Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = magnitude selective affine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5209 KiB  
Article
Core-Extended Naphthalene Diimide Dyads as Light-Up Probes with Targeted Cytotoxicity Toward Tumor Cells
by Valentina Pirota, Erica Salvati, Carla Risoldi, Francesco Manoli, Angela Rizzo, Pasquale Zizza, Annamaria Biroccio, Mauro Freccero, Ilse Manet and Filippo Doria
Biomolecules 2025, 15(2), 311; https://doi.org/10.3390/biom15020311 - 19 Feb 2025
Viewed by 595
Abstract
Within the framework of rational drug design, this study introduces a novel approach to enhance the specificity of small molecules in targeting cancer cells. This approach starts from the use of dyads merging into a single entity, a naphthalene diimide (NDI) and core-extended [...] Read more.
Within the framework of rational drug design, this study introduces a novel approach to enhance the specificity of small molecules in targeting cancer cells. This approach starts from the use of dyads merging into a single entity, a naphthalene diimide (NDI) and core-extended NDI (ceNDI), both known as G-quadruplex (G4) ligands and fluorescent probes. The strategy aims to leverage the unique diagnostic strengths of the ceNDI moiety featuring red emission by improving its binding affinity and target selectivity through inclusion in dyads built with different linkers. The newly developed NDI-ceNDI dyads are promising probes, as they exhibit fluorescence turn-on upon DNA recognition and induced circular dichroism signals dependent on DNA conformation. Both dyads have an excellent affinity for hybrid G4, with two orders of magnitude higher binding constants than those for ds DNA. Their high cytotoxicity on cancer cell lines further demonstrates their potential as therapeutic agents, highlighting the role of the linker in target selectivity. Specifically, only the dyad with the rigid triazole linker exhibits selectively induced DNA damage in transformed cells, compared to normal cells primarily targeting telomeric regions. Our findings shed light on DIPAC’s potential as a promising theranostic agent, offering insights into future developments in precision medicine. Full article
(This article belongs to the Section Biomacromolecules: Nucleic Acids)
Show Figures

Figure 1

31 pages, 4702 KiB  
Article
Branched Linkers for Homogeneous Antibody-Drug Conjugates: How Long Is Long Enough?
by Evgeny L. Gulyak, Olga A. Komarova, Yury A. Prokopenko, Elina A. Faizullina, Diana M. Malabuiok, Aigul R. Ibragimova, Yuliana A. Mokrushina, Oxana V. Serova, Galina P. Popova, Mikhail Y. Zhitlov, Timofei D. Nikitin, Vladimir A. Brylev, Alexey V. Ustinov, Vera A. Alferova, Vladimir A. Korshun, Ivan V. Smirnov, Stanislav S. Terekhov and Ksenia A. Sapozhnikova
Int. J. Mol. Sci. 2024, 25(24), 13356; https://doi.org/10.3390/ijms252413356 - 12 Dec 2024
Viewed by 2383
Abstract
Homogeneous antibody–drug conjugates (ADCs) exhibit significantly improved pharmacological properties compared to their heterogeneous counterparts. Site-specific conjugation of the payload to the IgG required for homogeneity can be achieved using enzymes. One example is microbial transglutaminase (MTGase), which can selectively perform transamidation on the [...] Read more.
Homogeneous antibody–drug conjugates (ADCs) exhibit significantly improved pharmacological properties compared to their heterogeneous counterparts. Site-specific conjugation of the payload to the IgG required for homogeneity can be achieved using enzymes. One example is microbial transglutaminase (MTGase), which can selectively perform transamidation on the Q295 residue of human Fc when N297 glycans are removed. As a result, two modifications can be introduced per IgG molecule; however, achieving higher drug-to-antibody ratios (DARs) requires the use of branched linkers. While several such linkers have been reported, little information is available on the relationship between linker structure and ADC properties. To address this gap, we synthesized two branched amino triazide linkers, differing by a PEG4 fragment inserted after the branching point, which were used to prepare two homogeneous trastuzumab-based DAR 6 ADCs (a “short” and a “long” one). This was achieved by a two-step process consisting of enzymatic linker conjugation followed by bioorthogonal coupling with a cleavable linker bearing monomethyl auristatin E (MMAE). Two other trastuzumab–MMAE conjugates were used as controls: a heterogeneous DAR 6 ADC, made using conventional thiol–maleimide chemistry, and a homogeneous DAR 2 ADC. We found that, while the four conjugates had identical affinity for HER2, their cytotoxicity differed significantly: the “long” homogeneous DAR 6 ADC was just as active as its heterogeneous counterpart, but the “short” DAR 6 ADC was an order of magnitude less potent, inferior even to the DAR 2 conjugate. Our findings indicate that the length of the branched linker critically affects the cytotoxic activity of ADCs, possibly due to steric hindrance influencing the rate of linker cleavage by lysosomal enzymes. Full article
(This article belongs to the Special Issue Advances in Antibody–Drug Conjugates)
Show Figures

