Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = major histocompatibility complex (MHC) class II

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 882 KB  
Article
Evidence of Mixed Selection Acting on the MHC Class II DQA Gene in Captive Thai Elephant Populations
by Trifan Budi, Marie Roselle Enguito, Worapong Singchat, Thitipong Panthum, Ton Huu Duc Nguyen, Aingorn Chaiyes, Narongrit Muangmai, Darren K. Griffin, Prateep Duengkae and Kornsorn Srikulnath
Genes 2025, 16(10), 1180; https://doi.org/10.3390/genes16101180 - 10 Oct 2025
Viewed by 273
Abstract
Background: The health and viability of captive elephants, which are central to off-site conservation efforts and health management in Thailand, is threatened by emerging infectious diseases. This is partly due to genetic differences in immune-related genes, especially in the major histocompatibility complex (MHC) [...] Read more.
Background: The health and viability of captive elephants, which are central to off-site conservation efforts and health management in Thailand, is threatened by emerging infectious diseases. This is partly due to genetic differences in immune-related genes, especially in the major histocompatibility complex (MHC) and, among these, loci such as DQA play a crucial role in immune surveillance. Data pertaining to MHC polymorphisms in elephants are scarce, and thus this study investigated such polymorphisms and selection signatures in a partial fragment of exon 2 of the MHC Class II DQA gene. Methods: The approach we used targeted next-generation sequencing and diversity analyses of individuals from three captive elephant camps in Northern Thailand. Results: Eight alleles containing 11 SNPs were identified in the exon 2 fragment, encompassing both silent and missense mutations, some of which may influence immune function. Notably, the allele Elma-DQA*TH3, which is identical to Loaf-DQA*01 and Elma-DQA*01, previously reported as the most common alleles in Loxodonta and Elephas, was found at low frequencies. This shift may reflect local selective pressures that shape MHC allele distributions. Evidence of mixed selection (both positive and balancing) was detected in the partial fragment of DQA exon 2, suggesting a dynamic interplay between evolutionary forces. Positive selection likely reflects an adaptation to emerging or locally prevalent pathogens, whereas balancing selection maintains allelic diversity over time to enable a broad immunological response. Conclusions: Our findings reveal immunogenetic variations in captive Thai elephants, and provides insights into host–pathogen interactions that inform conservation and health strategies with the aim of improving disease resilience. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

11 pages, 2186 KB  
Article
MyD88 Plays an Important Role in UVB-Induced Suppression of Dendritic Cell Activity, T Cell Function, and Cutaneous Immune Response
by Mohammad Asif Sherwani, Carlos Alberto Mier Aguilar, Charlotte McRae, Gelare Ghajar-Rahimi, Aisha Anwaar, Ahmed Omar Jasser, Ariq Chandra, Hui Xu and Nabiha Yusuf
Int. J. Mol. Sci. 2025, 26(19), 9361; https://doi.org/10.3390/ijms26199361 - 25 Sep 2025
Viewed by 317
Abstract
Ultraviolet B (UVB) radiation triggers DNA damage and immune suppression, establishing conditions favorable for skin carcinogenesis. Previous studies have shown that a downstream adaptor for Toll-like receptors (TLRs), myeloid differentiation primary response 88 (MyD88), plays a role in UVB-induced DNA damage and immunosuppression. [...] Read more.
Ultraviolet B (UVB) radiation triggers DNA damage and immune suppression, establishing conditions favorable for skin carcinogenesis. Previous studies have shown that a downstream adaptor for Toll-like receptors (TLRs), myeloid differentiation primary response 88 (MyD88), plays a role in UVB-induced DNA damage and immunosuppression. However, specific mechanisms for the effects on dendritic cells and T cells remain poorly understood. The objective of this study is to determine the role of MyD88 and TIR-domain-containing adaptor inducing interferon-β (TRIF), another key TLR downstream adaptor, in UVB-induced suppression of dendritic cell activity and T cell function. MyD88−/−, Trif−/−, and wild-type (WT) mice were evaluated for UVB-induced effects on dendritic cell, T cells, and contact hypersensitivity responses in skin. MyD88−/− mice exhibited significant resistance to UVB-induced immune suppression, compared to Trif−/− mice and wild-type controls. The MyD88 deficiency significantly reduced UVB-induced Treg cells that were CD4+CD25+Foxp3+ and produced interleukin (IL)-10. Moreover, it significantly inhibited the UVB-induced suppression of IL-12/IL-23 producing CD11c+ dendritic cells. Further experiments confirmed that MyD88 conditional knockout (MyD88fl/flXCD11c.Cre) mice were protected against UVB-induced immune suppression. Dendritic cells from MyD88 genomic or conditional knockout mice were resistant to UVB-induced reduction of major histocompatibility complex (MHC) class II antigens. These findings show that MyD88 plays a key role in UVB-induced immune suppression. The deficiency in the MyD88 gene inhibits UVB-induced suppression of CD11c+ dendritic cell (DC) activity and reduces UVB-induced development of Treg cells. Our studies demonstrate a new mechanism for MyD88-mediated regulation of UVB-induced immune suppression. Full article
Show Figures

