Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = main chain polymerization degree

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1247 KiB  
Review
Vegetable Oils and Their Use for Frying: A Review of Their Compositional Differences and Degradation
by Susana Abrante-Pascual, Barbara Nieva-Echevarría and Encarnacion Goicoechea-Oses
Foods 2024, 13(24), 4186; https://doi.org/10.3390/foods13244186 - 23 Dec 2024
Cited by 2 | Viewed by 3346
Abstract
This review provides an overview of the main vegetable oils of different botanical origin and composition that can be used for frying worldwide (olive and extra-virgin olive oil, high-oleic sunflower oil, rapeseed oil, peanut oil, rice bran oil, sunflower oil, corn oil, soybean [...] Read more.
This review provides an overview of the main vegetable oils of different botanical origin and composition that can be used for frying worldwide (olive and extra-virgin olive oil, high-oleic sunflower oil, rapeseed oil, peanut oil, rice bran oil, sunflower oil, corn oil, soybean oil, cottonseed oil, palm oil, palm kernel oil and coconut oil) and their degradation during this process. It is well known that during this culinary technique, oil’s major and minor components degrade throughout different reactions, mainly thermoxidation, polymerization and, to a lesser extent, hydrolysis. If severe high temperatures are employed, isomerization to trans fatty acyl chains and cyclization are also possible. The factors conditioning frying medium degradation are addressed, including oil composition (unsaturation degree, fatty acyl chain length and “free” fatty acid content, and presence of beneficial and detrimental minor components), together with frying conditions and food characteristics. Likewise, this review also tackles how the frying oil and other processing conditions may impact on fried food quality (oil absorption, texture, flavor and color). Finally, potential health implications of fried food consumption are briefly reviewed. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

25 pages, 5137 KiB  
Article
Study of Synthesis of Dual-Curing Thermoplastic Polyurethane Hot-Melt Adhesive and Optimization by Using Gray Relational Analysis to Apply in Fabric Industry to Solve Seamless Bonding Issues
by Sheng-Yu Lin, Naveed Ahmad and Chung-Feng Jeffrey Kuo
Polymers 2024, 16(4), 467; https://doi.org/10.3390/polym16040467 - 7 Feb 2024
Cited by 4 | Viewed by 1966
Abstract
People wear clothes for warmth, survival and necessity in modern life, but in the modern era, eco-friendliness, shortened production times, design and intelligence also matter. To determine the relationship between data series and verify the proximity of each data series, a gray relational [...] Read more.
People wear clothes for warmth, survival and necessity in modern life, but in the modern era, eco-friendliness, shortened production times, design and intelligence also matter. To determine the relationship between data series and verify the proximity of each data series, a gray relational analysis, or GRA, is applied to textiles, where seamless bonding technology enhances the bond between components. In this study, a polyurethane prepolymer, 2-hydroxyethyl acrylate (2-HEA) as an end-capping agent and n-octyl acrylate (ODA) as a photoinitiator were used to synthesize a dual-curing polyurethane hot-melt adhesive. Taguchi quality engineering and a gray relational analysis were used to discuss the influence of different mole ratios of NCO:OH and the effect of the molar ratio of the addition of octyl decyl acrylate on the mechanical strength. The Fourier transform infrared spectroscopy (FTIR) results showed the termination of the prepolymer’s polymerization reaction and the C=O peak intensity at 1730 cm−1, indicating efficient bonding to the main chain. Advanced Polymer Chromatography (APC) was used to investigate the high-molecular-weight (20,000–30,000) polyurethane polymer bonded with octyl decyl acrylate to achieve a photothermosetting effect. The thermogravimetric analysis (TGA) results showed that the thermal decomposition temperature of the polyurethane hot-melt adhesive also increased, and they showed the highest pyrolysis temperature (349.89 °C) for the polyhydric alcohols. Furthermore, high peel strength (1.68 kg/cm) and shear strength (34.94 kg/cm2) values were detected with the dual-cure photothermosetting polyurethane hot-melt adhesive. The signal-to-noise ratio was also used to generate the gray relational degree. It was observed that the best parameter ratio of NCO:OH was 4:1 with five moles of monomer. The Taguchi quality engineering method was used to find the parameters of single-quality optimization, and then the gray relation calculation was used to obtain the parameter combination of multi-quality optimization for thermosetting the polyurethane hot-melt adhesive. The study aims to meet the requirements of seamless bonding in textile factories and optimize experimental parameter design by setting target values that can effectively increase production speed and reduce processing time and costs as well. Full article
(This article belongs to the Special Issue Progress in Polymer Networks)
Show Figures

