Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = interface delamination damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6106 KiB  
Article
A Vibration-Based Test Technique to Evaluate the High-Cycle Fatigue Life of Thermal Interface Layers Used in the Electronic Industry
by Alaa Fezai, Anuj Sharma, Wolfgang Müller-Hirsch and André Zimmermann
Appl. Mech. 2025, 6(2), 23; https://doi.org/10.3390/applmech6020023 - 28 Mar 2025
Viewed by 125
Abstract
A testing method is developed to evaluate the acceleration- and strain-based fatigue life of a thermal interface layer in the high-cycle fatigue regime. The methodology adopts vibration-based fatigue testing, where adhesively bonded beams are excited at their resonant frequency under variable amplitude loading [...] Read more.
A testing method is developed to evaluate the acceleration- and strain-based fatigue life of a thermal interface layer in the high-cycle fatigue regime. The methodology adopts vibration-based fatigue testing, where adhesively bonded beams are excited at their resonant frequency under variable amplitude loading using an electrodynamic shaker. Fatigue failure is monitored through shifts in modal frequency and modal damping. Key findings include the identification of a 4% frequency shift as the failure criterion, corresponding to macro-delamination. The thickness of the thermal interface material influences acceleration-based fatigue life, decreasing by a factor of 0.2 when reduced from 0.3 mm to 0.15 mm and increasing by 5.5 when increased to 0.5 mm. Surface quality has a significant impact on both acceleration-based and strain-based fatigue curves. Beams from chemically etched aluminum–magnesium alloy specimens exhibit a sevenfold increase in fatigue life compared to beams from untreated printed circuit boards. Strain-based fatigue life increases with temperature, with a 0.2 reduction at 40 °C and an eightfold increase at 100 °C relative to 23 °C. The first principal strain ε1,rms is validated as a reliable local damage parameter, effectively characterizing fatigue behavior across varying TIM thicknesses. Full article
(This article belongs to the Special Issue Thermal Mechanisms in Solids and Interfaces)
Show Figures

Figure 1

14 pages, 8632 KiB  
Article
The Damage Evolution of a Cr2O3-TiO2 Coating Subjected to Cyclic Impact and Corrosive Environments and the Influence of a Nickel Intermediate Layer
by Huaxing Yang, Yang Zhao, Xudong Qin, Yixin Jin, Xinyang Zhao, Kailin Tian, Xiaoming Wang and Zhao Zhang
Coatings 2025, 15(1), 98; https://doi.org/10.3390/coatings15010098 - 16 Jan 2025
Viewed by 739
Abstract
Cyclic impacts in corrosive environments significantly affect the service life of ceramic coatings, greatly increasing their susceptibility to cracking and delamination. This study investigated the damage evolution behavior of Cr2O3-TiO2 (CT) coatings under cyclic stress in a corrosive [...] Read more.
Cyclic impacts in corrosive environments significantly affect the service life of ceramic coatings, greatly increasing their susceptibility to cracking and delamination. This study investigated the damage evolution behavior of Cr2O3-TiO2 (CT) coatings under cyclic stress in a corrosive medium, and analyzed the effects of the nickel layer on coating stress, corrosion current, and crack propagation. The variations in corrosion potential and current were analyzed, and the formation patterns of interfacial corrosion cracks were observed. Pre-cracks were introduced on the ceramic coating surface using a Micro-Nano mechanical testing system, and cyclic impacts were applied to the samples in 5% diluted hydrochloric acid using SiC balls to induce damage evolution. The results indicate that the presence of the nickel interlayer reduced the corrosion current density from 9.197 × 10−6 A/cm2 to 8.088 × 10−6 A/cm2 and significantly decreased the stress between the coating and the substrate. The surface cracks gradually extended toward the interface under the coupling effect of corrosion and SiC ball impact. When cracks reached the interface, they provided channels for corrosive media, leading to stress corrosion cracking at the interface. The Ni intermediate layer suppressed the formation of interface cracks and greatly enhanced the impact damage resistance of the CT coating–substrate system in corrosive media. Full article
Show Figures