Figure 1

17 pages, 3699 KB  
Article
The Role of MHC-II Diversity over Enclosure Design in Gut Microbiota Structuring of Captive Bengal Slow Lorises
by Rong Jiang, Xiaojia Zhang, Lei Xie, Yan Zhang, Changjun Zeng, Yongfang Yao, Huailiang Xu, Caoyang Yang, Xiao Wang, Qingyong Ni, Meng Xie and Chuanren Li
Biology 2025, 14(8), 1094; https://doi.org/10.3390/biology14081094 - 21 Aug 2025
Viewed by 539
Abstract
The endangered Bengal slow loris (Nycticebus bengalensis) relies heavily on captive/rescue populations for conservation. This study investigated the critical link between Major Histocompatibility Complex (MHC) class II DRB1 exon 2 (DRB1e2) genetic variation and gut microbiota in 46 captive [...] Read more.
The endangered Bengal slow loris (Nycticebus bengalensis) relies heavily on captive/rescue populations for conservation. This study investigated the critical link between Major Histocompatibility Complex (MHC) class II DRB1 exon 2 (DRB1e2) genetic variation and gut microbiota in 46 captive individuals, aiming to improve ex situ management. Using standardized conditions across three enclosure types, we characterized DRB1e2 polymorphism via targeted sequencing and analyzed fecal microbiota using 16S rRNA gene amplicon sequencing. Results demonstrated that high DRB1e2 polymorphism significantly reduced microbial community evenness. Specific genotypes showed distinct microbial associations: G9 strongly correlated with beneficial short-chain fatty acid producers like Fructobacillus, and G2 positively correlated with Bifidobacterium spp., while G2, G3, and G4 correlated negatively with Buchnera (a nutrient-provisioning symbiont). Genotypes and polymorphism collectively explained 9.77% of microbiota variation, exceeding the weaker (5.15%), though significant, influence of enclosure type on β-diversity. These findings reveal that host DRB1e2 variation is a primary driver shaping gut microbiota structure and taxon abundance in captive slow lorises, providing evidence for MHC-mediated host–microbe co-adaptation. This offers a genetically informed framework for optimizing conservation strategies, such as tailoring diets or probiotics to specific genotypes, to enhance gut health and population viability. Full article
Show Figures

Figure 1

15 pages, 1929 KB  
Article
Direct oHSV Infection Induces DC Maturation and a Tumor Therapeutic Response
by Doyeon Kim, Michael Kelly, Jack Hedberg, Alexia K. Martin, Ilse Hernandez-Aguirre, Yeaseul Kim, Lily R. Cain, Ravi Dhital and Kevin A. Cassady
Viruses 2025, 17(8), 1134; https://doi.org/10.3390/v17081134 - 19 Aug 2025
Viewed by 1020
Abstract
Oncolytic herpes simplex virus (oHSV) is a promising cancer immunotherapy that induces tumor cell lysis and stimulates anti-tumor immunity. Our previous single-cell RNA sequencing analysis of oHSV-treated medulloblastoma tumors revealed expansion and activation of tumor-infiltrating dendritic cells (DCs), and direct oHSV infection of [...] Read more.
Oncolytic herpes simplex virus (oHSV) is a promising cancer immunotherapy that induces tumor cell lysis and stimulates anti-tumor immunity. Our previous single-cell RNA sequencing analysis of oHSV-treated medulloblastoma tumors revealed expansion and activation of tumor-infiltrating dendritic cells (DCs), and direct oHSV infection of DCs within the brain. While the therapeutic effects of oHSVs have been primarily attributed to tumor cell infection, we hypothesize that direct infection of DCs also contributes to therapeutic efficacy by promoting DC maturation and immune activation. Although the oHSV infection in DCs was abortive, it led to increased expression of major histocompatibility complex (MHC) class I/II and co-stimulatory molecules. oHSV-infected DCs activated naïve CD4+ and CD8+ T cells, inducing expression of CD69 and CD25. These primed T cells exhibited enhanced cytotoxicity against CT-2A glioma cells. Adoptive transfer of oHSV-infected DCs via subcutaneous injection near inguinal lymph nodes delayed tumor growth in a syngeneic CT-2A glioma model, independent of tumor viral replication and lysis. Mechanistically, our in vitro studies demonstrate that oHSV can directly infect and functionally activate DCs, enabling them to prime effective anti-tumor T cell responses. This study highlights the anti-tumor potential of leveraging oHSV-infected DCs to augment viroimmunotherapy as a cancer therapeutic. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

