivory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2833 KB  
Article
Transgenerational and Molecular Responses to Lanthanum Exposure in a Spodoptera littoralis-Brassica rapa System
by Cong van Doan, Sara Bonzano and Massimo E. Maffei
Int. J. Mol. Sci. 2025, 26(17), 8462; https://doi.org/10.3390/ijms26178462 (registering DOI) - 30 Aug 2025
Viewed by 51
Abstract
The widespread use of rare earth elements (REEs) in agriculture, particularly Lanthanum (La), raises concerns about their ecological impact on non-target organisms. We investigated the direct and indirect effects of La on the insect pest Spodoptera littoralis and its host plant, Brassica rapa [...] Read more.
The widespread use of rare earth elements (REEs) in agriculture, particularly Lanthanum (La), raises concerns about their ecological impact on non-target organisms. We investigated the direct and indirect effects of La on the insect pest Spodoptera littoralis and its host plant, Brassica rapa. Direct exposure to La-supplemented diets reduced larval growth, survival, and egg production. Interestingly, a transgenerational effect was observed, where larvae from La-exposed parents exhibited increased resilience, showing no performance reduction on the same diets. Indirectly, La accumulation in plants mediated a hormetic response in herbivores, increasing larval weight at low concentrations but reducing it at high concentrations, while modulating their oxidative stress and detoxification gene expression. From the plant perspective, La exposure amplified herbivory-induced calcium signalling and altered the expression of key genes related to calcium and reactive oxygen species pathways. These findings reveal the complex ecological risks of La accumulation in agroecosystems, affecting both plants and insects directly and through novel transgenerational effects. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Graphical abstract

16 pages, 1891 KB  
Article
Transcriptomic and Metabolomic Analyses Reveal Differing Phytohormone Regulation in Rhododendron Cultivars in Response to Azalea Lace Bug (Stephanitis pyrioides)
by Bei He, Yu Peng, Jun Tong, Dongyun Xu, Yanfang Dong, Yuan Zhou, Yanping Tang, Si Zhang, Linchuan Fang and Jing Mao
Horticulturae 2025, 11(9), 1005; https://doi.org/10.3390/horticulturae11091005 - 24 Aug 2025
Viewed by 421
Abstract
Rhododendron spp., valuable ornamental plants, frequently suffer from infestations of the azalea lace bug (Stephanitis pyrioides Scott, ALB). However, the hormonal regulatory mechanisms underlying Rhododendron defense against ALB are not well understood. In this study, integrated transcriptomic and metabolomic analyses were performed [...] Read more.
Rhododendron spp., valuable ornamental plants, frequently suffer from infestations of the azalea lace bug (Stephanitis pyrioides Scott, ALB). However, the hormonal regulatory mechanisms underlying Rhododendron defense against ALB are not well understood. In this study, integrated transcriptomic and metabolomic analyses were performed to investigate the phytohormone responses under ALB stress in two Rhododendron cultivars with distinct insect susceptibility: the resistant ‘Taile’ (TL), and the susceptible ‘Yanzhimi’ (YZM). Transcriptomic sequencing identified 10,052 and 3113 differentially expressed genes (DEGs) in ‘TL’ and ‘YZM’, respectively, after ALB infestation. KEGG pathway enrichment analysis revealed that the DEGs in ‘TL’ were significantly enriched in hormone signal transduction pathways, including gibberellin (GA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ETH), with 21 out of 25 hormone-related DEGs being upregulated. In contrast, ‘YZM’ exhibited 18 upregulated and 13 downregulated DEGs and suppressed auxin and cytokinin signaling. Non-targeted metabolomic analysis detected increased indole-3-acetic acid (IAA), abscisic acid (ABA), and jasmonoyl–isoleucine (JA-Ile) levels in both cultivars. ‘TL’ also showed elevated levels of SA precursor (benzoic acid) and ethylene precursor (1-aminocyclopropane-1-carboxylate, ACC). These findings indicate that ALB infestation induces endogenous hormone signaling-related genes in Rhododendron leaves and regulates hormones such as SA and JA to counteract insect stress. This study provides theoretical insights into the molecular mechanisms of Rhododendron defense against insect herbivory and lays the foundation for breeding resistant cultivars. Full article
Show Figures