Figure 1

19 pages, 9993 KiB  
Article
Microscopic Properties of Asphalt and Polyethylene at an Extraordinary High Dosage through Molecular Dynamics Simulation
by Yuye Jin, Haoyi Li, Jie Chen, Qianqian Wang, Yanhua Bao and Shuguang Hou
Buildings 2024, 14(1), 164; https://doi.org/10.3390/buildings14010164 - 9 Jan 2024
Cited by 2 | Viewed by 1436
Abstract
Using waste plastics in asphalt mixtures could be an exploratory way to dispose of waste plastics. This study aims to investigate the microscopic properties between asphalt and polyethylene (PE) at an extraordinary dosage of 20 wt.%. Various types of PE with different degrees [...] Read more.
Using waste plastics in asphalt mixtures could be an exploratory way to dispose of waste plastics. This study aims to investigate the microscopic properties between asphalt and polyethylene (PE) at an extraordinary dosage of 20 wt.%. Various types of PE with different degrees of polymerization (DP) and structural configurations were considered. Molecular dynamics simulations were used to calculate the mechanical parameters, free volume ratio (FVR), and Flory–Huggins parameter of the resulting PE-modified asphalt (PEA). Two types of PEA were made and characterized by fluorescence microscopy. The simulation results indicate that the addition of PE reduces the density of modified asphalt by less than 5%, and a higher density of PEA is associated with a lower FVR. When the FVR is close, the mechanical properties are greatly influenced by the DP and configuration. The DP and the number of chains are the main parameters impacting the compatibility between PE and asphalt, based on the Flory–Huggins parameter analysis. Decreasing the DP of PE (e.g., 50, with a minimum Flory–Huggins parameter and a relative molecular mass of 1300) will significantly increase the compatibility between asphalt and PE. LDPE−2 has better compatibility with asphalt, possibly because LDPE−2 has higher purity. These findings provide valuable insights into plastic thermal cracking and industrial modification practices. Full article
Show Figures

Figure 1

19 pages, 6314 KiB  
Article
Glucans with Different Degrees of Polymerization from Leuconostoc mesenteroides CICC6055: Analysis of Physicochemical Properties and Intestinal Prebiotic Function
by Jiabao Gu, Ziyan Jiao, Tao Wang, Bolin Zhang and Hongfei Zhao
Int. J. Mol. Sci. 2024, 25(1), 258; https://doi.org/10.3390/ijms25010258 - 23 Dec 2023
Cited by 1 | Viewed by 1347
Abstract
This study explored the physicochemical properties and prebiotic activities of glucans and oligoglucans. Oligoglucans were obtained through the fermentation of Leuconostoc mesenteroides CICC6055 and the glucansucrase of strain CICC6055, while glucans were obtained only through fermentation. Thin-layer chromatography and high-performance liquid chromatography identified [...] Read more.
This study explored the physicochemical properties and prebiotic activities of glucans and oligoglucans. Oligoglucans were obtained through the fermentation of Leuconostoc mesenteroides CICC6055 and the glucansucrase of strain CICC6055, while glucans were obtained only through fermentation. Thin-layer chromatography and high-performance liquid chromatography identified enzymatically synthesized oligoglucans with a higher yield. Differential scanning calorimetry and derivative thermogravimetry analyses revealed the heat resistance of the glucans and oligoglucans at 280–300 °C. Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses demonstrated that their main chains were linked with α-1,6-glycosidic bonds accompanied by glucose residue branching. In vitro fermentation experiments demonstrated that they not only improved the contents of short-chain fatty acids but also raised the abundance of predominant flora, such as Bacteroides, Firmicutes, Verrucomicrobia, and Proteobacteria. These results implicate glucansucrase as an efficacious tool for the enzyme synthesis of oligoglucans. Furthermore, both polysaccharides with different degrees of polymerization may be beneficial in maintaining a healthy human gut. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