17 pages, 2609 KB  
Article
Residual Tumor Resection After Anti-PD-1 Therapy: A Promising Treatment Strategy for Overcoming Immune Evasive Phenotype Induced by Anti-PD-1 Therapy in Gastric Cancer
by Hajime Matsuida, Kosaku Mimura, Shotaro Nakajima, Katsuharu Saito, Sohei Hayashishita, Chiaki Takiguchi, Azuma Nirei, Tomohiro Kikuchi, Hiroyuki Hanayama, Hirokazu Okayama, Motonobu Saito, Tomoyuki Momma, Zenichiro Saze and Koji Kono
Cells 2025, 14(15), 1212; https://doi.org/10.3390/cells14151212 - 6 Aug 2025
Viewed by 724
Abstract
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy [...] Read more.
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy would be important. Methods: We evaluated the clinical efficacy of tumor resection (TR) after chemotherapy or anti-PD-1 therapy in patients with unresectable advanced or recurrent G/GEJ cancer and analyzed the immune status of tumor microenvironment (TME) by immunohistochemistry using their surgically resected specimens. Results: Patients treated with TR after anti-PD-1 therapy had significantly longer survival compared to those treated with chemotherapy and anti-PD-1 therapy alone. Expression of human leukocyte antigen (HLA) class I and major histocompatibility complex (MHC) class II on tumor cells was markedly downregulated after anti-PD-1 therapy compared to chemotherapy. Furthermore, the downregulation of HLA class I may be associated with the activation of transforming growth factor-β signaling pathway in the TME. Conclusions: Immune escape from cytotoxic T lymphocytes may be induced in the TME in patients with unresectable advanced or recurrent G/GEJ cancer after anti-PD-1 therapy due to the downregulation of HLA class I and MHC class II expression on tumor cells. TR may be a promising treatment strategy for these patients when TR is feasible after anti-PD-1 therapy. Full article
Show Figures

Figure 1

14 pages, 1044 KB  
Article
Characterization of HLA-A/HLA-B/HLA-C/HLA-DRB1 Haplotypes in Romanian Stem Cell Donors Through High-Resolution Next-Generation Sequencing
by Andreea Mirela Caragea, Radu-Ioan Ursu, Laurențiu Camil Bohîlțea, Paul Iordache, Alexandra-Elena Constantinescu and Ileana Constantinescu
Int. J. Mol. Sci. 2025, 26(11), 5250; https://doi.org/10.3390/ijms26115250 - 29 May 2025
Viewed by 2071
Abstract
Human Leukocyte Antigen (HLA) genes are remarkable for their structural complexity and polymorphism. Located on chromosome 6 within the Major Histocompatibility Complex (MHC), these genes exhibit significant frequency variations across human populations and play a crucial role in immune responses, disease susceptibility, and [...] Read more.
Human Leukocyte Antigen (HLA) genes are remarkable for their structural complexity and polymorphism. Located on chromosome 6 within the Major Histocompatibility Complex (MHC), these genes exhibit significant frequency variations across human populations and play a crucial role in immune responses, disease susceptibility, and transplant compatibility. This study aimed to assess the genetic profiles and HLA-A/HLA-B/HLA-C/HLA-DRB1 haplotype frequencies in a Romanian cohort. Whole venous blood samples were collected from 405 healthy, unrelated Romanian volunteers. Using next-generation sequencing (NGS), the study population was genotyped for HLA class I (HLA-A, HLA-B, and HLA-C) and class II (HLA-DRB1) loci. Haplotype frequencies were estimated using the expectation-maximization algorithm, addressing phase and allelic ambiguity. The Romanian cohort was compared with multiple populations sourced from the Allele Frequencies Net Database. The study identified 635 different HLA-A/HLA-B/HLA-C/HLA-DRB1 haplotypes. Among them, two haplotypes had frequencies close to 3%: HLA-A*01:01:01/HLA-B*08:01:01/HLA-C*07:01:01/HLA-DRB1*03:01:01, with a frequency of 3.33%, and HLA-A*02:01:01/HLA-B*18:01:01/HLA-C*17:01:01/HLA-DRB1*11:04:01, with a frequency of 2.84%. All other 633 haplotypes (approximately 99.7% of the total) had frequencies below 1%. The results of the current study underscore the extremely high diversity of HLA haplotypes in this population and the fact that even the most frequent haplotypes are relatively low in prevalence (each under 5% in this cohort). These findings and the great haplotypical diversity detected highlight the importance of NGS and high-resolution HLA typing in hematopoietic stem cell and solid organ transplantation, while also contributing to the better understanding of the area-specific population genetics resulting from historical regional dynamics. Further research with larger cohorts is necessary to validate these findings and expand upon their clinical implications. Full article
(This article belongs to the Special Issue Genomics of Human Disease)
Show Figures