Figure 1

17 pages, 2016 KiB  
Article
Steroid-Induced Ocular Hypertension in Mice Is Differentially Reduced by Selective EP2, EP3, EP4, and IP Prostanoid Receptor Agonists
by Najam A. Sharif, J. Cameron Millar, Gulab Zode and Takashi Ota
Int. J. Mol. Sci. 2024, 25(6), 3328; https://doi.org/10.3390/ijms25063328 - 15 Mar 2024
Cited by 1 | Viewed by 2157
Abstract
We tested five chemically and metabolically stable prostaglandin (PG) receptor agonists in a mouse model of dexamethasone-induced ocular hypertension (OHT). Whilst all compounds significantly (p < 0.05, ANOVA) lowered intraocular pressure (IOP) after twice-daily bilateral topical ocular dosing (5 µg/dose) over three [...] Read more.
We tested five chemically and metabolically stable prostaglandin (PG) receptor agonists in a mouse model of dexamethasone-induced ocular hypertension (OHT). Whilst all compounds significantly (p < 0.05, ANOVA) lowered intraocular pressure (IOP) after twice-daily bilateral topical ocular dosing (5 µg/dose) over three weeks, the time course and magnitude of the responses varied. The onset of action of NS-304 (IP-PG receptor agonist) and rivenprost (EP4-PG receptor agonist) was slower than that of misoprostol (mixed EP2/EP3/EP4-PG receptor agonist), PF-04217329 (EP2-PG receptor agonist), and butaprost (EP2-PG receptor agonist). The rank order of IOP-lowering efficacies aligned with the onset of actions of these compounds. Peak IOP reductions relative to vehicle controls were as follows: misoprostol (74.52%) = PF-04217329 (74.32%) > butaprost (65.2%) > rivenprost (58.4%) > NS-304 (55.3%). A literature survey indicated that few previously evaluated compounds (e.g., latanoprost, timolol, pilocarpine, brimonidine, dorzolamide, cromakalim analog (CKLP1), losartan, tissue plasminogen activator, trans-resveratrol, sodium 4-phenyl acetic acid, etc.) in various animal models of steroid-induced OHT were able to match the effectiveness of misoprostol, PF-04217329 or butaprost. Since a common feature of the latter compounds is their relatively high affinity and potency at the EP2-PG receptor sub-type, which activates the production of intracellular cAMP in target cells, our studies suggest that drugs selective for the EP2-PG receptor may be suited to treat corticosteroid-induced OHT. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