Figure 1

17 pages, 31563 KiB  
Article
The Influence of pH Environments on the Long-Term Durability of Coir Fiber-Reinforced Epoxy Resin Composites
by Liangyong Li, Juntong Wang and Tianxiang Peng
Sustainability 2025, 17(1), 364; https://doi.org/10.3390/su17010364 - 6 Jan 2025
Viewed by 1107
Abstract
This study investigates the effects of different pH environments on the durability of coir fiber-reinforced epoxy resin composites (CFRERCs). The CFRERCs were prepared by combining alkali-treated coir fibers with epoxy resin and exposing them to acidic, alkaline, pure water, and seawater environments for [...] Read more.
This study investigates the effects of different pH environments on the durability of coir fiber-reinforced epoxy resin composites (CFRERCs). The CFRERCs were prepared by combining alkali-treated coir fibers with epoxy resin and exposing them to acidic, alkaline, pure water, and seawater environments for a 12-month corrosion test. The results show that an alkaline environment has the most significant impact on the tensile strength of CFRERCs, with a 55.06% reduction after 12 months. The acidic environment causes a 44.87% decrease in strength. In contrast, tensile strength decreases by 32.98% and 30.03% in pure water and seawater environments, respectively. The greatest reduction in tensile strain occurs in the alkaline environment, with a decrease of 36.45%. In the acidic environment, tensile strain decreases by about 25.56%, while in pure water and seawater, the reductions are 18.78% and 22.65%, respectively. In terms of stiffness, the alkaline environment results in a 49.51% reduction, while the acidic environment causes a 54.56% decrease. Stiffness decreases by 43.39% in pure water and 36.72% in seawater. Field emission scanning electron microscope (FE-SEM) analysis shows that corrosive agents in different pH environments cause varying degrees of damage to the microstructure of CFRERCs. In the acidic environment, corrosive agents erode the fiber–resin interface, leading to delamination and fiber breakage. In the alkaline environment, corrosive agents penetrate the fiber interior, increasing surface roughness and porosity. While pure water and seawater also cause some damage, their effects are relatively mild. Full article
Show Figures

Figure 1

14 pages, 5132 KiB  
Article
Analysis of Residual Stress at the Interface of Epoxy-Resin/Silicon-Wafer Composites During Thermal Aging
by Jianyu Wu, Fangzhou Chen, Jiahao Liu, Rui Chen, Peijiang Liu, Hao Zhao and Zhenbo Zhao
Polymers 2025, 17(1), 50; https://doi.org/10.3390/polym17010050 - 28 Dec 2024
Viewed by 766
Abstract
During the thermal aging process of epoxy resin, microcracks, interfacial delamination, and warpage are the key factors leading to semiconductor device damage. Here, epoxy-resin specimens (EP-Ss) and epoxy-resin/silicon-wafer composites (EP-SWs) were prepared to analyze the distribution of residual stress (RS) in epoxy resin [...] Read more.
During the thermal aging process of epoxy resin, microcracks, interfacial delamination, and warpage are the key factors leading to semiconductor device damage. Here, epoxy-resin specimens (EP-Ss) and epoxy-resin/silicon-wafer composites (EP-SWs) were prepared to analyze the distribution of residual stress (RS) in epoxy resin and its thermal aging process changes. The uniaxial tensile approach and Raman spectroscopy (RAS) showed that the peak shift of aliphatic C-O in EP-Ss was negatively correlated with the external stress, and that the stress correlation coefficient was −2.76 × 10−2 cm−1/MPa. Then, RAS was used to evaluate the RS distribution of EP-SWs, obtaining a high-resolution stress-distribution image of 50 × 50 pixels and revealing a strong stress concentration at the interface between the epoxy resin and the silicon wafer. Additionally, Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Field-emission scanning electron microscopy (FE-SEM), and RAS were used to analyze the chemical composition, molecular structure, interfacial microstructure, and RS of the epoxy resin during the thermal aging process. With the increase in the thermal aging time, the epoxy resin underwent secondary curing, the RS at the interface changed from tensile stress to compressive stress, and cracks were formed. The results illuminate the effect of the thermal aging process on the interface-failure mechanism of composite materials, aiding in the reliability evaluation and safety design of semiconductor devices. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 2nd Edition)
Show Figures