Graphical abstract

14 pages, 3293 KB  
Article
The Validation of Antibodies Suitable for Flow Cytometric Analysis and Immunopeptidomics of Peptide–MHC Complexes in the Outbred Swiss Albino Mouse Strain
by Shanzou Chung, Isambard G. Knox-Johnson, Sarah E. Gazzard, Runqiu Song, Ngoc H. Le, Luise A. Cullen-McEwen, John F. Bertram, Anthony W. Purcell and Asolina Braun
Methods Protoc. 2025, 8(3), 43; https://doi.org/10.3390/mps8030043 - 24 Apr 2025
Viewed by 1355
Abstract
Antigen presentation on major histocompatibility complex (MHC) molecules is central to the initiation of immune responses, and a lot of our understanding about the antigen processing and presentation pathway has been gained through studies in mice. MHC molecules are the most genetically diverse [...] Read more.
Antigen presentation on major histocompatibility complex (MHC) molecules is central to the initiation of immune responses, and a lot of our understanding about the antigen processing and presentation pathway has been gained through studies in mice. MHC molecules are the most genetically diverse genes; consequently, mouse strains differ substantially in their MHC make up and resulting antigen presentation. Swiss mice are commonly used in pharmacological research, yet our understanding of antigen presentation in this strain is surprisingly limited. Here, we have tested a range of anti-MHC antibodies and present a range of clones suitable to analyse MHC class I and class II molecules in Swiss mice who have the H2-q MHC haplotype. Moreover, we demonstrate using immunopeptidomics that clones 28-12-8, 34-1-2, MKD6, and N22 are also suited to isolate MHC class I and class II ligands in this mouse strain. Thus, this work also establishes a first experimental account of the H2-q-derived thymus and spleen immunopeptidome in Swiss mice which bears strong resemblance with ligands isolated from the H2-d MHC haplotype of Balb/C mice. The analysis of source proteins shows common but also organ- and function-specific antigen presentation in line with the involvement of the thymus in tolerance induction and the function of the spleen as a site of immune responses. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

21 pages, 4756 KB  
Article
Cancer Cell-Intrinsic Type I Interferon Signaling Promotes Antitumor Immunity in Head and Neck Squamous Cell Carcinoma
by Guiqin Xie, Cuicui Yang, Xiaowu Pang, Tzyy-Choou Wu and Xinbin Gu
Cancers 2025, 17(8), 1279; https://doi.org/10.3390/cancers17081279 - 10 Apr 2025
Viewed by 1603
Abstract
Background: The cyclic GMP-AMP synthase (cGAS)–type I interferon (IFN-I) pathway detects cytoplasmic DNA and triggers immune responses. Cancer cells often suppress this pathway to evade immune surveillance; however, its therapeutic potential remains unclear. Methods: Mouse oral squamous cell carcinoma models, representing [...] Read more.
Background: The cyclic GMP-AMP synthase (cGAS)–type I interferon (IFN-I) pathway detects cytoplasmic DNA and triggers immune responses. Cancer cells often suppress this pathway to evade immune surveillance; however, its therapeutic potential remains unclear. Methods: Mouse oral squamous cell carcinoma models, representing a prominent subtype of head and neck squamous cell carcinoma (HNSCC), were employed in this study. Flow cytometry, Western blot, ELISA, and PCR were used for analysis. Results: We found that immune-unresponsive MOC2 tumors exhibited a deficiency of antigen-presenting cells and cytotoxic T lymphocytes, along with a significant suppression of the cGAS-IFN-I pathway, compared to immune-responsive MOC1 tumors. An MOC2-conditioned medium impaired the differentiation of bone marrow-derived cells into dendritic cells (DCs), reducing the expression of DC markers as well as class I and II major histocompatibility complex (MHC) molecules. The activation of the cGAS-IFN-I pathway in MOC2 cells, either through exogenous DNA or direct IFN-I expression, enhanced class I MHC expression and antigen presentation on MOC2 cells. Furthermore, IFNB1 expression in MOC2 cells induced apoptosis and upregulated chemokines, such as CXCL9 and CXCL10, which recruit immune cells. In immunocompetent mice, IFNB1 expression suppressed MOC2 tumor growth by attracting DCs and T cells, an effect amplified by co-expressing the granulocyte–macrophage colony-stimulating factor. Conclusions: These findings highlight the potential of enhancing cancer cell-intrinsic cGAS-IFN-I signaling to improve tumor immune surveillance and control the progression of immune-cold HNSCC tumors. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