26 pages, 2293 KiB  
Article
Cultures of Human Skin Mast Cells, an Attractive In Vitro Model for Studies of Human Mast Cell Biology
by Srinivas Akula, Shiva Raj Tripathi, Kristin Franke, Sara Wernersson, Magda Babina and Lars Hellman
Cells 2024, 13(1), 98; https://doi.org/10.3390/cells13010098 - 2 Jan 2024
Cited by 2 | Viewed by 3401
Abstract
Studies of mast cell biology are dependent on relevant and validated in vitro models. Here, we present detailed information concerning the phenotype of both freshly isolated human skin mast cells (MCs) and of in vitro cultures of these cells that were obtained by [...] Read more.
Studies of mast cell biology are dependent on relevant and validated in vitro models. Here, we present detailed information concerning the phenotype of both freshly isolated human skin mast cells (MCs) and of in vitro cultures of these cells that were obtained by analyzing their total transcriptome. Transcript levels of MC-related granule proteins and transcription factors were found to be remarkably stable over a 3-week culture period. Relatively modest changes were also seen for important cell surface receptors including the high-affinity receptor for IgE, FCER1A, the low-affinity receptor for IgG, FCGR2A, and the receptor for stem cell factor, KIT. FCGR2A was the only Fc receptor for IgG expressed by these cells. The IgE receptor increased by 2–5-fold and an approximately 10-fold reduction in the expression of FCGR2A was observed most likely due to the cytokines, SCF and IL-4, used for expanding the cells. Comparisons of the present transcriptome against previously reported transcriptomes of mouse peritoneal MCs and mouse bone marrow-derived MCs (BMMCs) revealed both similarities and major differences. Strikingly, cathepsin G was the most highly expressed granule protease in human skin MCs, in contrast to the almost total absence of this protease in both mouse MCs. Transcript levels for the majority of cell surface receptors were also very low compared to the granule proteases in both mouse and human MCs, with a difference of almost two orders of magnitude. An almost total absence of T-cell granzymes was observed in human skin MCs, indicating that granzymes have no or only a minor role in human MC biology. Ex vivo skin MCs expressed high levels of selective immediate early genes and transcripts of heat shock proteins. In validation experiments, we determined that this expression was an inherent property of the cells and not the result of the isolation process. Three to four weeks in culture results in an induction of cell growth-related genes accompanying their expansion by 6–10-fold, which increases the number of cells for in vitro experiments. Collectively, we show that cultured human skin MCs resemble their ex vivo equivalents in many respects and are a more relevant in vitro model compared to mouse BMMCs for studies of MC biology, in particular human MC biology. Full article
Show Figures

Figure 1

13 pages, 2589 KiB  
Article
Radiosynthesis and Early Evaluation of a Positron Emission Tomography Imaging Probe [18F]AGAL Targeting Alpha-Galactosidase A Enzyme for Fabry Disease
by Talakad G. Lohith, Charalambos Kaittanis, Anthony P. Belanger, Shin Hye Ahn, Phil Sandoval, Lawrence Cohen, Girija Rajarshi, Wanida Ruangsiriluk, Rizwana Islam, Christopher T. Winkelmann and Paul McQuade
Molecules 2023, 28(20), 7144; https://doi.org/10.3390/molecules28207144 - 18 Oct 2023
Cited by 1 | Viewed by 1840
Abstract
Success of gene therapy relies on the durable expression and activity of transgene in target tissues. In vivo molecular imaging approaches using positron emission tomography (PET) can non-invasively measure magnitude, location, and durability of transgene expression via direct transgene or indirect reporter gene [...] Read more.
Success of gene therapy relies on the durable expression and activity of transgene in target tissues. In vivo molecular imaging approaches using positron emission tomography (PET) can non-invasively measure magnitude, location, and durability of transgene expression via direct transgene or indirect reporter gene imaging in target tissues, providing the most proximal PK/PD biomarker for gene therapy trials. Herein, we report the radiosynthesis of a novel PET tracer [18F]AGAL, targeting alpha galactosidase A (α-GAL), a lysosomal enzyme deficient in Fabry disease, and evaluation of its selectivity, specificity, and pharmacokinetic properties in vitro. [18F]AGAL was synthesized via a Cu-catalyzed click reaction between fluorinated pentyne and an aziridine-based galactopyranose precursor with a high yield of 110 mCi, high radiochemical purity of >97% and molar activity of 6 Ci/µmol. The fluorinated AGAL probe showed high α-GAL affinity with IC50 of 30 nM, high pharmacological selectivity (≥50% inhibition on >160 proteins), and suitable pharmacokinetic properties (moderate to low clearance and stability in plasma across species). In vivo [18F]AGAL PET imaging in mice showed high uptake in peripheral organs with rapid renal clearance. These promising results encourage further development of this PET tracer for in vivo imaging of α-GAL expression in target tissues affected by Fabry disease. Full article
Show Figures