Figure 1

14 pages, 3383 KiB  
Article
Friction Behaviors and Wear Mechanisms of Carbon Fiber Reinforced Composites for Bridge Cable
by Guijun Xian, Xiao Qi, Rui Guo, Jingwei Tian, Huigang Xiao and Chenggao Li
Polymers 2024, 16(23), 3446; https://doi.org/10.3390/polym16233446 - 9 Dec 2024
Viewed by 1185
Abstract
Carbon fiber reinforced epoxy resin composites (CFRP) demonstrate superior wear resistance and fatigue durability, which are anticipated to markedly enhance the service life of structures under complex conditions. In the present paper, the friction behaviors and wear mechanisms of CFRP under different applied [...] Read more.
Carbon fiber reinforced epoxy resin composites (CFRP) demonstrate superior wear resistance and fatigue durability, which are anticipated to markedly enhance the service life of structures under complex conditions. In the present paper, the friction behaviors and wear mechanisms of CFRP under different applied loads, sliding speeds, service temperatures, and water lubrication were studied and analyzed in detail. The results indicated that the tribological properties of CFRP were predominantly influenced by the applied loads, as the tangential displacement generated significant shear stress at the interface of the friction pair. Serviced temperature was the next most impactful factor, while the influence of water lubrication remained minimal. Moreover, when subjected to a load of 2000 g, the wear rate and scratch width of the samples exhibited increases of 158% and 113%, respectively, compared to those loaded with 500 g. This observed escalation in wear characteristics can be attributed to irreversible debonding damage at the fiber/resin interface, leading to severe delamination wear. At elevated temperatures of 100 °C and 120 °C, the wear rate of CFRP increased by 75% and 112% compared to that at room temperature. This augmentation in wear was attributed to the transition of the epoxy resin from a glassy to an elastic state, which facilitated enhanced fatigue wear. Furthermore, both sliding speed and water lubrication displayed a negligible influence on the friction coefficient of CFRP, particularly under water lubrication conditions at 60 °C, where the friction coefficient was only 15%. This was because the lubricant properties and thermal management provided by the water molecules, which mitigated the frictional interactions, led to only minor abrasive wear. In contrast, the wear rate of CFRP at a sliding speed of 120 mm/s was found to be 74% greater than that observed at 60 mm/s. This significant increase can be attributed to the disparity in sliding rates, which induced uncoordinated deformation in the surface and subsurface of the CFRP, resulting in adhesive wear. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 7421 KiB  
Article
Damage Characterization of GFRP Hollow Ribbed Emergency Pipes Subjected to Low-Velocity Impact by Experimental and Numerical Analysis
by Ming Cheng, Dongdong Ding, Yaojun Ma and Sirong Zhu
Polymers 2024, 16(22), 3116; https://doi.org/10.3390/polym16223116 - 7 Nov 2024
Cited by 1 | Viewed by 865
Abstract
This paper investigates the low-velocity impact response and damage behavior of glass fiber reinforced polymer (GFRP) hollow ribbed emergency pipes of our design under different impact heights. Drop hammer impact tests with impact velocities of 8.41 m/s, 8.97 m/s, and 9.50 m/s were [...] Read more.
This paper investigates the low-velocity impact response and damage behavior of glass fiber reinforced polymer (GFRP) hollow ribbed emergency pipes of our design under different impact heights. Drop hammer impact tests with impact velocities of 8.41 m/s, 8.97 m/s, and 9.50 m/s were conducted using an impact platform. A progressive damage model for low-velocity impact was developed using Abaqus/Explicit finite element software. The model used the three-dimensional Hashin damage initiation criteria and a damage evolution model based on the equivalent strain method to simulate the initiation and evolution of intralaminar damage in the pipe ring. A cohesive zone model (CZM) based on a bilinear traction-separation law was used to simulate delamination. The results show that the pipe rings experienced fiber or matrix fractures and delamination damage during the impact process. Additionally, the pipe ring specimens underwent bending vibrations under the impact load, leading to fluctuating contact forces at all three impact heights. Analysis of the simulation results reveals that the primary damage modes in the GFRP hollow ribbed emergency pipe are fiber tension damage, matrix tension damage, and fiber compression damage, with delamination occurring mainly in the impact area and the interface area on both sides of the rib. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