Figure 1

17 pages, 2210 KB  
Article
Foliar Morphoanatomical and Phytochemical Variations Shape Resistance to Key Insect Herbivores and Leaf Quality in Cyclocarya paliurus
by Zhanhong Xu, Wanxia Yang, Xulan Shang, Xiangxiang Fu, Caowen Sun and Shengzuo Fang
Plants 2025, 14(16), 2495; https://doi.org/10.3390/plants14162495 - 11 Aug 2025
Viewed by 276
Abstract
To reveal the effects of genotype–herbivore interactions on leaf quality, foliar variations in phytochemicals, morphoanatomy, and herbivory damage ratio were investigated in a Cyclocarya paliurus (Batalin) Iljinsk. (Juglandaceae) germplasm resources bank. Results showed less herbivory damage in genotypes with a higher leaf thickness, [...] Read more.
To reveal the effects of genotype–herbivore interactions on leaf quality, foliar variations in phytochemicals, morphoanatomy, and herbivory damage ratio were investigated in a Cyclocarya paliurus (Batalin) Iljinsk. (Juglandaceae) germplasm resources bank. Results showed less herbivory damage in genotypes with a higher leaf thickness, but more herbivory damage in genotypes with a higher leaf stomatal density. Herbivory damage ratios were significantly correlated with the contents of leaf secondary metabolites, whereas the response of secondary metabolites to insect attack was type-specific and varied between intact leaves and damaged leaves. Based on key indicators of leaf quality (contents of triterpenoids, flavonoids, polyphenols, pterocaryoside A, pterocaryoside B, and cyclocaric acid B), the investigated genotypes were divided into three distinct groups by integrating TOPSIS and cluster analysis, while four genotypes with slight insect damage demonstrated the prioritization for future applications. Our findings lay a foundation for further selection of its superior varieties with both insect resistance and high leaf quality. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

12 pages, 1597 KB  
Article
Effects of Anthropogenic Vibratory Noise on Plant Development and Herbivory
by Estefania Velilla, Laura Bellato, Eleanor Collinson and Wouter Halfwerk
Acoustics 2025, 7(3), 45; https://doi.org/10.3390/acoustics7030045 - 25 Jul 2025
Viewed by 787
Abstract
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects [...] Read more.
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects plant development and, consequently, plant–insect interactions. Here, we examine the impact of windmill-like vibrational noise on the growth of Pisum sativum and its full-factorial interaction with the generalist herbivore Spodoptera exigua. Plants were exposed to either high or low vibrational noise from seed germination to the seed production stage. We recorded germination, flowering, fruiting time, and daily shoot length. Additionally, we measured herbivory intensity by Spodoptera exigua caterpillars placed on a subset of plants. Plants exposed to high vibrational noise grew significantly faster and taller than those in the low-noise treatment. Additionally, we found a marginally significant trend for earlier flowering in plants exposed to high noise. We did not find a significant effect of vibrational noise on herbivory. Our results suggest that underground vibrational noise can influence plant growth rates, which may potentially have ecological and agricultural implications. Faster growth may alter interspecific competition and shift trade-offs between growth and defense. Understanding these effects is important in assessing the broader ecological consequences of renewable energy infrastructure. Full article
Show Figures