15 pages, 8530 KiB  
Article
Molecular Dynamics Study on Interfacial Strengthening Mechanisms of Ettringite/Polymer Nanocomposites
by Liwei Zhang, Heping Zheng and Huilin Xie
Buildings 2023, 13(12), 2976; https://doi.org/10.3390/buildings13122976 - 29 Nov 2023
Viewed by 1141
Abstract
Compared with polymer-modified ordinary-Portland-cement-based materials, research on cement materials based on polymer-modified sulfoaluminate is still in the preliminary stage and lacks an understanding of the mechanism of the interaction interface. The aim of this work is to study the bond performance of ettringite, [...] Read more.
Compared with polymer-modified ordinary-Portland-cement-based materials, research on cement materials based on polymer-modified sulfoaluminate is still in the preliminary stage and lacks an understanding of the mechanism of the interaction interface. The aim of this work is to study the bond performance of ettringite, the main hydration product of sulfoaluminate cement, with various types of polymers using molecular dynamics methods. Steered molecular dynamics were used to simulate the separation of polyamide (PA), polyethylene glycol (PEG), polyacrylic acid (PAA) and polypropylene (PP) from ettringite substrate, reflecting the order of bond properties of the four polymers: PAA > PA > PEG > PP. The internal mechanism of bond properties between different polymers and ettringite was analyzed by studying the local structure and dynamic characteristics. The results show that a Ca–O ionic pair is formed between the calcium ions on the surface of the polymer and ettringite substrate, resulting in strong interaction. In addition, the formation of a H bond also contributes to bond performance. The properties of the polymer itself, such as the degree of polymerization and branched-chain freedom, affect the coordination of the polymer to the substrate. This study provides valuable insights for advancing the development of polymer-modified sulfoaluminate-cement-based materials. Full article
(This article belongs to the Special Issue Research on Properties of Cement-Based Materials and Concrete)
Show Figures

Figure 1

12 pages, 1396 KiB  
Article
Impact of Variation in Amylose Content on Durum Wheat cv. Svevo Technological and Starch Properties
by Mike Sissons, Samuela Palombieri, Francesco Sestili and Domenico Lafiandra
Foods 2023, 12(22), 4112; https://doi.org/10.3390/foods12224112 - 13 Nov 2023
Cited by 5 | Viewed by 2013
Abstract
Reserve starch, the main component of durum wheat semolina, is constituted of two glucan homopolymers (amylose and amylopectin) that differ in their chemical structure. Amylose is mainly a linear structure formed of α-1,4-linked glucose units, with a lower polymerization degree, whereas amylopectin is [...] Read more.
Reserve starch, the main component of durum wheat semolina, is constituted of two glucan homopolymers (amylose and amylopectin) that differ in their chemical structure. Amylose is mainly a linear structure formed of α-1,4-linked glucose units, with a lower polymerization degree, whereas amylopectin is a highly branched structure of α-1,4-chains linked by α-1,6-bonds. Variation of the amylose/amylopectin ratio has a profound effect on the starch properties which may impact the wheat technological and nutritional characteristics and their possible use in the food and non-food sector. In this work a set of genotypes, with a range of amylose from 14.9 to 57.8%, derived from the durum wheat cv. Svevo was characterised at biochemical and rheological level and used to produce pasta to better understand the role of amylose content in a common genetic background. A negative correlation was observed between amylose content and semolina swelling power, starch peak viscosity, and pasta stickiness. A worsening of the firmness was observed in the low amylose pasta compared to the control (cv. Svevo), whereas no difference was highlighted in the high amylose samples. The resistant starch was higher in the high amylose (HA) pasta compared to the control and low amylose (LA) pasta. Noteworthy, the extent of starch digestion was reduced in the HA pasta while the LA genotypes offered a higher starch digestion, suggesting other possible applications. Full article
(This article belongs to the Special Issue Functional Cereal Food: Properties, Functionality and Applications)
Show Figures