17 pages, 16217 KiB  
Article
Investigation of Temperature at Al/Glass Fiber-Reinforced Polymer Interfaces When Drilling Composites of Different Stacking Arrangements
by Brahim Salem, Ali Mkaddem, Malek Habak, Yousef Dobah, Makram Elfarhani and Abdessalem Jarraya
Polymers 2024, 16(19), 2823; https://doi.org/10.3390/polym16192823 - 6 Oct 2024
Cited by 1 | Viewed by 3119
Abstract
This attempt covers an investigation of cutting temperature at interfaces of Fiber Metal Laminates (FMLs) made of glass fiber-reinforced polymer (GFRP) stacked with an Al2020 alloy. GFRP/Al/GFRP and Al/GFRP/Al composite stacks are both investigated to highlight the effect of stacking arrangement on thermal [...] Read more.
This attempt covers an investigation of cutting temperature at interfaces of Fiber Metal Laminates (FMLs) made of glass fiber-reinforced polymer (GFRP) stacked with an Al2020 alloy. GFRP/Al/GFRP and Al/GFRP/Al composite stacks are both investigated to highlight the effect of stacking arrangement on thermal behavior within the interfaces. In a first test series, temperature history is recorded within the metal/composite stack interfaces using preinstalled thermocouples. In a second test series, a wireless telemetry system connected to K-type thermocouples implanted adjacent to the cutting edge of the solid carbide drill is used to record temperature evolution at the tool tip. Focus is put on the effects of cutting speed and stacking arrangement on the thrust force, drilling temperature, and delamination. From findings, the temperature histories show high sensitivity to the cutting speed. When cutting Al/GFRP/Al, the peak temperature is found to be much higher than that recorded in GFRP/Al/GFRP and exceeds the glass transition point of the GFRP matrix under critical cutting speeds. However, thrust force obtained at constitutive phases exhibits close magnitude when the stacking arrangement varies, regardless of cutting speed. Damage analysis is also discussed through the delamination factor at different stages of FML thickness. Full article
Show Figures

Figure 1

13 pages, 3446 KiB  
Article
Femtosecond Laser Ablation and Delamination of Functional Magnetic Multilayers at the Nanoscale
by Pavel Varlamov, Jan Marx, Yoav Urbina Elgueta, Andreas Ostendorf, Ji-Wan Kim, Paolo Vavassori and Vasily Temnov
Nanomaterials 2024, 14(18), 1488; https://doi.org/10.3390/nano14181488 - 13 Sep 2024
Cited by 2 | Viewed by 1374
Abstract
Laser nanostructuring of thin films with ultrashort laser pulses is widely used for nanofabrication across various fields. A crucial parameter for optimizing and understanding the processes underlying laser processing is the absorbed laser fluence, which is essential for all damage phenomena such as [...] Read more.
Laser nanostructuring of thin films with ultrashort laser pulses is widely used for nanofabrication across various fields. A crucial parameter for optimizing and understanding the processes underlying laser processing is the absorbed laser fluence, which is essential for all damage phenomena such as melting, ablation, spallation, and delamination. While threshold fluences have been extensively studied for single compound thin films, advancements in ultrafast acoustics, magneto-acoustics, and acousto-magneto-plasmonics necessitate understanding the laser nanofabrication processes for functional multilayer films. In this work, we investigated the thickness dependence of ablation and delamination thresholds in Ni/Au bilayers by varying the thickness of the Ni layer. The results were compared with experimental data on Ni thin films. Additionally, we performed femtosecond time-resolved pump-probe measurements of transient reflectivity in Ni to determine the heat penetration depth and evaluate the melting threshold. Delamination thresholds for Ni films were found to exceed the surface melting threshold suggesting the thermal mechanism in a liquid phase. Damage thresholds for Ni/Au bilayers were found to be significantly lower than those for Ni and fingerprint the non-thermal mechanism without Ni melting, which we attribute to the much weaker mechanical adhesion at the Au/glass interface. This finding suggests the potential of femtosecond laser delamination for nondestructive, energy-efficient nanostructuring, enabling the creation of high-quality acoustic resonators and other functional nanostructures for applications in nanosciences. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