Figure 1

23 pages, 5108 KB  
Review
The Invasive Mechanism and Impact of Arundo donax, One of the World’s 100 Worst Invasive Alien Species
by Hisashi Kato-Noguchi and Midori Kato
Plants 2025, 14(14), 2175; https://doi.org/10.3390/plants14142175 - 14 Jul 2025
Cited by 2 | Viewed by 568
Abstract
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and [...] Read more.
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and grassland areas along roadsides, including in protected areas. This species grows rapidly and produces large amounts of biomass due to its high photosynthetic ability. It spreads asexually through ramets, in addition to stem and rhizome fragments. Wildfires, flooding, and human activity promote its distribution and domination. It can adapt to various habitats and tolerate various adverse environmental conditions, such as cold temperatures, drought, flooding, and high salinity. A. donax exhibits defense mechanisms against biotic stressors, including herbivores and pathogens. It produces indole alkaloids, such as bufotenidine and gramine, as well as other alkaloids that are toxic to herbivorous mammals, insects, parasitic nematodes, and pathogenic fungi and oomycetes. A. donax accumulates high concentrations of phytoliths, which also protect against pathogen infection and herbivory. Only a few herbivores and pathogens have been reported to significantly damage A. donax growth and populations. Additionally, A. donax exhibits allelopathic activity against competing plant species, though the allelochemicals involved have yet to be identified. These characteristics may contribute to its infestation, survival, and population expansion in new habitats as an invasive plant species. Dense monospecific stands of A. donax alter ecosystem structures and functions. These stands impact abiotic processes in ecosystems by reducing water availability, and increasing the risk of erosion, flooding, and intense fires. The stands also negatively affect biotic processes by reducing plant diversity and richness, as well as the fitness of habitats for invertebrates and vertebrates. Eradicating A. donax from a habitat requires an ongoing, long-term integrated management approach based on an understanding of its invasive mechanisms. Human activity has also contributed to the spread of A. donax populations. There is an urgent need to address its invasive traits. This is the first review focusing on the invasive mechanisms of this plant in terms of adaptation to abiotic and biotic stressors, particularly physiological adaptation. Full article
Show Figures

Graphical abstract

13 pages, 841 KB  
Article
Silicon Protects Rice Plants Against Striped Stem Borer by Disturbing Herbivory-Induced Putrescine Accumulation
by Hao Zhang, Xiaodong Liu, Cunyan Li, Linzhi Fang, Chaoyue Gai, Rensen Zeng, Qiongli Wang, Yuanyuan Song and Daoqian Chen
Plants 2025, 14(13), 2066; https://doi.org/10.3390/plants14132066 - 6 Jul 2025
Viewed by 425
Abstract
Silicon (Si) protects plants against insect herbivores; however, the underlying mechanisms remain unclear. Polyamines (PAs) play a crucial role in plant–insect interactions. Here, the involvement of Si in putrescine (Put) metabolism and its role in rice resistance against striped stem borer (SSB, Chilo [...] Read more.
Silicon (Si) protects plants against insect herbivores; however, the underlying mechanisms remain unclear. Polyamines (PAs) play a crucial role in plant–insect interactions. Here, the involvement of Si in putrescine (Put) metabolism and its role in rice resistance against striped stem borer (SSB, Chilo suppressalis Walker) were investigated. The results showed that SSB larval infestation led to a substantial accumulation of free Put in rice seedlings. Si application increased rice resistance against SSB and repressed the SSB attack-induced accumulation of Put, in parallel with a decreased expression of Put biosynthesis genes encoding arginine decarboxylase (ADC1 and ADC2). Moreover, Si application had no significant effect on the wounding-induced expression of ADC1 and ADC2, but attenuated the further elevation in the transcription of ADC1 and ADC2 induced by SSB larvae oral secretion. Simultaneously, Si addition reduced the Put and spermidine contents in SSB-attacked plants. Furthermore, the exogenous application of Put attenuated Si-enhanced resistance against SSB larvae, whereas exogenous D-arginine, an inhibitor of ADC, showed similar effects to Si on rice resistance against SSB. Our findings indicate that Si improves rice resistance to SSB, at least partly by reducing herbivory-stimulated putrescine accumulation. Full article
(This article belongs to the Special Issue Sustainable Strategies for Managing Plant Diseases)
Show Figures