Graphical abstract

32 pages, 57396 KiB  
Article
Study on the Effect of Polycarboxylate Ether Molecular Structure on Slurry Dispersion, Adsorption, and Microstructure
by Yunhui Fang, Zhijun Lin, Dongming Yan, Xiaofang Zhang, Xiuxing Ma, Junying Lai, Yi Liu, Zhanhua Chen and Zhaopeng Wang
Polymers 2023, 15(11), 2496; https://doi.org/10.3390/polym15112496 - 29 May 2023
Cited by 5 | Viewed by 3915
Abstract
This study synthesized polycarboxylate superplasticizer (PCE) with varying carboxyl densities and main chain degrees of polymerization. The structural parameters of PCE were characterized using gel permeation chromatography and infrared spectroscopy. The study investigated the impact of PCE’s diverse microstructures on cement slurry’s adsorption, [...] Read more.
This study synthesized polycarboxylate superplasticizer (PCE) with varying carboxyl densities and main chain degrees of polymerization. The structural parameters of PCE were characterized using gel permeation chromatography and infrared spectroscopy. The study investigated the impact of PCE’s diverse microstructures on cement slurry’s adsorption, rheology, hydration heat, and kinetics. Microscopy was used to analyze the products’ morphology. The findings indicated that an increase in carboxyl density led to an increase in molecular weight and hydrodynamic radius. A carboxyl density of 3.5 resulted in the highest flowability of cement slurry and the most considerable adsorption amount. However, the adsorption effect weakened when the carboxyl density was the highest. Decreasing the main chain degree of polymerization led to a significant reduction in the molecular weight and hydrodynamic radius. A main chain degree of 16.46 resulted in the highest flowability of slurry, and both large and small main chain degrees of polymerization exhibited single-layer adsorption. PCE samples with higher carboxyl density caused the greatest delay in the induction period, whereas PCE-3 promoted the hydration period’s acceleration. Hydration kinetics model analysis indicated that PCE-4 yielded needle-shaped hydration products with a small nucleation number in the crystal nucleation and growth stage, while PCE-7’s nucleation was most influenced by ion concentration. The addition of PCE improved the hydration degree after three days and facilitated the strength’s later development compared to the blank sample. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

19 pages, 2644 KiB  
Article
Loose Semirigid Aromatic Polyester Bottle Brushes at Poly(2-isopropyl-2-oxazoline) Side Chains of Various Lengths: Behavior in Solutions and Thermoresponsiveness
by Elena Tarabukina, Anna Krasova, Mikhail Kurlykin, Andrey Tenkovtsev and Alexander Filippov
Polymers 2022, 14(24), 5354; https://doi.org/10.3390/polym14245354 - 7 Dec 2022
Cited by 1 | Viewed by 1663
Abstract
A polycondensation aromatic polyester with an oxygen spacer was synthesized and used as a macroinitiator for the grafting of linear poly(2-isopropyl-2-oxazoline) (PiPrOx) by the cationic polymerization method. The length of the thermosensitive side chains was varied by the initiator:monomer ratio. Using methods of [...] Read more.
A polycondensation aromatic polyester with an oxygen spacer was synthesized and used as a macroinitiator for the grafting of linear poly(2-isopropyl-2-oxazoline) (PiPrOx) by the cationic polymerization method. The length of the thermosensitive side chains was varied by the initiator:monomer ratio. Using methods of molecular hydrodynamics, light scattering and turbidimetry, the copolymers were studied in organic solvents and in water. The molecular characteristics of the main chain and graft copolymers, the polymerization degree of side chains and their grafting density have been determined. The equilibrium rigidity of the macroinitiator and the conformations of grafted macromolecules were evaluated. In selective solvents, they take on a star-like conformation or aggregate depending on the degree of shielding of the main chain by side chains. The thermoresponsiveness of graft copolymers in aqueous solutions was studied, and their LCST were estimated. The results are compared with data for graft copolymers composed of PiPrOx side chains and flexible or rigid chain backbones of aromatic polyester type. Full article
(This article belongs to the Collection Polyesters)
Show Figures