17 pages, 3373 KB  
Article
Genetic Polymorphisms in MHC Classes I and II Predict Outcomes in Metastatic Colorectal Cancer
by Pooja Mittal, Francesca Battaglin, Yan Yang, Shivani Soni, Sebastian Stintzing, Aparna R. Parikh, Karam Ashouri, Sandra Algaze, Priya Jayachandran, Lesly Torres-Gonzalez, Wu Zhang, Chiara Cremolini, Volker Heinemann, Joshua Millstein, Indrakant K. Singh and Heinz-Josef Lenz
Int. J. Mol. Sci. 2025, 26(6), 2556; https://doi.org/10.3390/ijms26062556 - 12 Mar 2025
Cited by 1 | Viewed by 1833
Abstract
The immune system is alerted for virally infected cells in the body by the antigen presentation pathway, which is in turn mediated by the major histocompatibility complex (MHC) class I and II molecules. Cancer cells overcome immune evasion as a major hallmark by [...] Read more.
The immune system is alerted for virally infected cells in the body by the antigen presentation pathway, which is in turn mediated by the major histocompatibility complex (MHC) class I and II molecules. Cancer cells overcome immune evasion as a major hallmark by downregulation of the antigen presentation pathway. Therefore, the present study aimed to explore the effect of genetic variants in genes involved in MHC class I and II pathways in patients treated with first-line chemotherapy in combination with targeted antibodies in metastatic colorectal cancer (mCRC) patients. Genomic DNA from the blood samples of 775 patients enrolled in three independent, randomized, first-line trials, namely TRIBE (FOLFIRI-bevacizumab, N = 215), FIRE-3 (FOLFIRI-bevacizumab, N = 107; FOLFIRI-cetuximab, N = 129), and MAVERICC (FOLFIRI-bevacizumab, N = 163; FOLFOX6-bevacizumab, N = 161), was genotyped through OncoArray, a custom array manufactured by Illumina including approximately 530K SNP markers. The impact on the outcome of 40 selected SNPs in 22 genes of MHC class I and II pathways was analyzed. We identified several SNPs in multiple genes associated with targeted treatment benefits across different treatment arms in our study population (p < 0.05). Treatment–SNP interaction analyses confirmed a significant treatment interaction with the targeted agents (bevacizumab vs. cetuximab) and the chemotherapy backbone (FOLFIRI vs. FOLFOX) in certain selected SNPs. Our results highlight a potential role for MHC SNPs as prognostic and predictive biomarkers for first-line treatment in mCRC, with differential effects based on the biologic agent and chemotherapy backbone. These biomarkers, when further validated, may contribute to personalized treatment strategies for mCRC patients. Full article
(This article belongs to the Special Issue Genetic and Molecular Susceptibility in Human Diseases: 2nd Edition)
Show Figures