Figure 1

16 pages, 4519 KB  
Article
Plant Functional Traits Better Explain the Global Latitudinal Patterns of Leaf Insect Herbivory than Climatic Factors
by Yuhui Ji, Xiaoxu Yan, Jiali Xu, Mira Jumak, Ruizhi Zhang, Lan Wang and Jie Gao
Plants 2025, 14(9), 1303; https://doi.org/10.3390/plants14091303 - 25 Apr 2025
Viewed by 939
Abstract
Herbivory reflects the interaction between plants and insects in ecosystems, and its latitudinal patterns at the global scale have attracted widespread attention. While many studies support the latitudinal herbivory hypothesis, it remains contentious. This study, based on a global dataset of 1206 herbivory [...] Read more.
Herbivory reflects the interaction between plants and insects in ecosystems, and its latitudinal patterns at the global scale have attracted widespread attention. While many studies support the latitudinal herbivory hypothesis, it remains contentious. This study, based on a global dataset of 1206 herbivory records, explored the global latitudinal patterns of insect herbivory on leaves and their influencing factors. We found that herbivory decreased with increasing latitude from the equator to the poles, supporting the latitudinal herbivory hypothesis. Latitude affected the variation in climate, soil nutrients, and plant functional traits, which ultimately affected herbivory. Plant functional traits were the key factors affecting the global latitudinal patterns of herbivory, with climatic factors playing an important regulatory role, while soil nutrients had a relatively minor impact, explaining 7.3%, 4.66%, and 0.98% of the latitudinal variation in herbivory, respectively. Specifically, plant height and mean annual temperature were the most important drivers of the global latitudinal patterns of herbivory, explaining 3.39% and 3.03%, respectively. Our study focused on two new perspectives—plant functional traits and soil nutrients. Although soil nutrients had a relatively minor influence on the latitudinal patterns of herbivory, we emphasized the significant impact of plant functional traits on the latitudinal patterns of herbivory. Our findings provide new insights into understanding and predicting the geographic patterns of herbivory and ecological interactions in the context of global climate change, offering important references and ecological significance. Full article
Show Figures

Figure 1

12 pages, 755 KB  
Article
Leaffooted Bugs, Leptoglossus phyllopus (Hemiptera: Coreidae), Are Attracted to Volatile Emissions from Herbivore-Damaged Cotton Bolls
by Malek A. Alwedyan, Anjel M. Helms and Michael J. Brewer
Insects 2025, 16(4), 425; https://doi.org/10.3390/insects16040425 - 17 Apr 2025
Viewed by 458
Abstract
The leaffooted bug, Leptoglossus phyllopus (L.) (Hemiptera: Coreidae), probes and feeds on tissues of many plant species, including developing cotton bolls, causing seed damage and abscission. Insecticides are the primary tool for managing leaffooted bugs, but concerns about resistance and environmental harm highlight the [...] Read more.
The leaffooted bug, Leptoglossus phyllopus (L.) (Hemiptera: Coreidae), probes and feeds on tissues of many plant species, including developing cotton bolls, causing seed damage and abscission. Insecticides are the primary tool for managing leaffooted bugs, but concerns about resistance and environmental harm highlight the need for alternative management strategies. One promising approach is using semiochemicals, such as plant- and insect-produced volatile organic compounds (VOCs), to trap or repel pests. Insect herbivores often use plant-produced VOCs to select suitable host plants for feeding and oviposition. Field observations of abundant adult leaffooted bugs on cotton bolls suggest that bugs aggregate at feeding sites. The goal of this study was to characterize VOCs from developing cotton bolls with and without leaffooted bug herbivory and evaluate how these VOCs affect adult bug foraging behavior. A portable dynamic headspace sampling method was used to collect VOCs from developing cotton bolls in the field, and VOC samples were analyzed using gas chromatography–mass spectrometry. Leaffooted bug herbivory induced volatile emissions from cotton bolls, with significant increases in the emissions of six compounds (benzaldehyde, α-pinene, β-pinene, β-myrcene, p-xylene, and (E)-β-caryophyllene). Dual-choice olfactometer assays revealed that adult leaffooted bugs were attracted to VOCs from damaged cotton bolls, as well as being attracted to synthetic benzaldehyde or α-pinene individually. In contrast, leaffooted bugs were repelled by the combination of synthetic benzaldehyde and α-pinene. These findings suggest that VOCs from cotton bolls are attractive to leaffooted bugs and could contribute to the development of attractive lures for integrated pest management. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Figure 1