21 pages, 8827 KiB  
Article
An Investigation of the Energy-Absorption Characteristics of Thin-Walled Polymer Composite C-Channels: Experiment and Stacked Shell Simulation
by Xiaomin Zhang, Haolei Mou, Shanshan Song and Zhenyu Feng
Polymers 2024, 16(15), 2099; https://doi.org/10.3390/polym16152099 - 23 Jul 2024
Viewed by 1039
Abstract
Polymer composite materials are increasingly used in civil aircraft structures. The failure mode and energy-absorption characteristics of polymer composite structures have garnered significant attention from academia and industry. For thin-walled polymer composite C-channels with layups of [0/90]3s, [45/-45]3s, and [...] Read more.
Polymer composite materials are increasingly used in civil aircraft structures. The failure mode and energy-absorption characteristics of polymer composite structures have garnered significant attention from academia and industry. For thin-walled polymer composite C-channels with layups of [0/90]3s, [45/-45]3s, and [45/90/-45/0]3, low-speed axial compression tests were performed to investigate the failure modes, failure mechanisms, and energy-absorbing characteristics. After parametric studies using [0] and [90] single-element models, stacked shell models of thin-walled composite C-channels were established using the Lavadèze single-layer damage constitutive model, Puck 2000, and Yamada Sun failure criteria. The results show that these thin-walled composite C-channels exhibit a stable progressive crushing process with a local buckling failure mode, encompassing local buckling, fiber break-age, matrix cracks, delamination, and corner cracking. The stacked shell model demonstrates reasonable agreement with the progressive crushing process of thin-walled composites, accurately capturing interlayer matrix failure and interface delamination cracking behavior. A comparison of the specific energy absorption (SEA) and mean crushing force (Fmean) between the simulation and test results yields a difference of less than 6%, indicating a strong correlation between the simulation results and the experimental energy-absorbing characteristics. It also shows that a deep understanding of the parameters is helpful for accurate numerical modeling. Full article
(This article belongs to the Special Issue Damage and Failure Analysis of Polymer-Based Composites)
Show Figures

Figure 1

13 pages, 4867 KiB  
Article
Finite Element Analysis of Damage Evolution of Solid Lubrication Film in Rolling–Sliding Contact
by Peng Lv, Changling Tian, Yujun Xue, Yongjian Yu, Haichao Cai and Yanjing Yin
Lubricants 2024, 12(7), 258; https://doi.org/10.3390/lubricants12070258 - 18 Jul 2024
Viewed by 868
Abstract
Based on the cohesive zone model (CZM), a finite element model of the film–substrate bearing system in the rolling–sliding contact state is established. Through analyzing the normal and tangential bearing states of the film–substrate system, the effects of the sliding–rolling ratio and the [...] Read more.
Based on the cohesive zone model (CZM), a finite element model of the film–substrate bearing system in the rolling–sliding contact state is established. Through analyzing the normal and tangential bearing states of the film–substrate system, the effects of the sliding–rolling ratio and the film–substrate adhesion strength on the interfacial stress and the interfacial energy release rate of the film–substrate system are studied. The results show that there is an almost symmetric stress distribution at both sides of the contact zone in rolling contact. In rolling–sliding contact, obvious shear flow along the rolling–sliding direction occurs at the front edge of the contact zone, which results in a significant increase in the shear stress at the interface at the front edge of the contact zone, increasing the risk of interface damage and delamination failure. Meanwhile, the shear flow causes a normal tensile stress concentration along the film surface behind the contact zone, which very easily causes the emergence and expansion of the film surface cracks. In addition, there is a clear positive correlation between the adhesion strength and the load-bearing capacity of the film–substrate interface. The tangential delamination damage mainly occurs at the interface regardless of the rolling or rolling–sliding contact state. Full article
Show Figures