Figure 1

22 pages, 8222 KiB  
Article
Interaction of Hoechst 33342 with POPC Membranes at Different pH Values
by Margarida M. Cordeiro, Hugo A. L. Filipe, Patrícia dos Santos, Jaime Samelo, João P. Prates Ramalho, Luís M. S. Loura and Maria J. Moreno
Molecules 2023, 28(15), 5640; https://doi.org/10.3390/molecules28155640 - 25 Jul 2023
Cited by 5 | Viewed by 3490
Abstract
Hoechst 33342 (H33342) is a fluorescent probe that is commonly used to stain the DNA of living cells. To do so, it needs to interact with and permeate through cell membranes, despite its high overall charge at physiological pH values. In this work, [...] Read more.
Hoechst 33342 (H33342) is a fluorescent probe that is commonly used to stain the DNA of living cells. To do so, it needs to interact with and permeate through cell membranes, despite its high overall charge at physiological pH values. In this work, we address the effect of pH in the association of H33342 with lipid bilayers using a combined experimental and computational approach. The partition of H33342 to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid membranes was experimentally quantified using fluorescence spectroscopy and isothermal titration calorimetry (ITC) measurements. Quantum chemical calculations were performed to select the most stable isomer of H33342 for the overall charges 0, +1, and +2, expected to predominate across the 5 < pH < 10 range. The interaction of these isomers with POPC bilayers was then studied by both unrestrained and umbrella sampling molecular dynamics (MD) simulations. Both experimental results and computational free energy profiles indicate that the partition coefficient of H33342 displays a small variation over a wide pH range, not exceeding one order of magnitude. The enthalpy variation upon partition to the membrane suggests efficient hydrogen bonding between the probe and the lipid, namely, for the protonated +2 form, which was confirmed in the MD simulation studies. The relatively high lipophilicity obtained for the charged species contrasts with the decrease in their general hydrophobicity as estimated from octanol/water partition. This highlights the distinction between lipophilicity and hydrophobicity, as well as the importance of considering the association with lipid bilayers when predicting the affinity for biomembranes. Full article
(This article belongs to the Special Issue Fluorescent Probes for Imaging and Diagnostics)
Show Figures

Figure 1

20 pages, 18036 KiB  
Article
Evaluation of Linkers’ Influence on Peptide-Based Piezoelectric Biosensors’ Sensitivity to Aldehydes in the Gas Phase
by Tomasz Wasilewski, Damian Neubauer, Marek Wojciechowski, Bartosz Szulczyński, Jacek Gębicki and Wojciech Kamysz
Int. J. Mol. Sci. 2023, 24(13), 10610; https://doi.org/10.3390/ijms241310610 - 25 Jun 2023
Cited by 3 | Viewed by 2397
Abstract
Recent findings qualified aldehydes as potential biomarkers for disease diagnosis. One of the possibilities is to use electrochemical biosensors in point-of-care (PoC), but these need further development to overcome some limitations. Currently, the primary goal is to enhance their metrological parameters in terms [...] Read more.
Recent findings qualified aldehydes as potential biomarkers for disease diagnosis. One of the possibilities is to use electrochemical biosensors in point-of-care (PoC), but these need further development to overcome some limitations. Currently, the primary goal is to enhance their metrological parameters in terms of sensitivity and selectivity. Previous findings indicate that peptide OBPP4 (KLLFDSLTDLKKKMSEC-NH2) is a promising candidate for further development of aldehyde-sensitive biosensors. To increase the affinity of a receptor layer to long-chain aldehydes, a structure stabilization of the peptide active site via the incorporation of different linkers was studied. Indeed, the incorporation of linkers improved sensitivity to and binding of aldehydes in comparison to that of the original peptide-based biosensor. The tendency to adopt disordered structures was diminished owing to the implementation of suitable linkers. Therefore, to improve the metrological characteristics of peptide-based piezoelectric biosensors, linkers were added at the C-terminus of OBPP4 peptide (KLLFDSLTDLKKKMSE-linker-C-NH2). Those linkers consist of proteinogenic amino acids from group one: glycine, L-proline, L-serine, and non proteinogenic amino acids from group two: β-alanine, 4-aminobutyric acid, and 6-aminohexanoic acid. Linkers were evaluated with in silico studies, followed by experimental verification. All studied linkers enhanced the detection of aldehydes in the gas phase. The highest difference in frequency (60 Hz, nonanal) was observed between original peptide-based biosensors and ones based on peptides modified with the GSGSGS linker. It allowed evaluation of the limit of detection for nonanal at the level of 2 ppm, which is nine times lower than that of the original peptide. The highest sensitivity values were also obtained for the GSGSGS linker: 0.3312, 0.4281, and 0.4676 Hz/ppm for pentanal, octanal, and nonanal, respectively. An order of magnitude increase in sensitivity was observed for the six linkers used. Generally, the linker’s rigidity and the number of amino acid residues are much more essential for biosensors’ metrological characteristics than the amino acid sequence itself. It was found that the longer the linkers, the better the effect on docking efficiency. Full article
(This article belongs to the Special Issue Molecular Biosensing: From Theory to Point of Care Analytical Device)
Show Figures