27 pages, 6986 KB  
Article
Genome-Wide Identification and Expression Profiling of Glycosidases, Lipases, and Proteases from Invasive Asian Palm Weevil, Rhynchophorus ferrugineus
by Nazmi Harith-Fadzilah, Mohammad Nihad, Mohammed Ali AlSaleh, Abdulqader Yaslam Bazeyad, Subash-Babu Pandurangan, Kashif Munawar, Arya Vidyawan, Hattan A. Alharbi, Jernej Jakše, Arnab Pain and Binu Antony
Insects 2025, 16(4), 421; https://doi.org/10.3390/insects16040421 - 17 Apr 2025
Viewed by 880
Abstract
The red palm weevil, Rhynchophorus ferrugineus, is a destructive, invasive pest to a diverse range of palm plantations globally. Commonly used broad-range chemical insecticides for insect control pose high risks to non-target organisms, humans, and the environment. A bio-rational approach of screening [...] Read more.
The red palm weevil, Rhynchophorus ferrugineus, is a destructive, invasive pest to a diverse range of palm plantations globally. Commonly used broad-range chemical insecticides for insect control pose high risks to non-target organisms, humans, and the environment. A bio-rational approach of screening natural small-molecule inhibitors that specifically target R. ferrugineus proteins critical to its life processes can pave the way for developing novel bioinsecticides. Digestive enzymes (DEs), which impair feeding on plants (herbivory), are promising targets. We generated de novo transcriptomes, annotated DE-related genes from the R. ferrugineus gut and abdomen, manually annotated the DE gene family from the recently available genome and our transcriptome data, and reported 34 glycosidases, 85 lipases, and 201 proteases. We identified several tandem duplicates and allelic variants from the lipase and protease families, notably, 10 RferLip and 21 RferPro alleles, which emerged primarily through indels and single-site substitution. These alleles may confer enhanced digestive lipolysis and proteolysis. Phylogenetic analyses identified and classified different subfamilies of DEs and revealed close evolutionary relationships with other coleopterans. We assessed select candidate DEs’ activity and the potential for inhibition in silico to better understand the herbivory arsenal. In silico analysis revealed that the selected enzymes exhibited similar ligand-binding affinity to their corresponding substrate, except for protease aminopeptidase N, RferPro40, which exhibited poorer affinity to the inhibitor bestatin. Overall, our study serves as a foundation for further functional analysis and offers a novel target for the development of a novel bio-rational insecticide for R. ferrugineus. Full article
(This article belongs to the Special Issue Natural Metabolites as Biocontrol Agents of Insect Pests)
Show Figures