Figure 1

15 pages, 7308 KiB  
Article
Analysis of the Influence of Contact Stress on the Fatigue of AD180 High-Carbon Semi-Steel Roll
by Yaxing Liu, Lixin Liu, Qian Cheng, Haipeng Hou, Zehua Zhang and Zhongkai Ren
Metals 2024, 14(5), 548; https://doi.org/10.3390/met14050548 - 6 May 2024
Cited by 1 | Viewed by 1626
Abstract
In this study, to investigate the problem of contact fatigue and the damage mechanism of an AD180 high-carbon semi-steel roll, rolling contact fatigue tests were conducted using specimens cut from the periphery of a roll ring. These specimens were characterized under different contact [...] Read more.
In this study, to investigate the problem of contact fatigue and the damage mechanism of an AD180 high-carbon semi-steel roll, rolling contact fatigue tests were conducted using specimens cut from the periphery of a roll ring. These specimens were characterized under different contact stresses using SEM, a profile system, an optical microscope, and a Vickers hardness tester. The results indicates that the main forms of fatigue damage of an AD180 high-carbon semi-steel roll are peeling, pitting corrosion, and plowing. Moreover, the surface of the roll exhibits delamination and plastic deformation characteristics under high contact stress. Meanwhile, the size and depth of peeling, as well as the amount of pitting corrosion, increase with the contact stress. Peeling is mainly caused by a crack that originates at the edge of the specimen surface and propagates along the pearlite structure and the interface between pearlite and cementite. High contact stress can lead to an increase in the crack propagation depth and angle, resulting in the formation of larger peeling. Under cyclic loading, the near-surface microstructure of the specimen hardens due to grain refinement and dislocation strengthening, and the depth of the hardened layer increases with the increase in contact stress. When the contact stress reaches 1400 MPa, the near surface structure of the specimen changes from pearlite to troostite. Full article
(This article belongs to the Special Issue Numerical Simulation of Metal Forming Process)
Show Figures

Figure 1

20 pages, 7606 KiB  
Article
Mechanistic Study of Failure in CFRP Hybrid Bonded–Bolted Interference Connection Structures under Tensile Loading
by Bin Luo, Liyang Xue, Qingsong Wang and Peng Zou
Materials 2024, 17(9), 2117; https://doi.org/10.3390/ma17092117 - 30 Apr 2024
Cited by 3 | Viewed by 1653
Abstract
Hybrid bonded–bolted composite material interference connections significantly enhance the collaborative load-bearing capabilities of the adhesive layer and bolts, thus improving structural load-carrying capacity and fatigue life. So, these connections offer significant developmental potential and application prospects in aircraft structural assembly. However, interference causes [...] Read more.
Hybrid bonded–bolted composite material interference connections significantly enhance the collaborative load-bearing capabilities of the adhesive layer and bolts, thus improving structural load-carrying capacity and fatigue life. So, these connections offer significant developmental potential and application prospects in aircraft structural assembly. However, interference causes damage to the adhesive layer and composite laminate around the holes, leading to issues with interface damage. In this study, we employed experimental and finite element methods. Initially, different interference-fit sizes were selected for bolt insertion to analyze the damage mechanism of the adhesive layer during interference-fit bolt installation. Subsequently, a finite element tensile model considering damage to the adhesive layer and composite laminate around the holes post-insertion was established. This study aimed to investigate damage in composite bonded–bolted hybrid joints, explore load-carrying rules and failure modes, and reveal the mechanisms of interference effects on structural damage and failure. The research results indicate that the finite element prediction model considering initial damage around the holes is more effective. As the interference-fit size increases, damage to the adhesive layer transitions from surface debonding to local cracking, while damage to the composite matrix shifts from slight compression failure to severe delamination and fiber-bending fracturing. The structural strength shows a trend of initially increasing and then decreasing, with the maximum strength observed at an interference-fit size of 1.1%. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 8050 KiB  
Article
A Numerical Assessment of the Influence of Local Stress Ratio in the Fatigue Analysis of Post-Buckled Composite Single-Stringer Specimen
by Antonio Raimondo and Chiara Bisagni
J. Compos. Sci. 2024, 8(4), 143; https://doi.org/10.3390/jcs8040143 - 11 Apr 2024
Cited by 2 | Viewed by 1655
Abstract
This paper presents a numerical approach for investigating fatigue delamination propagation in composite stiffened panels loaded in compression in the post-buckling field. These components are widely utilized in aerospace structures due to their lightweight and high-strength properties. However, fatigue-induced damage, particularly delamination at [...] Read more.
This paper presents a numerical approach for investigating fatigue delamination propagation in composite stiffened panels loaded in compression in the post-buckling field. These components are widely utilized in aerospace structures due to their lightweight and high-strength properties. However, fatigue-induced damage, particularly delamination at the skin–stringer interface, poses a significant challenge. The proposed numerical approach, called the “Min–Max Load Approach”, allows for the calculation of the local stress ratio in a single finite element analysis. It represents the ratio between the minimum and maximum values of the stress along the delamination front, enabling accurate evaluation of the crack growth rate. The methodology is applied here in conjunction with the cohesive zone model technique to evaluate the post-buckling fatigue behavior of a composite single-stringer specimen with an initial delamination. Comparisons with experimental data validate the predictive capabilities of the proposed approach. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