Figure 1

25 pages, 3996 KB  
Article
Differential Expression of ARG1 and MRC2 in Retinal Müller Glial Cells During Autoimmune Uveitis
by Amelie B. Fleischer, Barbara Amann, Christine von Toerne, Roxane L. Degroote, Adrian Schmalen, Tanja Weißer, Stefanie M. Hauck and Cornelia A. Deeg
Biomolecules 2025, 15(2), 288; https://doi.org/10.3390/biom15020288 - 14 Feb 2025
Cited by 1 | Viewed by 1323
Abstract
Retinal Müller glial cells (RMG) play a crucial role in retinal neuroinflammation, including autoimmune uveitis. Increasing evidence supports their function as active modulators of immune responses and potential atypical antigen-presenting cells (APCs). To further investigate this hypothesis, we conducted a differential proteome analysis [...] Read more.
Retinal Müller glial cells (RMG) play a crucial role in retinal neuroinflammation, including autoimmune uveitis. Increasing evidence supports their function as active modulators of immune responses and potential atypical antigen-presenting cells (APCs). To further investigate this hypothesis, we conducted a differential proteome analysis of primary equine RMG from healthy controls and horses with equine recurrent uveitis (ERU), a spontaneous model of autoimmune uveitis. This analysis identified 310 proteins with differential abundance. Among these, the Major Histocompatibility Complex (MHC) class II and the enzyme Arginase 1 (ARG1) were significantly enriched in RMG from uveitis-affected horses, whereas Mannose Receptor C-type 2 (MRC2) and its interactor Thrombospondin 1 (THBS1) were more abundant in healthy RMG. The detection of MHC class II in equine RMG, consistent with previous studies, validates the robustness of our approach. Furthermore, the identification of ARG1 and MRC2, together with THBS1, provides new insights into the immunomodulatory and antigen-presenting properties of RMG. Immunohistochemical analyses confirmed the proteomic findings and revealed the spatial distribution of ARG1 and MRC2. ARG1 and MRC2 are thus markers for RMG in the neuroinflammatory or physiological milieu and highlight potential differences in the immune function of RMG, particularly in antigen presentation. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

14 pages, 736 KB  
Review
Gut Microbes as the Major Drivers of Rheumatoid Arthritis: Our Microbes Are Our Fortune!
by Veena Taneja
Microorganisms 2025, 13(2), 255; https://doi.org/10.3390/microorganisms13020255 - 24 Jan 2025
Cited by 3 | Viewed by 3273
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with an unknown etiology. While certain genes provide strong susceptibility factors, the role of environmental factors is becoming increasingly recognized. Among genetic factors, human leukocyte antigen (HLA) genes, encoded within the major histocompatibility complex (MHC), have [...] Read more.
Rheumatoid arthritis (RA) is an autoimmune disease with an unknown etiology. While certain genes provide strong susceptibility factors, the role of environmental factors is becoming increasingly recognized. Among genetic factors, human leukocyte antigen (HLA) genes, encoded within the major histocompatibility complex (MHC), have been linked to predisposition to RA, while among environmental factors, smoking, infections and diet are the major contributors. Genetic and environmental factors impact microbial composition in the host. Based on the dysbiosis observed in the gut and lung microbiome, a mucosal origin of RA has been suggested. However, proving whether genes or microbes provide a stronger risk factor has been difficult. Studies from RA patients and various mouse models, specifically humanized mice expressing HLA class II genes, have been instrumental in defining the role of environmental factors such as smoking and endogenous small intestinal microbes in modulating arthritis severity. The consensus based on most studies support an interaction between host genetic and environmental factors in the onset and severity of disease. However, until now, no microbial markers for disease prognosis or treatment efficacy have been available. Here, the role of gut microbes as markers of disease severity, and the potential for using endogenous commensals for modulating immune responses to suppress inflammation in the context of genetic factors, are discussed. Full article
(This article belongs to the Special Issue Gut Microbiome in Homeostasis and Disease, 2nd Edition)
Show Figures