Figure 1

27 pages, 1463 KB  
Review
From Digestion to Detoxification: Exploring Plant Metabolite Impacts on Insect Enzyme Systems for Enhanced Pest Control
by Masoud Chamani, MohammadReza Dadpour, Zahra Dehghanian, Sima Panahirad, Ali Chenari Bouket, Tomasz Oszako and Sumit Kumar
Insects 2025, 16(4), 392; https://doi.org/10.3390/insects16040392 - 7 Apr 2025
Cited by 1 | Viewed by 2300
Abstract
This review provides an in-depth examination of the intricate interactions between plant metabolites and the digestive and antioxidative enzymes in insects, highlighting their essential roles in shaping insect herbivory and adaptation strategies. Plants have evolved a diverse arsenal of secondary metabolites to defend [...] Read more.
This review provides an in-depth examination of the intricate interactions between plant metabolites and the digestive and antioxidative enzymes in insects, highlighting their essential roles in shaping insect herbivory and adaptation strategies. Plants have evolved a diverse arsenal of secondary metabolites to defend against herbivorous insects, which, in response, have developed sophisticated adaptations to overcome these defenses and efficiently exploit plant resources. We outline the importance of digestive enzymes, such as proteases and amylases, which allow insects to break down complex plant compounds and access vital nutrients. Additionally, the review focuses on antioxidative enzymes in the insect midgut, including superoxide dismutase and catalase, which play a crucial role in mitigating oxidative stress generated during digestion and other metabolic processes. Synthesizing findings from various studies, this review also considers how environmental factors, such as heavy metal exposure and temperature changes, influence these enzymes’ activity levels. It highlights the dual function of antioxidative enzymes in detoxifying harmful plant-derived compounds while preserving cellular stability. The implications of these biochemical interactions for pest management are discussed, with an emphasis on the potential for developing biopesticides that target specific enzymatic pathways to disrupt insect feeding and growth. By elucidating the biochemical mechanisms that underlie plant-insect interactions, this review enhances our understanding of co-evolutionary dynamics and offers insights into sustainable agricultural practices that could leverage these interactions for effective pest control. Finally, the review proposes future research directions aimed at identifying novel plant metabolites with enzyme-modulating properties and exploring the ecological impacts of enzyme-targeted pest management approaches. Full article
(This article belongs to the Collection Plant Responses to Insect Herbivores)
Show Figures

Figure 1

16 pages, 1750 KB  
Article
Exploring a Role for the Arabidopsis TIR-X Gene (TIRP) in the Defense Against Pathogenic Fungi or Insect Herbivory Attack
by Shraddha Neufeld, Michael Reichelt, Sandra S. Scholz, Przemysław Wojtaszek and Axel Mithöfer
Int. J. Mol. Sci. 2025, 26(6), 2764; https://doi.org/10.3390/ijms26062764 - 19 Mar 2025
Viewed by 530
Abstract
Plants are challenged regularly with multiple types of biotic stress factors, such as pathogens or insect herbivores, in their environment. To detect and defend against pathogens, plants have evolved an innate immune system in which intracellular receptors in the so-called effector-triggered immunity play [...] Read more.
Plants are challenged regularly with multiple types of biotic stress factors, such as pathogens or insect herbivores, in their environment. To detect and defend against pathogens, plants have evolved an innate immune system in which intracellular receptors in the so-called effector-triggered immunity play a vital role. In Arabidopsis thaliana the Toll/interleukin-1 receptors (TIRs) domain is related to intracellular immunity receptors, for example in TIR-NBS-LRR (TNL) proteins. Among the TIR domain carrying proteins, very little is known about the function of the TIR-X proteins. Here, we focus on the recently described TIR-X (TIRP; At5g44900) to analyze its role in phytohormone-mediated plant defense through gene expression and phytohormone quantification. Therefore, we employed two fungal pathogens, the necrotrophic Alternaria brassicicola and the hemibiotrophic Verticillium dahliae, to infect A. thaliana WT (Col-0), TIRP knock-out, and TIRP overexpressing lines for comparative analyses. Furthermore, we included the insect herbivore Spodoptera littoralis and a treatment with S. littoralis egg extract on the plants to analyze any role of TIRP during these attacks. We found that both A. brassicicola and V. dahliae infections increased TIRP gene expression systemically. The salicylic acid content was higher in the TIRP overexpressing line, corresponding to a better S. littoralis larval growth performance in feeding assays. However, since we never observed clear infection-related differences in jasmonate or salicylic acid levels between the wild type and the two transgenic Arabidopsis lines, our results rule out the possibility that TIRP acts via the regulation of phytohormone synthesis and accumulation. Full article
(This article belongs to the Special Issue Plant Hormone Signaling)
Show Figures