Figure 1

17 pages, 4139 KiB  
Article
Hairy Gels: A Computational Study
by Filip Uhlik, Oleg V. Rud, Oleg V. Borisov and Ekaterina B. Zhulina
Gels 2022, 8(12), 793; https://doi.org/10.3390/gels8120793 - 3 Dec 2022
Cited by 3 | Viewed by 1883
Abstract
We present results of MD and MC simulations of the equilibrium properties of swelling gels with comb-like or bottlebrush subchains and compare them to scaling-theory predictions. In accordance with theory, the simulation results demonstrate that swelling coefficient of the gel increases as a [...] Read more.
We present results of MD and MC simulations of the equilibrium properties of swelling gels with comb-like or bottlebrush subchains and compare them to scaling-theory predictions. In accordance with theory, the simulation results demonstrate that swelling coefficient of the gel increases as a function of the polymerization degree of the main chains and exhibits a very weak maximum (or is virtually constant) as a function of the polymerization degree and grafting density of side chains. The bulk osmotic modulus passes through a shallow minimum as the polymerization degree of the side chains increases. This minimum is attributed to the onset of overlap of side chains belonging to different bottlebrush strands in the swollen gel. Full article
Show Figures

Figure 1

12 pages, 4322 KiB  
Article
Molecular Dynamics Studies of the Mechanical Behaviors and Thermal Conductivity of Polyisoprene with Different Degrees of Polymerization
by Zhiyuan Chen, Qunzhang Tu, Zhonghang Fang, Xinmin Shen, Qin Yin, Xiangpo Zhang and Ming Pan
Polymers 2022, 14(22), 4950; https://doi.org/10.3390/polym14224950 - 16 Nov 2022
Cited by 3 | Viewed by 2510
Abstract
Polyisoprene, with a high degree of polymerization, is the main component of natural rubber. In the industrial production process, it is necessary to adjust the length of the macromolecule of polyisoprene to improve its plasticity. It is thus of vital importance to explore [...] Read more.
Polyisoprene, with a high degree of polymerization, is the main component of natural rubber. In the industrial production process, it is necessary to adjust the length of the macromolecule of polyisoprene to improve its plasticity. It is thus of vital importance to explore the effect of the degree of polymerization of polyisoprene on its properties, e.g., mechanical property and thermal property. Molecular dynamics simulations link microstructure to macroscopic properties. In this paper, Moltemplate was used to establish polyisoprene models with different degrees of polymerization, and the mechanical properties of polyisoprene under uniaxial tension were analyzed under an OPLS all-atom force field. The results showed that the strength and elastic modulus of the material increased with the increase in the degree of polymerization of the molecular chain. In the process of tensile loading, the non-bonded potential energy played a dominant role in the change of the total system potential energy. Then, the thermal conductivity of polyisoprene with different degrees of polymerization was calculated by the non-equilibrium molecular dynamics method (NEMD). The thermal conductivity of PI was predicted to converge to 0.179 W/(m·K). The mechanism of thermal conductivity of the polymer containing branched chains was also discussed and analyzed. The research content of this paper aims to provide theoretical support for improving the mechanical and thermal properties of natural rubber base materials. Full article
(This article belongs to the Special Issue Molecular Simulation of Polymers)
Show Figures

Figure 1

9 pages, 1870 KiB  
Article
The Effect of the Degree of Polymerization and Polymer Composition on the Temperature Responsiveness of Cholesteric Semi-Interpenetrating Networks
by Lansong Yue, Guofu Zhou and Laurens T. de Haan
Crystals 2022, 12(11), 1614; https://doi.org/10.3390/cryst12111614 - 11 Nov 2022
Cited by 1 | Viewed by 2097
Abstract
Cholesteric liquid crystal oligomers and polymers are promising materials for creating materials and devices with stimuli-responsive structural color, and the cholesteric to smectic pre-transition effect is of particular interest as it leads to a strong redshift in the reflected color upon cooling. Cholesteric [...] Read more.
Cholesteric liquid crystal oligomers and polymers are promising materials for creating materials and devices with stimuli-responsive structural color, and the cholesteric to smectic pre-transition effect is of particular interest as it leads to a strong redshift in the reflected color upon cooling. Cholesteric polymers can be stabilized by the formation of semi-interpenetrating networks to obtain more robust photonic materials, but this tends to strongly suppress the pre-transition effect. Here, we show that the pre-transition effect in semi-interpenetrating networks based on main-chain cholesteric oligomers can be amplified by incorporating a smectic monomer and by increasing the degree of polymerization of the oligomers. This amplification counteracts the suppressing effect of the semi-interpenetrating network, and the resulting materials still show a significant band shift upon cooling. Presumably, both methods lead to the formation of more smectic domains in the cholesteric helix, which causes an amplified pre-transitional effect. The results bring us closer to the use of cholesteric semi-interpenetrating cholesteric networks for applications in smart sensing, healthcare, and safety devices. Full article
(This article belongs to the Special Issue Responsive Liquid Crystal Polymer)
Show Figures