Figure 1

17 pages, 5778 KB  
Article
Characterization of Dendritic Cells and Myeloid-Derived Suppressor Cells Expressing Major Histocompatibility Complex Class II in Secondary Lymphoid Organs in Systemic Lupus Erythematosus-Prone Mice
by Felipe R. Uribe, Fabián González-Martínez, Sebastián A. Echeverría-Araya, Alison Sepúlveda-Pontigo, Karissa Chávez-Villacreses, Andrés Díaz-Bozo, Isabel Méndez-Pérez, Valentina P. I. González, Karen Bohmwald, Alexis M. Kalergis and Jorge A. Soto
Int. J. Mol. Sci. 2024, 25(24), 13604; https://doi.org/10.3390/ijms252413604 - 19 Dec 2024
Viewed by 1472
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by self-antibody production and widespread inflammation affecting various body tissues. This disease is driven by the breakdown of immune tolerance, which promotes the activation of autoreactive B and T cells. A key feature of [...] Read more.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by self-antibody production and widespread inflammation affecting various body tissues. This disease is driven by the breakdown of immune tolerance, which promotes the activation of autoreactive B and T cells. A key feature of SLE is dysregulation in antigen presentation, where antigen-presenting cells (APCs) play a central role in perpetuating immune responses. Dendritic cells (DCs) are highly specialized for antigen presentation among APCs. At the same time, myeloid-derived suppressor cells (MDSCs) can also express MHC-II molecules, although their role in SLE is less understood. Utilizing the SLE model, MRL/MpJ-Faslpr/J, we determined the presence of different phenotypes of DCs and MDSCs expressing MHC-II in secondary lymphoid organs, along with the gene expression of ICOSL, CD80 and CD86 in the spleen. Our study determined that the most abundant population of APCs in secondary lymphoid organs corresponds to cDC CD103CD11b+ MHC-II+ throughout SLE development. Additionally, ICOSL expression increased over time, becoming more preponderant in week 16 in the SLE model, which could indicate that it is a crucial pathway for the development and progression of the pathology. In week 16, we observed a positive correlation between M-MDSC MHC-II and IFN-γ-producing CD4+ T cells. Full article
Show Figures

Figure 1

27 pages, 6809 KB  
Article
Long-Term Human Immune Reconstitution, T-Cell Development, and Immune Reactivity in Mice Lacking the Murine Major Histocompatibility Complex: Validation with Cellular and Gene Expression Profiles
by Milita Darguzyte, Philipp Antczak, Daniel Bachurski, Patrick Hoelker, Nima Abedpour, Rahil Gholamipoorfard, Hans A. Schlößer, Kerstin Wennhold, Martin Thelen, Maria A. Garcia-Marquez, Johannes Koenig, Andreas Schneider, Tobias Braun, Frank Klawonn, Michael Damrat, Masudur Rahman, Jan-Malte Kleid, Sebastian J. Theobald, Eugen Bauer, Constantin von Kaisenberg, Steven R. Talbot, Leonard D. Shultz, Brian Soper and Renata Stripeckeadd Show full author list remove Hide full author list
Cells 2024, 13(20), 1686; https://doi.org/10.3390/cells13201686 - 12 Oct 2024
Viewed by 2920
Abstract
Background: Humanized mice transplanted with CD34+ hematopoietic cells (HPCs) are broadly used to study human immune responses and infections in vivo and for testing therapies pre-clinically. However, until now, it was not clear whether interactions between the mouse major histocompatibility complexes (MHCs) [...] Read more.
Background: Humanized mice transplanted with CD34+ hematopoietic cells (HPCs) are broadly used to study human immune responses and infections in vivo and for testing therapies pre-clinically. However, until now, it was not clear whether interactions between the mouse major histocompatibility complexes (MHCs) and/or the human leukocyte antigens (HLAs) were necessary for human T-cell development and immune reactivity. Methods: We evaluated the long-term (20-week) human hematopoiesis and human T-cell development in NOD Scid Gamma (NSG) mice lacking the expression of MHC class I and II (NSG-DKO). Triplicate experiments were performed with HPCs obtained from three donors, and humanization was confirmed in the reference strain NOD Rag Gamma (NRG). Further, we tested whether humanized NSG-DKO mice would respond to a lentiviral vector (LV) systemic delivery of HLA-A*02:01, HLA-DRB1*04:01, human GM-CSF/IFN-α, and the human cytomegalovirus gB antigen. Results: Human immune reconstitution was detectable in peripheral blood from 8 to 20 weeks after the transplantation of NSG-DKO. Human single positive CD4+ and CD8+ T-cells were detectable in lymphatic tissues (thymus, bone marrow, and spleen). LV delivery harnessed the detection of lymphocyte subsets in bone marrow (αβ and γδ T-cells and NK cells) and the expression of HLA-DR. Furthermore, RNA sequencing showed that LV delivery increased the expression of different human reactome pathways, such as defense responses to other organisms and viruses. Conclusions: Human T-cell development and reactivity are independent of the expression of murine MHCs in humanized mice. Therefore, humanized NSG-DKO is a promising new model for studying human immune responses, as it abrogates the xenograft mouse MHC interference. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Graphical abstract