Figure 1

15 pages, 1148 KB  
Article
Influence of Plant Growth-Promoting Rhizobacteria (PGPR) Inoculation on Phenolic Content and Key Biosynthesis-Related Processes in Ocimum basilicum Under Spodoptera frugiperda Herbivory
by Jimena Sofía Palermo, Tamara Belén Palermo, Lorena del Rosario Cappellari, Gerd Ulrich Balcke, Alain Tissier, Walter Giordano and Erika Banchio
Plants 2025, 14(6), 857; https://doi.org/10.3390/plants14060857 - 10 Mar 2025
Cited by 4 | Viewed by 1294
Abstract
Plants are naturally subjected to various types of biotic stresses, including pathogenic microorganisms and herbivory by insects, which trigger different signaling pathways and related defense mechanisms. Inoculation with microorganisms, such as plant growth-promoting rhizobacteria (PGPR), can be seen as a form of stress [...] Read more.
Plants are naturally subjected to various types of biotic stresses, including pathogenic microorganisms and herbivory by insects, which trigger different signaling pathways and related defense mechanisms. Inoculation with microorganisms, such as plant growth-promoting rhizobacteria (PGPR), can be seen as a form of stress because it triggers a systemic resistance response in plants similar to that caused by insect herbivory. However, these interactions have typically been studied independently, which has limited the understanding of their combined effects. This study examines the effects of Bacillus amyloliquefaciens GB03 inoculation and Spodoptera frugiperda herbivory on the total phenolic contents of Ocimum basilicum. We also analyze the levels of endogenous phytohormones and the activity of phenylalanine ammonia-lyase (PAL), a crucial enzyme involved in the biosynthesis of phenolic defense-related metabolites. The results indicate that the total phenolic content significantly increased only in plants that were both inoculated by GB03 and damaged by larvae. Additionally, PAL activity showed an increase in plants that were damaged by larvae and in those subjected to the combined treatment of larval damage and inoculation with GB03. Regarding phytohormones, in plants damaged by insects, the levels of salicylic acid (SA) increased, regardless of whether they were inoculated or not, while the levels of jasmonic acid–isoleucine (JA-ile) rose in all treatments compared to the control. This study highlights the intricate relationships among beneficial microbes, herbivores, and plant defense mechanisms, emphasizing their potential impact on improving plant resilience and the production of secondary metabolites. Furthermore, understanding the independent effects of PGPR inoculation, beyond its interaction with herbivory, could provide valuable insights into its role as a sustainable alternative for enhancing plant defense responses and promoting crop productivity. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

17 pages, 4332 KB  
Article
Impacts of Leaf Damage Intensity on Ant–Plant Protection Mutualism and Plant Fitness
by Isabela Cristina de Oliveira Pimenta, Eduardo Soares Calixto and Kleber Del-Claro
Plants 2025, 14(6), 837; https://doi.org/10.3390/plants14060837 - 7 Mar 2025
Cited by 1 | Viewed by 2196
Abstract
Herbivores can negatively impact plant reproduction by altering floral traits, pollination, and fruit production. To counteract this, plants developed defense mechanisms, such as the biotic defense resulting from associations with ants. The aim of this study was to investigate whether leaf herbivory at [...] Read more.
Herbivores can negatively impact plant reproduction by altering floral traits, pollination, and fruit production. To counteract this, plants developed defense mechanisms, such as the biotic defense resulting from associations with ants. The aim of this study was to investigate whether leaf herbivory at different intensities influences reproductive success and extrafloral nectar secretion patterns in a savanna plant, Banisteriopsis malifolia (Malpighiaceae). Plants were subjected to simulated leaf herbivory and divided into three groups: Control (damage < 5%), T15 (15% leaf area removed), and T50 (50% leaf area removed). Assessments continued until fruiting. The findings indicate an increase in extrafloral nectar sugar concentration after simulated herbivory. Increasing foliar damage significantly delayed the time to bloom, decreased the number of inflorescences per plant, and reduced the size of buds and flowers. Foliar damage significantly decreased fruit size. Furthermore, ant foraging was influenced by herbivory, with a predominance of aggressive ants on plants with high levels of damage. Our study shows that varying levels of leaf damage affect extrafloral nectar secretion, ant foraging behavior, and plant reproductive structures. These findings highlight how insect herbivores and the level of damage they cause influence plant fitness and consequently community structure. Full article
(This article belongs to the Special Issue Plant Behavioral Ecology)
Show Figures