16 pages, 3571 KiB  
Article
Numerical Investigation on the Capability of Modeling Approaches for Composite Cylinders under Low-Velocity Impact Loading
by Shiva Rezaei Akbarieh, Dayou Ma, Claudio Sbarufatti and Andrea Manes
J. Compos. Sci. 2024, 8(4), 141; https://doi.org/10.3390/jcs8040141 - 10 Apr 2024
Cited by 1 | Viewed by 1554
Abstract
Composite pressure vessels can be exposed to extreme loadings, for instance, impact loading, during manufacturing, maintenance, or their service lifetime. These kinds of loadings may provoke both visible and invisible levels of damage, e.g., fiber breakage matrix cracks and delamination and eventually may [...] Read more.
Composite pressure vessels can be exposed to extreme loadings, for instance, impact loading, during manufacturing, maintenance, or their service lifetime. These kinds of loadings may provoke both visible and invisible levels of damage, e.g., fiber breakage matrix cracks and delamination and eventually may lead to catastrophic failures. Thus, the quantification and evaluation of such damages are of great importance. Considering the cost of relevant full-scale experiments, a numerical model can be a powerful tool for such a kind of study. This paper aims to provide a numerical study to investigate the capability of different modeling methods to predict delamination in composite vessels. In this study, various numerical modeling aspects, such as element types (solid and shell elements) and material parameters (such as interface properties), were considered to investigate delamination in a composite pressure vessel under low-velocity impact loading. Specifically, solid elements were used to model each layer of the composite pressure vessel, while, in another model, shell elements with composite layup were considered. Compared with the available experimental data from low-velocity impact tests described in the literature, the capability of these two models to predict both mechanical responses and failure phenomena is shown. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

23 pages, 20552 KiB  
Article
Study of the Effect of NaOH Treatment on the Properties of GF/VER Composites Using AE Technique
by Lin Ming, Haonan He, Xin Li, Wei Tian and Chengyan Zhu
Materials 2024, 17(6), 1407; https://doi.org/10.3390/ma17061407 - 19 Mar 2024
Viewed by 1312
Abstract
The purpose of this study is to use acoustic emission (AE) technology to explore the changes in the interface and mechanical properties of GF/VER composite materials after being treated with NaOH and to analyze the optimal modification conditions and damage propagation process. The [...] Read more.
The purpose of this study is to use acoustic emission (AE) technology to explore the changes in the interface and mechanical properties of GF/VER composite materials after being treated with NaOH and to analyze the optimal modification conditions and damage propagation process. The results showed that the GF surface became rougher, and the number of reactive groups increased after treating the GF with a NaOH solution. This treatment enhanced the interfacial adhesion between the GF and VER, which increased the interfacial shear strength by 25.31% for monofilament draw specimens and 27.48% for fiber bundle draw specimens compared to those before the GF was modified. When the modification conditions were a NaOH solution concentration of 2 mol/L and a treatment time of 48 h, the flexural strength of the GF/VER composites reached a peak value of 346.72 MPa, which was enhanced by 20.96% compared with before the GF was modified. The process of damage fracture can be classified into six types: matrix cracking, interface debonding, fiber pullout, fiber relaxation, matrix delamination, and fiber breakage, and the frequency ranges of these failure mechanisms are 0~100 kHz, 100~250 kHz, 250~380 kHz, 380~450 kHz, 450~600 kHz, and 600 kHz and above, respectively. This paper elucidates the fracture process of GF/VER composites in three-point bending. It establishes the relationship between the AE signal and the interfacial and force properties of GF/VER composites, realizing the classification of the damage process and characterizing the mechanism. The frequency ranges of damage types and failure mechanisms found in this study offer important guidance for the design and improvement of composite materials. These results are of great significance for enhancing the interfacial properties of composites, assessing the damage and fracture behaviors, and implementing health monitoring. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

Back to TopTop