27 pages, 1342 KB  
Review
Macrophages and HLA-Class II Alleles in Multiple Sclerosis: Insights in Therapeutic Dynamics
by Petros Prapas and Maria Anagnostouli
Int. J. Mol. Sci. 2024, 25(13), 7354; https://doi.org/10.3390/ijms25137354 - 4 Jul 2024
Cited by 7 | Viewed by 4962
Abstract
Antigen presentation is a crucial mechanism that drives the T cell-mediated immune response and the development of Multiple Sclerosis (MS). Genetic alterations within the highly variable Major Histocompatibility Complex Class II (MHC II) have been proven to result in significant changes in the [...] Read more.
Antigen presentation is a crucial mechanism that drives the T cell-mediated immune response and the development of Multiple Sclerosis (MS). Genetic alterations within the highly variable Major Histocompatibility Complex Class II (MHC II) have been proven to result in significant changes in the molecular basis of antigen presentation and the clinical course of patients with both Adult-Onset MS (AOMS) and Pediatric-Onset MS (POMS). Among the numerous polymorphisms of the Human Leucocyte Antigens (HLA), within MHC II complex, HLA-DRB1*15:01 has been labeled, in Caucasian ethnic groups, as a high-risk allele for MS due to the ability of its structure to increase affinity to Myelin Basic Protein (MBP) epitopes. This characteristic, among others, in the context of the trimolecular complex or immunological synapsis, provides the foundation for autoimmunity triggered by environmental or endogenous factors. As with all professional antigen presenting cells, macrophages are characterized by the expression of MHC II and are often implicated in the formation of MS lesions. Increased presence of M1 macrophages in MS patients has been associated both with progression and onset of the disease, each involving separate but similar mechanisms. In this critical narrative review, we focus on macrophages, discussing how HLA genetic alterations can promote dysregulation of this population’s homeostasis in the periphery and the Central Nervous System (CNS). We also explore the potential interconnection in observed pathological macrophage mechanisms and the function of the diverse structure of HLA alleles in neurodegenerative CNS, seen in MS, by comparing available clinical with molecular data through the prism of HLA-immunogenetics. Finally, we discuss available and experimental pharmacological approaches for MS targeting the trimolecular complex that are based on cell phenotype modulation and HLA genotype involvement and try to reveal fertile ground for the potential development of novel drugs. Full article
Show Figures

Figure 1

26 pages, 1577 KB  
Review
Neoantigen Identification and Dendritic Cell-Based Vaccines for Lung Cancer Immunotherapy
by Komal Kumari, Amarnath Singh, Archana Chaudhary, Rakesh Kumar Singh, Asheesh Shanker, Vinay Kumar and Rizwanul Haque
Vaccines 2024, 12(5), 498; https://doi.org/10.3390/vaccines12050498 - 5 May 2024
Cited by 9 | Viewed by 5652
Abstract
Immunotherapies can treat many cancers, including difficult-to-treat cases such as lung cancer. Due to its tolerability, long-lasting therapeutic responses, and efficacy in a wide spectrum of patients, immunotherapy can also help to treat lung cancer, which has few treatment choices. Tumor-specific antigens (TSAs) [...] Read more.
Immunotherapies can treat many cancers, including difficult-to-treat cases such as lung cancer. Due to its tolerability, long-lasting therapeutic responses, and efficacy in a wide spectrum of patients, immunotherapy can also help to treat lung cancer, which has few treatment choices. Tumor-specific antigens (TSAs) for cancer vaccinations and T-cell therapies are difficult to discover. Neoantigens (NeoAgs) from genetic mutations, irregular RNA splicing, protein changes, or viral genetic sequences in tumor cells provide a solution. NeoAgs, unlike TSAs, are non-self and can cause an immunological response. Next-generation sequencing (NGS) and bioinformatics can swiftly detect and forecast tumor-specific NeoAgs. Highly immunogenic NeoAgs provide personalized or generalized cancer immunotherapies. Dendritic cells (DCs), which originate and regulate T-cell responses, are widely studied potential immunotherapeutic therapies for lung cancer and other cancers. DC vaccines are stable, reliable, and safe in clinical trials. The purpose of this article is to evaluate the current status, limitations, and prospective clinical applications of DC vaccines, as well as the identification and selection of major histocompatibility complex (MHC) class I and II genes for NeoAgs. Our goal is to explain DC biology and activate DC manipulation to help researchers create extremely potent cancer vaccines for patients. Full article
(This article belongs to the Section Vaccines, Clinical Advancement, and Associated Immunology)
Show Figures

Figure 1

Back to TopTop