Graphical abstract

16 pages, 5781 KB  
Article
The Potential for Trypsin Inhibitor Expression in Leaves to Convey Herbivory Deterrence in Soybean
by Audrey E. Birdwell, Sebe A. Brown, Gino J. D’Angelo, Mitra Mazarei and Charles Neal Stewart
Plants 2025, 14(4), 617; https://doi.org/10.3390/plants14040617 - 18 Feb 2025
Viewed by 690
Abstract
Soybean (Glycine max) is the most widely grown legume crop in the world, providing important economic value. Pest herbivory damage by insects and mammalian wildlife, in particular the white-tailed deer (Odocoileus virginianus), limits yields in soybean. Incorporating trypsin inhibitors [...] Read more.
Soybean (Glycine max) is the most widely grown legume crop in the world, providing important economic value. Pest herbivory damage by insects and mammalian wildlife, in particular the white-tailed deer (Odocoileus virginianus), limits yields in soybean. Incorporating trypsin inhibitors (TIs) as plant protectant against herbivory pests has been of interest. We previously showed that the overexpression of soybean TIs in soybean conferred insect deterrence under greenhouse experiments. In this study, we examined the potential of transgenic TI-overexpressing lines in deterring insects under field conditions at Knoxville, Tennessee. Our results indicate that the overexpression of TI could lead to a significant reduction in leaf defoliation of the transgenic compared to non-transgenic lines without negatively impacting plant growth and yield under field conditions. Furthermore, we extended our study by comprehensive evaluation of these transgenic plants against the white-tailed deer herbivory in a separate field setting at Jackson, Tennessee, and with controlled deer feeding experiments. No significant differences in growth characteristics were found between transgenic and non-transgenic lines under field conditions. There were also no significant differences in deer deterrence between transgenic and non-transgenic lines in ambient deer herbivory field or controlled deer feeding trials. Our study provides further insights into more exploration of the role of TI genes in pest control in this economically important crop. Full article
Show Figures

Figure 1

14 pages, 2638 KB  
Article
Losses of Foliage to Defoliating Insects Increase with Leaf Damage Diversity Due to the Complementarity Effect
by Mikhail V. Kozlov and Vitali Zverev
Insects 2025, 16(2), 139; https://doi.org/10.3390/insects16020139 - 31 Jan 2025
Viewed by 980
Abstract
The functioning of ecosystems critically depends on biodiversity. However, the effects of herbivore diversity on plant damage caused by herbivore feeding remain underexplored. In this study, we tested the prediction that relative losses of foliage to defoliating insects increase with leaf damage diversity [...] Read more.
The functioning of ecosystems critically depends on biodiversity. However, the effects of herbivore diversity on plant damage caused by herbivore feeding remain underexplored. In this study, we tested the prediction that relative losses of foliage to defoliating insects increase with leaf damage diversity (LDD), and we also explored the mechanisms underlying the observed LDD patterns. We measured insect herbivory in 501 individuals of three deciduous woody species (Betula pubescens, Salix phylicifolia, and Vaccinium uliginosum) across 38 localities in north-western Russia, collected 8844 leaves damaged by defoliating insects, classifying the 21,073 feeding events observed in these leaves into 29 damage types. Overall, LDD significantly decreased with increasing latitude but showed no variation along elevation or pollution gradients. Herbivory weakly but significantly increased with increasing LDD, and a strong positive correlation between the rarefied number of leaf damage types and their evenness provided evidence for the complementarity effect underlying this herbivory increase, indicating that insects producing different leaf damage types differ in their resource use. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

Back to TopTop