Graphical abstract

20 pages, 4958 KiB  
Article
Novel Regioselective Synthesis of 1,3,4,5-Tetrasubstituted Pyrazoles and Biochemical Valuation on F1FO-ATPase and Mitochondrial Permeability Transition Pore Formation
by Vincenzo Algieri, Cristina Algieri, Paola Costanzo, Giulia Fiorani, Antonio Jiritano, Fabrizio Olivito, Matteo Antonio Tallarida, Fabiana Trombetti, Loredana Maiuolo, Antonio De Nino and Salvatore Nesci
Pharmaceutics 2023, 15(2), 498; https://doi.org/10.3390/pharmaceutics15020498 - 2 Feb 2023
Cited by 5 | Viewed by 2911
Abstract
An efficient, eco-compatible, and very cheap method for the construction of fully substituted pyrazoles (Pzs) via eliminative nitrilimine-alkene 1,3-dipolar cycloaddition (ENAC) reaction was developed in excellent yield and high regioselectivity. Enaminones and nitrilimines generated in situ were selected as dipolarophiles and dipoles, respectively. [...] Read more.
An efficient, eco-compatible, and very cheap method for the construction of fully substituted pyrazoles (Pzs) via eliminative nitrilimine-alkene 1,3-dipolar cycloaddition (ENAC) reaction was developed in excellent yield and high regioselectivity. Enaminones and nitrilimines generated in situ were selected as dipolarophiles and dipoles, respectively. A deep screening of the employed base, solvent, and temperature was carried out to optimize reaction conditions. Recycling tests of ionic liquid were performed, furnishing efficient performance until six cycles. Finally, a plausible mechanism of cycloaddition was proposed. Then, the effect of three different structures of Pzs was evaluated on the F1FO-ATPase activity and mitochondrial permeability transition pore (mPTP) opening. The Pz derivatives’ titration curves of 6a, 6h, and 6o on the F1FO-ATPase showed a reduced activity of 86%, 35%, and 31%, respectively. Enzyme inhibition analysis depicted an uncompetitive mechanism with the typical formation of the tertiary complex enzyme-substrate-inhibitor (ESI). The dissociation constant of the ESI complex (Ki’) in the presence of the 6a had a lower order of magnitude than other Pzs. The pyrazole core might set the specific mechanism of inhibition with the F1FO-ATPase, whereas specific functional groups of Pzs might modulate the binding affinity. The mPTP opening decreased in Pz-treated mitochondria and the Pzs’ inhibitory effect on the mPTP was concentration-dependent with 6a and 6o. Indeed, the mPTP was more efficiently blocked with 0.1 mM 6a than with 1 mM 6a. On the contrary, 1 mM 6o had stronger desensitization of mPTP formation than 0.1 mM 6o. The F1FO-ATPase is a target of Pzs blocking mPTP formation. Full article
(This article belongs to the Special Issue Ionic Liquids in Pharmaceutical and Biomedical Applications)
Show Figures