Figure 1

14 pages, 11662 KiB  
Article
Application of Infrared Spectroscopy in Research on Aging of Silicone Rubber in Harsh Environment
by Zhijin Zhang, Tian Liang, Zhenglong Jiang, Xingliang Jiang, Jianlin Hu and Guohui Pang
Polymers 2022, 14(21), 4728; https://doi.org/10.3390/polym14214728 - 4 Nov 2022
Cited by 12 | Viewed by 5364
Abstract
Polymer insulators using silicone rubber materials as sheds and sheaths are widely used in power systems to replace traditional porcelain and glass insulators which are heavy, inconvenient to install, and prone to pollution flashover. However, in recent years, polymer insulators that have been [...] Read more.
Polymer insulators using silicone rubber materials as sheds and sheaths are widely used in power systems to replace traditional porcelain and glass insulators which are heavy, inconvenient to install, and prone to pollution flashover. However, in recent years, polymer insulators that have been operating in harsh outdoor environments for many years have experienced different degrees of aging. The aging degree and aging products of silicone rubber are the focus of research. Fourier transform infrared spectroscopy (FTIR) is a technical method to analyze the internal molecular bonds and functional groups of materials, and it is often used to study the aging degree and aging products of silicone rubber. In this paper, the aging characteristics of silicone rubber samples in a high altitude area, salt fog environment, and acid environment were studied by FTIR. The results showed that the silicone rubber in a harsh environment, such as strong radiation, salt fog, and acid fog was degraded to some extent, and its main chain was cut off, the degree of polymerization was reduced, and the content of hydrophobic functional groups was reduced. Infrared spectroscopy can be used to analyze the aging phenomenon of polymers. Full article
(This article belongs to the Special Issue Spectroscopy Applied to Polymers)
Show Figures

Figure 1

32 pages, 4723 KiB  
Review
Conversion of Plastic Waste into Supports for Nanostructured Heterogeneous Catalysts: Application in Environmental Remediation
by Geovânia Cordeiro de Assis, Roberta Anjos de Jesus, Wélida Tamires Alves da Silva, Luiz Fernando Romanholo Ferreira, Renan Tavares Figueiredo and Rodrigo José de Oliveira
Surfaces 2022, 5(1), 35-66; https://doi.org/10.3390/surfaces5010002 - 24 Dec 2021
Cited by 10 | Viewed by 7418
Abstract
Plastics are ubiquitous in our society and are used in many industries, such as packaging, electronics, the automotive industry, and medical and health sectors, and plastic waste is among the types of waste of higher environmental concern. The increase in the amount of [...] Read more.
Plastics are ubiquitous in our society and are used in many industries, such as packaging, electronics, the automotive industry, and medical and health sectors, and plastic waste is among the types of waste of higher environmental concern. The increase in the amount of plastic waste produced daily has increased environmental problems, such as pollution by micro-plastics, contamination of the food chain, biodiversity degradation and economic losses. The selective and efficient conversion of plastic waste for applications in environmental remediation, such as by obtaining composites, is a strategy of the scientific community for the recovery of plastic waste. The development of polymeric supports for efficient, sustainable, and low-cost heterogeneous catalysts for the treatment of organic/inorganic contaminants is highly desirable yet still a great challenge; this will be the main focus of this work. Common commercial polymers, like polystyrene, polypropylene, polyethylene therephthalate, polyethylene and polyvinyl chloride, are addressed herein, as are their main physicochemical properties, such as molecular mass, degree of crystallinity and others. Additionally, we discuss the environmental and health risks of plastic debris and the main recycling technologies as well as their issues and environmental impact. The use of nanomaterials raises concerns about toxicity and reinforces the need to apply supports; this means that the recycling of plastics in this way may tackle two issues. Finally, we dissert about the advances in turning plastic waste into support for nanocatalysts for environmental remediation, mainly metal and metal oxide nanoparticles. Full article
Show Figures

Graphical abstract

12 pages, 12635 KiB  
Article
The Synthesis of Associative Copolymers with Both Amphoteric and Hydrophobic Groups and the Effect of the Degree of Association on the Instability of Emulsions
by Xiaotong Zhang, Gen Li, Yuhao Chen, Keliang Wang and Erlong Yang
Polymers 2021, 13(22), 4041; https://doi.org/10.3390/polym13224041 - 22 Nov 2021
Cited by 9 | Viewed by 2325
Abstract
The acrylamide (AM)/methacryloyl ethyl sulfobetaine (SPE)/behenyl polyoxyethylene ether methacrylate (BEM) terpolymer (PASB) was synthesized by soap-free emulsion polymerization. Four types of PASBs were synthesized by adjusting the moles of AM and BEM with constant total moles of monomers. The synthesized copolymers were characterized [...] Read more.
The acrylamide (AM)/methacryloyl ethyl sulfobetaine (SPE)/behenyl polyoxyethylene ether methacrylate (BEM) terpolymer (PASB) was synthesized by soap-free emulsion polymerization. Four types of PASBs were synthesized by adjusting the moles of AM and BEM with constant total moles of monomers. The synthesized copolymers were characterized by Fourier-transform infrared spectroscopy, thermogravimetry, molecular weight, and viscosity. By measuring the microscopic morphology and backscattered light intensity of the emulsions, the instability process of the emulsions prepared by PASBs was investigated in detail. The main instability processes of the emulsions prepared from PASBs within 45 min were flocculation and coalescence. The intermolecular association of copolymer PASBs was dominated by the behenyl functional groups on the molecular chains. The stability of the emulsions, which were prepared from isoviscosity aqueous solutions controlled by the concentration of the associative copolymers, was increased with the degree of association of copolymers. The hydrophobic association between the copolymer molecules can further slow down the flocculation and coalescence of the emulsion droplets on the basis of the same aqueous solution viscosity, which is one of the reasons for improving the stability of the emulsion. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 4937 KiB  
Article
Molecular Brushes with a Polyimide Backbone and Poly(?-Caprolactone) Side Chains by the Combination of ATRP, ROP, and CuAAC
by Anna V. Kashina, Tamara K. Meleshko, Natalia N. Bogorad, Viktor K. Lavrentyev and Alexander V. Yakimansky
Polymers 2021, 13(19), 3312; https://doi.org/10.3390/polym13193312 - 28 Sep 2021
Cited by 2 | Viewed by 2596
Abstract
An approach to the synthesis of the novel molecular brushes with a polyimide (PI) backbone and poly(?-caprolactone) (PCL) side chains was developed. To obtain such copolymers, a combination of various synthesis methods was used, including polycondensation, atom transfer radical polymerization (ATRP), ring opening [...] Read more.
An approach to the synthesis of the novel molecular brushes with a polyimide (PI) backbone and poly(?-caprolactone) (PCL) side chains was developed. To obtain such copolymers, a combination of various synthesis methods was used, including polycondensation, atom transfer radical polymerization (ATRP), ring opening polymerization (ROP), and Cu (I)-catalyzed azide-alkyne Huisgen cycloaddition (CuAAC). ATRP of 2-hydroxyethyl methacrylate (HEMA) on PI macroinitiator followed by ROP of ?-caprolactone (CL) provided a “brush on brush” structure PI-g-(PHEMA-g-PCL). For the synthesis of PI-g-PCL two synthetic routes combining ROP and CuAAC were compared: (1) polymer-analogous transformations of a multicenter PI macroinitiator with an initiating hydroxyl group separated from the main chain by a triazole ring followed by ROP of CL, or (2) a separate synthesis of macromonomers with the desirable functional groups (polyimide with azide groups and PCL with terminal alkyne groups), followed by a click reaction. Results showed that the first approach allows to obtain graft copolymers with a PI backbone and relatively short PCL side chains. While the implementation of the second approach leads to a more significant increase in the molecular weight, but unreacted linear PCL remains in the system. Obtained macroinitiators and copolymers were characterized using 1H NMR and IR spectroscopy, their molecular weight characteristics were determined by SEC with triple detection. TGA and DSC were used to determine their thermal properties. X-ray scattering data showed that the introduction of a polyimide block into the polycaprolactone matrix did not change the degree of crystallinity of PCL. Full article
(This article belongs to the Special Issue Polymers Synthesis and Characterization)
Show Figures

Graphical abstract

Back to TopTop