Figure 1

17 pages, 1248 KiB  
Article
Neural Networks in the Design of Molecules with Affinity to Selected Protein Domains
by Damian Nowak, Rafał Adam Bachorz and Marcin Hoffmann
Int. J. Mol. Sci. 2023, 24(2), 1762; https://doi.org/10.3390/ijms24021762 - 16 Jan 2023
Cited by 6 | Viewed by 3913
Abstract
Drug design with machine learning support can speed up new drug discoveries. While current databases of known compounds are smaller in magnitude (approximately 108), the number of small drug-like molecules is estimated to be between 1023 and 1060. [...] Read more.
Drug design with machine learning support can speed up new drug discoveries. While current databases of known compounds are smaller in magnitude (approximately 108), the number of small drug-like molecules is estimated to be between 1023 and 1060. The use of molecular docking algorithms can help in new drug development by sieving out the worst drug-receptor complexes. New chemical spaces can be efficiently searched with the application of artificial intelligence. From that, new structures can be proposed. The research proposed aims to create new chemical structures supported by a deep neural network that will possess an affinity to the selected protein domains. Transferring chemical structures into SELFIES codes helped us pass chemical information to a neural network. On the basis of vectorized SELFIES, new chemical structures can be created. With the use of the created neural network, novel compounds that are chemically sensible can be generated. Newly created chemical structures are sieved by the quantitative estimation of the drug-likeness descriptor, Lipinski’s rule of 5, and the synthetic Bayesian accessibility classifier score. The affinity to selected protein domains was verified with the use of the AutoDock tool. As per the results, we obtained the structures that possess an affinity to the selected protein domains, namely PDB IDs 7NPC, 7NP5, and 7KXD. Full article
Show Figures

Figure 1

17 pages, 3735 KiB  
Article
Antibody Mediated Intercommunication of Germinal Centers
by Theinmozhi Arulraj, Sebastian C. Binder and Michael Meyer-Hermann
Cells 2022, 11(22), 3680; https://doi.org/10.3390/cells11223680 - 19 Nov 2022
Cited by 1 | Viewed by 2072
Abstract
Antibody diversification and selection of B cells occur in dynamic structures called germinal centers (GCs). Passively administered soluble antibodies regulate the GC response by masking the antigen displayed on follicular dendritic cells (FDCs). This suggests that GCs might intercommunicate via naturally produced soluble [...] Read more.
Antibody diversification and selection of B cells occur in dynamic structures called germinal centers (GCs). Passively administered soluble antibodies regulate the GC response by masking the antigen displayed on follicular dendritic cells (FDCs). This suggests that GCs might intercommunicate via naturally produced soluble antibodies, but the role of such GC–GC interactions is unknown. In this study, we performed in silico simulations of interacting GCs and predicted that intense interactions by soluble antibodies limit the magnitude and lifetime of GC responses. With asynchronous GC onset, we observed a higher inhibition of late formed GCs compared to early ones. We also predicted that GC–GC interactions can lead to a bias in the epitope recognition even in the presence of equally dominant epitopes due to differences in founder cell composition or initiation timing of GCs. We show that there exists an optimal range for GC–GC interaction strength that facilitates the affinity maturation towards an incoming antigenic variant during an ongoing GC reaction. These findings suggest that GC–GC interactions might be a contributing factor to the unexplained variability seen among individual GCs and a critical factor in the modulation of GC response to antigenic variants during viral infections. Full article
(This article belongs to the Special Issue Emerging Mechanisms in B Cell Activation)
Show Figures

Figure 1

14 pages, 2690 KiB  
Article
Exploiting the Nucleic Acid Nature of Aptamers for Signal Amplification
by Miriam Jauset-Rubio, Mayreli Ortiz and Ciara K. O’Sullivan
Biosensors 2022, 12(11), 972; https://doi.org/10.3390/bios12110972 - 4 Nov 2022
Cited by 6 | Viewed by 2753
Abstract
Aptamer-based assays and sensors are garnering increasing interest as alternatives to antibodies, particularly due to their increased flexibility for implementation in alternative assay formats, as they can be employed in assays designed for nucleic acids, such as molecular aptamer beacons or aptamer detection [...] Read more.
Aptamer-based assays and sensors are garnering increasing interest as alternatives to antibodies, particularly due to their increased flexibility for implementation in alternative assay formats, as they can be employed in assays designed for nucleic acids, such as molecular aptamer beacons or aptamer detection combined with amplification. In this work, we took advantage of the inherent nucleic acid nature of aptamers to enhance sensitivity in a rapid and facile assay format. An aptamer selected against the anaphylactic allergen β-conglutin was used to demonstrate the proof of concept. The aptamer was generated by using biotinylated dUTPs, and the affinity of the modified aptamer as compared to the unmodified aptamer was determined by using surface plasmon resonance to calculate the dissociation constant (KD), and no significant improvement in affinity due to the incorporation of the hydrophobic biotin was observed. The modified aptamer was then applied in a colorimetric competitive enzyme-linked oligonucleotide assay, where β-conglutin was immobilized on the wells of a microtiter plate, competing with β-conglutin free in solution for the binding to the aptamer. The limit of detection achieved was 68 pM, demonstrating an improvement in detection limit of three orders of magnitude as compared with the aptamer simply modified with a terminal biotin label. The concept was then exploited by using electrochemical detection and screen-printed electrodes where detection limits of 326 fM and 7.89 fM were obtained with carbon and gold electrodes, respectively. The assay format is generic in nature and can be applied to all aptamers, facilitating an easy and cost-effective means to achieve lower detection limits. Full article
(This article belongs to the Special Issue Advances in Amplification Methods for Biosensors)
Show Figures

Figure 1

9 pages, 275 KiB  
Review
Temporally Evolving and Context-Dependent Functions of Cytokines That Regulate Murine Anti-Plasmodium Humoral Immunity
by Fionna A. Surette and Noah S. Butler
Pathogens 2022, 11(5), 523; https://doi.org/10.3390/pathogens11050523 - 29 Apr 2022
Cited by 1 | Viewed by 2062
Abstract
Protective immunity against blood-stage Plasmodium infection and the disease malaria depends on antibodies secreted from high-affinity B cells selected during the germinal center (GC) response. The induction and stability of the GC response require the activation and direct cell–cell communication between parasite-specific CD4 [...] Read more.
Protective immunity against blood-stage Plasmodium infection and the disease malaria depends on antibodies secreted from high-affinity B cells selected during the germinal center (GC) response. The induction and stability of the GC response require the activation and direct cell–cell communication between parasite-specific CD4 helper T cells and B cells. However, cytokines secreted by helper T cells, B cells, and multiple other innate and adaptive immune cells also contribute to regulating the magnitude and protective functions of GC-dependent humoral immune responses. Here, we briefly review emerging data supporting the finding that specific cytokines can exhibit temporally distinct and context-dependent influences on the induction and maintenance of antimalarial humoral immunity. Full article
(This article belongs to the Special Issue Biology of Parasitism)
15 pages, 4315 KiB  
Article
Unveiling the Temperature Influence on the Sorptive Behaviour of ZIF-8 Composite Materials Impregnated with [CnMIM][B(CN)4] Ionic Liquids
by Tiago J. Ferreira, Laura M. Esteves, José M. S. S. Esperança and Isabel A. A. C. Esteves
Processes 2022, 10(2), 247; https://doi.org/10.3390/pr10020247 - 27 Jan 2022
Cited by 5 | Viewed by 2758
Abstract
Composite sorbent materials (IL@MOF) with a metal-organic framework (MOF) ZIF-8 and [B(CN)4]-based ionic liquids (ILs) were produced for the first time. Characterization results indicate the successful IL impregnation and conservation of the ZIF-8 crystalline structure and morphology. The data [...] Read more.
Composite sorbent materials (IL@MOF) with a metal-organic framework (MOF) ZIF-8 and [B(CN)4]-based ionic liquids (ILs) were produced for the first time. Characterization results indicate the successful IL impregnation and conservation of the ZIF-8 crystalline structure and morphology. The data collected from the nitrogen (N2) physisorption at 77 K suggest that these IL@ZIF-8 materials are nonporous as their textural properties, such as BET specific surface area and total pore volume, are negligible. However, CO2, CH4, and N2 adsorption/desorption measurements in the IL@ZIF-8 composites at 303 and 273 K contradict the N2 data at 77 K, given that the obtained isotherms are Type I, typical of (micro)porous materials. Their gas adsorption capacity and ultramicroporous volume are in the same order of magnitude as the pristine microporous ZIF-8. The case study [C6MIM][B(CN)4] IL revealed a high affinity to both CO2 and CH4. This compromised the selectivity performance of its respective composite when compared with pristine ZIF-8. This work highlights the importance of accurate experimental gas adsorption/desorption equilibrium measurements to characterize the adsorption uptake and the porous nature of adsorbent materials. Full article
Show Figures

Graphical abstract

18 pages, 2717 KiB  
Article
Effects of Baicalein and Chrysin on the Structure and Functional Properties of β-Lactoglobulin
by Ang Li, Lei Chen, Weijie Zhou, Junhui Pan, Deming Gong and Guowen Zhang
Foods 2022, 11(2), 165; https://doi.org/10.3390/foods11020165 - 9 Jan 2022
Cited by 20 | Viewed by 2593
Abstract
Two flavonoids with similar structures, baicalein (Bai) and chrysin (Chr), were selected to investigate the interactions with β-lactoglobulin (BLG) and the influences on the structure and functional properties of BLG by multispectral methods combined with molecular docking and dynamic (MD) simulation techniques. The [...] Read more.
Two flavonoids with similar structures, baicalein (Bai) and chrysin (Chr), were selected to investigate the interactions with β-lactoglobulin (BLG) and the influences on the structure and functional properties of BLG by multispectral methods combined with molecular docking and dynamic (MD) simulation techniques. The results of fluorescence quenching suggested that both Bai and Chr interacted with BLG to form complexes with the binding constant of the magnitude of 105 L·mol−1. The binding affinity between BLG and Bai was stronger than that of Chr due to more hydrogen bond formation in Bai–BLG binding. The existence of Bai or Chr induced a looser conformation of BLG, but Chr had a greater effect on the secondary structure of BLG. The surface hydrophobicity and free sulfhydryl group content of BLG lessened due to the presence of the two flavonoids. Molecular docking was performed at the binding site of Bai or Chr located in the surface of BLG, and hydrophobic interaction and hydrogen bond actuated the formation of the Bai/Chr–BLG complex. Molecular dynamics simulation verified that the combination of Chr and BLG decreased the stability of BLG, while Bai had little effect on it. Moreover, the foaming properties of BLG got better in the presence of the two flavonoids compounds and Bai improved its emulsification stability of the protein, but Chr had the opposite effect. This work provides a new idea for the development of novel dietary supplements using functional proteins as flavonoid delivery vectors. Full article
(This article belongs to the Topic Applied Sciences in Functional Foods)
Show Figures

Figure 1

13 pages, 3178 KiB  
Article
Manganese Is a Strong Specific Activator of the RNA Synthetic Activity of Human Polη
by Eva Balint and Ildiko Unk
Int. J. Mol. Sci. 2022, 23(1), 230; https://doi.org/10.3390/ijms23010230 - 26 Dec 2021
Cited by 2 | Viewed by 2861
Abstract
DNA polymerase η (Polη) is a translesion synthesis polymerase that can bypass different DNA lesions with varying efficiency and fidelity. Its most well-known function is the error-free bypass of ultraviolet light-induced cyclobutane pyrimidine dimers. The lack of this unique ability in humans leads [...] Read more.
DNA polymerase η (Polη) is a translesion synthesis polymerase that can bypass different DNA lesions with varying efficiency and fidelity. Its most well-known function is the error-free bypass of ultraviolet light-induced cyclobutane pyrimidine dimers. The lack of this unique ability in humans leads to the development of a cancer-predisposing disease, the variant form of xeroderma pigmentosum. Human Polη can insert rNTPs during DNA synthesis, though with much lower efficiency than dNTPs, and it can even extend an RNA chain with ribonucleotides. We have previously shown that Mn2+ is a specific activator of the RNA synthetic activity of yeast Polη that increases the efficiency of the reaction by several thousand-fold over Mg2+. In this study, our goal was to investigate the metal cofactor dependence of RNA synthesis by human Polη. We found that out of the investigated metal cations, only Mn2+ supported robust RNA synthesis. Steady state kinetic analysis showed that Mn2+ activated the reaction a thousand-fold compared to Mg2+, even during DNA damage bypass opposite 8-oxoG and TT dimer. Our results revealed a two order of magnitude higher affinity of human Polη towards ribonucleotides in the presence of Mn2+ compared to Mg2+. It is noteworthy that activation occurred without lowering the base selectivity of the enzyme on undamaged templates, whereas the fidelity decreased across a TT dimer. In summary, our data strongly suggest that, like with its yeast homolog, Mn2+ is the proper metal cofactor of hPolη during RNA chain extension, and selective metal cofactor utilization contributes to switching between its DNA and RNA synthetic activities. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop