Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = micropropulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3270 KB  
Article
The Effect of Combustor Material for Micro-Propulsion Systems
by David M. Dias, Pedro R. Resende and Alexandre M. Afonso
Aerospace 2025, 12(9), 820; https://doi.org/10.3390/aerospace12090820 - 11 Sep 2025
Viewed by 292
Abstract
The increasing demand on combustion-based micro-power generation systems, mainly due to the high energy density of hydrocarbon fuels, created a great opportunity to develop portable power devices, which can be applied on micro unmanned aerial vehicles, micro-satellite thrusters, or micro chemical reactors and [...] Read more.
The increasing demand on combustion-based micro-power generation systems, mainly due to the high energy density of hydrocarbon fuels, created a great opportunity to develop portable power devices, which can be applied on micro unmanned aerial vehicles, micro-satellite thrusters, or micro chemical reactors and sensors. Also, the need for better and cheaper communications networks and control systems has led space companies to invest in micro and meso satellites, such as CubeSat. In this study, we conducted a comprehensive and meticulous study of micro-combustion within wavy channel micro-propulsion systems, which can be applied on micro unmanned aerial vehicles or CubeSat. The primary objective was to gain a deeper comprehension of the dynamics within these complex non-linear geometries and analyze the effect of different materials on the combustion dynamics and propulsion efficiency. Full article
Show Figures

Figure 1

24 pages, 1481 KB  
Article
Optimal Heliocentric Orbit Raising of CubeSats with a Monopropellant Electrospray Multimode Propulsion System
by Alessandro A. Quarta, Marco Bassetto and Giulia Becatti
Appl. Sci. 2025, 15(16), 9169; https://doi.org/10.3390/app15169169 - 20 Aug 2025
Viewed by 400
Abstract
A Multimode Propulsion System (MPS) is an innovative spacecraft thruster concept that integrates two or more propulsion modes sharing the same type of propellant. A spacecraft equipped with an MPS can potentially combine the advantages of continuous-thrust electric propulsion and medium-to-high-thrust chemical propulsion [...] Read more.
A Multimode Propulsion System (MPS) is an innovative spacecraft thruster concept that integrates two or more propulsion modes sharing the same type of propellant. A spacecraft equipped with an MPS can potentially combine the advantages of continuous-thrust electric propulsion and medium-to-high-thrust chemical propulsion within a single vehicle, while reducing the overall mass compared to traditional configurations where each propulsion system uses a different propellant. This feature makes the MPS concept particularly attractive for small spacecraft, such as the well-known CubeSats, which have now reached a high level of technological maturity and are employed not only in geocentric environments but also in interplanetary missions as support elements for conventional deep-space vehicles. Within the MPS framework, a Monopropellant-Electrospray Multimode Propulsion System (MEMPS) represents a specific type of micropropulsion technology that enables a single miniaturized propulsion unit to operate in either catalytic-chemical or electrospray-electric mode. This paper investigates the flight performance of a MEMPS-equipped CubeSat in a classical circle-to-circle orbit-raising (or lowering) maneuver within a two-dimensional mission scenario. Specifically, the study derives the optimal guidance law that allows the CubeSat to follow a transfer trajectory optimized either for minimum flight time or minimum propellant consumption, starting from a parking orbit of assigned radius and targeting a final circular orbit. Numerical simulations indicate that a heliocentric orbit raising, increasing the initial solar distance by 20%, can be achieved with a flight time of approximately 11 months and a propellant consumption slightly below 6 kg. The proposed method is applied to a heliocentric case study, although the procedure can be readily extended to geocentric transfer missions, which represent a more common application scenario for current CubeSat-based scientific missions. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

17 pages, 4602 KB  
Article
Dual-Plasma Discharge Tube for Synergistic Glioblastoma Treatment
by William Murphy, Alex Horkowitz, Vikas Soni, Camil Walkiewicz-Yvon and Michael Keidar
Cancers 2025, 17(12), 2036; https://doi.org/10.3390/cancers17122036 - 18 Jun 2025
Viewed by 682
Abstract
Background: Glioblastoma (GBM) resists current therapies due to its rapid proliferation, diffuse invasion, and heterogeneous cell populations. We previously showed that a single cold atmospheric plasma discharge tube (DT) reduces GBM viability via broad-spectrum electromagnetic (EM) emissions. Here, we tested whether two DTs [...] Read more.
Background: Glioblastoma (GBM) resists current therapies due to its rapid proliferation, diffuse invasion, and heterogeneous cell populations. We previously showed that a single cold atmospheric plasma discharge tube (DT) reduces GBM viability via broad-spectrum electromagnetic (EM) emissions. Here, we tested whether two DTs arranged in a helmet configuration could generate overlapping EM fields to amplify the anti-tumor effects without thermal injury. Methods: The physical outputs of the single- and dual-DT setups were characterized by infrared thermography, broadband EM field probes, and oscilloscope analysis. Human U87-MG cells were exposed under the single or dual configurations. The viability was quantified with WST-8 assays mapped across 96-well plates; the intracellular reactive oxygen species (ROS), membrane integrity, apoptosis, and mitochondrial potential were assessed by multiparametric flow cytometry. Our additivity models compared the predicted versus observed dual-DT cytotoxicity. Results: The dual-DT operation produced constructive EM interference, elevating electric and magnetic field amplitudes over a broader area than either tube alone, while temperatures remained <39 °C. The single-DT exposure lowered the cell viability by ~40%; the dual-DT treatment reduced the viability by ~60%, exceeding the additive predictions. The regions of greatest cytotoxicity co-localized with the zones of highest EM field overlap. The dual-DT exposure doubled the intracellular ROS compared with single-DT and Annexin V positivity, confirming oxidative stress-driven cell death. The out-of-phase operation of the discharge tubes enabled the localized control of the treatment regions, which can guide future treatment planning. Conclusions: Two synchronously operated plasma discharge tubes synergistically enhanced GBM cell killing through non-thermal mechanisms that coupled intensified overlapping EM fields with elevated oxidative stress. This positions modular multi-DT arrays as a potential non-invasive adjunct or alternative to existing electric-field-based therapies for glioblastoma. Full article
(This article belongs to the Special Issue Plasma and Cancer Treatment)
Show Figures

Figure 1

17 pages, 6509 KB  
Article
Operation of Vacuum Arc Thruster Arrays with Multiple Isolated Current Sources
by Benjamin Kanda and Minkwan Kim
Aerospace 2025, 12(6), 549; https://doi.org/10.3390/aerospace12060549 - 16 Jun 2025
Viewed by 744
Abstract
Vacuum arc thrusters (VATs) have recently gained significant interest as a micro-propulsion system due to their scalability, low cost, storability, and small form factor. While VATs offer an attractive propulsion solution for CubeSats, conventional propellant feed systems used in VATs require intricate mechanical [...] Read more.
Vacuum arc thrusters (VATs) have recently gained significant interest as a micro-propulsion system due to their scalability, low cost, storability, and small form factor. While VATs offer an attractive propulsion solution for CubeSats, conventional propellant feed systems used in VATs require intricate mechanical moving parts, increasing overall system complexity and mission risk. A promising alternative is the use of VAT arrays, where multiple thin-layer VATs are arranged in a regularly spaced grid, thus enhancing reliability, increasing total impulse without a mechanical propellant feed system, and enabling integrated attitude control via off-axis thruster placement. However, VAT arrays require a larger power processing unit (PPU) and additional control system, posing challenges within CubeSat volume constraints. To address this, this study proposes a novel PPU design that enables the simultaneous operation of multiple VATs while minimising system mass and volume. Experimental results demonstrate the successful operation of VAT pairs using the proposed PPU concept, validating its feasibility as an efficient propulsion solution for CubeSats. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges (3rd Volume))
Show Figures

Figure 1

17 pages, 9943 KB  
Article
Research on Micro-Propulsion Performance of Laser Ablation ADN-Based Liquid Propellant Enhanced by Chemical Energy
by Luyun Jiang, Jifei Ye, Chentao Mao, Baosheng Du, Haichao Cui, Jianhui Han, Yongzan Zheng and Yanji Hong
Aerospace 2025, 12(2), 149; https://doi.org/10.3390/aerospace12020149 - 16 Feb 2025
Viewed by 1116
Abstract
The vigorous development of micro–nano satellites urgently requires satellite-borne propulsion systems as support. Pulsed laser ablation micro-propulsion can meet these high demands. Ammonium dinitramide (ADN), as a green monopropellant, can serve as the working substance for laser ablation. This work investigated the micro-propulsion [...] Read more.
The vigorous development of micro–nano satellites urgently requires satellite-borne propulsion systems as support. Pulsed laser ablation micro-propulsion can meet these high demands. Ammonium dinitramide (ADN), as a green monopropellant, can serve as the working substance for laser ablation. This work investigated the micro-propulsion performance of liquid propellants composed of ADN and water with different ADN mass fractions, aiming to clarify the enhancement effect of chemical energy. Through the single-pulse impulse measurement, the results show that the 70 wt.% ADN had a maximum specific impulse of 167.55 s, a 19% increase compared to H2O. The established semi-empirical model of the micro-propulsion performance fits well with the experimental data and can effectively explain the variations in the patterns of the propulsion’s parameters. The chemical energy’s actual rate of contribution to the increase in the kinetic energy was positively correlated with the ADN’s mass fraction and negatively correlated with the laser energy, with an actual contribution rate of 36% for 70 wt.% ADN at a laser energy of 60 mJ. Furthermore, based on the relationship between the ablation efficiency, chemical-specific energy, and laser specific energy, it was found that the ablation efficiency can be improved by increasing the chemical specific energy and reducing the laser specific energy while ensuring the breakdown. This work provides a scientific approach to quantitatively analyze the enhancement in the propulsion’s performance by chemical energy in laser micro-ablation, which is expected to be extended to other energetic liquid propellants. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology (2nd Edition))
Show Figures

Figure 1

21 pages, 7912 KB  
Article
Visualization and Parameters Determination of Supersonic Flows in Convergent-Divergent Micro-Nozzles Using Schlieren Z-Type Technique and Fluid Mechanics
by Reyna Judith Mendoza-Anchondo, Cornelio Alvarez-Herrera and José Guadalupe Murillo-Ramírez
Fluids 2025, 10(2), 40; https://doi.org/10.3390/fluids10020040 - 3 Feb 2025
Viewed by 3454
Abstract
Small-scale and supersonic convergent-divergent type micro-nozzles with characteristic sizes of around a few centimeters and exit and throat radii of tenths of millimeters were the subjects of this study. Using the schlieren Z-type optical technique, the supersonic airflows established at the exit of [...] Read more.
Small-scale and supersonic convergent-divergent type micro-nozzles with characteristic sizes of around a few centimeters and exit and throat radii of tenths of millimeters were the subjects of this study. Using the schlieren Z-type optical technique, the supersonic airflows established at the exit of seven nozzles were visualized. The dependence of the shock cell characteristics on the nozzle pressure ratio (NPR), defined as the ratio of stagnation pressure to atmospheric pressure, was analyzed. The dependence of the nozzle thrust and the specific impulse on the NPR ratio and the mass flow rate was also studied using a simple device based on concepts of fluid mechanics. The results obtained are in agreement with similar results obtained in recently published research on double-bell nozzles. The thrust of all nozzles depends linearly on the shock-cell spacing, which is one of the most relevant findings of this research. In other words, the output airflow structure determines the performance of the nozzles, such as the thrust or the specific impulse they produce. These small nozzles offer significant advantages over conventional nozzles in low energy consumption and lower manufacturing cost, making them suitable for scientific research in space micro-propulsion and cooling microelectronic systems, among other applications. Full article
Show Figures

Figure 1

62 pages, 13575 KB  
Review
Propulsion Technologies for CubeSats: Review
by Suood Alnaqbi, Djamal Darfilal and Sean Shan Min Swei
Aerospace 2024, 11(7), 502; https://doi.org/10.3390/aerospace11070502 - 21 Jun 2024
Cited by 26 | Viewed by 15952
Abstract
This paper explores the wide-ranging topography of micro-propulsion systems that have been flown in different small satellite missions. CubeSats, known for their compact size and affordability, have gained popularity in the realm of space exploration. However, their limited propulsion capabilities have often been [...] Read more.
This paper explores the wide-ranging topography of micro-propulsion systems that have been flown in different small satellite missions. CubeSats, known for their compact size and affordability, have gained popularity in the realm of space exploration. However, their limited propulsion capabilities have often been a constraint in achieving certain mission objectives. In response to this challenge, space propulsion experts have developed a wide spectrum of miniaturized propulsion systems tailored to CubeSats, each offering distinct advantages. This literature review provides a comprehensive analysis of these micro-propulsion systems, categorizing them into distinct families based on their primary energy sources. The review provides informative graphs illustrating propulsion performance metrics, serving as beneficial resources for mission planners and satellite designers when selecting the most suitable propulsion system for a particular mission requirement. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges (2nd Edition))
Show Figures

Figure 1

35 pages, 6486 KB  
Review
A Review on Micro-Combustion Flame Dynamics and Micro-Propulsion Systems
by David M. Dias, Pedro R. Resende and Alexandre M. Afonso
Energies 2024, 17(6), 1327; https://doi.org/10.3390/en17061327 - 10 Mar 2024
Cited by 5 | Viewed by 4154
Abstract
This work presents a state-of-the-art review of micro-combustion flame dynamics and micro propulsion systems. In the initial section, we focus in on the different challenges of micro-combustion, investigating the typical length and time scales involved in micro-combustion and some critical phenomena such as [...] Read more.
This work presents a state-of-the-art review of micro-combustion flame dynamics and micro propulsion systems. In the initial section, we focus in on the different challenges of micro-combustion, investigating the typical length and time scales involved in micro-combustion and some critical phenomena such as flammability limits and the quenching diameter.We present an extensive collection of studies on the principal types of micro-flame dynamics, including flashback, blow-off, steady versus non-steady flames, mild combustion, stable flames, flames with repetitive extinction, and ignition and pulsatory flame burst. In the final part of this review, we focus on micropropulsion systems, their performance metrics, conventional manufacturing methods, and the advancements in Micro-Electro-Mechanical Systems manufacturing. Full article
Show Figures

Figure 1

19 pages, 2822 KB  
Review
Personalized Plasma Medicine for Cancer: Transforming Treatment Strategies with Mathematical Modeling and Machine Learning Approaches
by Viswambari Devi Ramaswamy and Michael Keidar
Appl. Sci. 2024, 14(1), 355; https://doi.org/10.3390/app14010355 - 30 Dec 2023
Cited by 10 | Viewed by 3514
Abstract
Plasma technology shows tremendous potential for revolutionizing oncology research and treatment. Reactive oxygen and nitrogen species and electromagnetic emissions generated through gas plasma jets have attracted significant attention due to their selective cytotoxicity towards cancer cells. To leverage the full potential of plasma [...] Read more.
Plasma technology shows tremendous potential for revolutionizing oncology research and treatment. Reactive oxygen and nitrogen species and electromagnetic emissions generated through gas plasma jets have attracted significant attention due to their selective cytotoxicity towards cancer cells. To leverage the full potential of plasma medicine, researchers have explored the use of mathematical models and various subsets or approaches within machine learning, such as reinforcement learning and deep learning. This review emphasizes the significant application of advanced algorithms in the adaptive plasma system, paving the way for precision and dynamic cancer treatment. Realizing the full potential of machine learning techniques in plasma medicine requires research efforts, data sharing, and interdisciplinary collaborations. Unraveling the complex mechanisms, developing real-time diagnostics, and optimizing advanced models will be crucial to harnessing the true power of plasma technology in oncology. The integration of personalized and dynamic plasma therapies, alongside AI and diagnostic sensors, presents a transformative approach to cancer treatment with the potential to improve outcomes globally. Full article
Show Figures

Figure 1

13 pages, 5988 KB  
Article
Development of a Laser Micro-Thruster and On-Orbit Testing
by Jifei Ye, Sibo Wang, Hao Chang, Yanji Hong, Nanlei Li, Weijing Zhou, Baoyu Xing, Bangdeng Du and Chengyin Xie
Aerospace 2024, 11(1), 23; https://doi.org/10.3390/aerospace11010023 - 26 Dec 2023
Cited by 6 | Viewed by 2538
Abstract
Laser micro-thrust technology is a type of propulsion that uses a laser beam to ablate a propellant such as a metal or plastic. The ablated material is expelled out the back of the spacecraft, generating thrust. The technology has the advantages of high [...] Read more.
Laser micro-thrust technology is a type of propulsion that uses a laser beam to ablate a propellant such as a metal or plastic. The ablated material is expelled out the back of the spacecraft, generating thrust. The technology has the advantages of high control precision, high thrust–power ratios, and excellent performances, and it has played an important role in the field of micro-propulsion. In this study, a solid propellant laser micro-thruster was developed and then applied for the attitude control of satellites during on-orbit tests. The micro-thruster had a volume of 0.5 U, a weight of 440 g, and a thrust range of 10 μN–0.6 mN. The propellant, 87% glycidyl azide polymer (GAP) + 10% ammonium perchlorate (AP) + 3% carbon nano-powder, was supplied via a double-layer belt, and the average power was less than 10 W. We present the development of the laser micro-thruster, as well as the results regarding the thruster propulsion performance. The thruster was launched into orbit on 27 February 2022 with the Chuangxin Leishen Satellite developed by Spacety. The on-orbit test of the thruster for satellite attitude control was carried out. The thruster was successfully fired in space and played an obvious role in the attitude control of the satellite. The experimental results show that the thrust is about 315 μN. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology)
Show Figures

Figure 1

13 pages, 5889 KB  
Article
Experimental Investigation on Morphological Characteristics and Propulsion Performance of Typical Metals Ablated with Multipulse Nanosecond Laser
by Hao Liu, Jifei Ye, Mingyu Li and Heyan Gao
Aerospace 2023, 10(8), 690; https://doi.org/10.3390/aerospace10080690 - 3 Aug 2023
Cited by 2 | Viewed by 1838
Abstract
For laser ablation micropropulsion technology with metal as the target to increase the total impulse, the effective utilization and supply of a working medium is a crucial aspect. In this research, the ablation characteristics and propulsion performance of the typical metal targets, copper [...] Read more.
For laser ablation micropropulsion technology with metal as the target to increase the total impulse, the effective utilization and supply of a working medium is a crucial aspect. In this research, the ablation characteristics and propulsion performance of the typical metal targets, copper and aluminum, ablated via nanosecond laser ablation are analyzed. Due to the low melting point of aluminum, the protrusion characteristics in the remelted area are more prominent. Its surface morphology has characteristics for height extremum and roughness that are higher than those of copper. Affected by the anisotropy of the rough surface, the absorbed energy decreases with increasing roughness. The impulse coupling coefficient of the metal decreases and stabilizes at about 6 μN·W−1. The specific pulse of aluminum obtains a minimum value of 603.6 s at 6000 pulses and improves with increasing pulses. The propulsion parameters of copper alters slightly under various working conditions, with a maximum specific impulse of 685 s. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology)
Show Figures

Figure 1

9 pages, 4674 KB  
Article
Water Skating Miniature Robot Propelled by Acoustic Bubbles
by Hyeonseok Song, Daegeun Kim and Sangkug Chung
Micromachines 2023, 14(5), 999; https://doi.org/10.3390/mi14050999 - 4 May 2023
Viewed by 2143
Abstract
This paper presents a miniature robot designed for monitoring its surroundings and exploring small and complex environments by skating on the surface of water. The robot is mainly made of extruded polystyrene insulation (XPS) and Teflon tubes and is propelled by acoustic bubble-induced [...] Read more.
This paper presents a miniature robot designed for monitoring its surroundings and exploring small and complex environments by skating on the surface of water. The robot is mainly made of extruded polystyrene insulation (XPS) and Teflon tubes and is propelled by acoustic bubble-induced microstreaming flows generated by gaseous bubbles trapped in the Teflon tubes. The robot’s linear motion, velocity, and rotational motion are tested and measured at different frequencies and voltages. The results show that the propulsion velocity is proportional to the applied voltage but highly depends on the applied frequency. The maximum velocity occurs between the resonant frequencies for two bubbles trapped in Teflon tubes of different lengths. The robot’s maneuvering capability is demonstrated by selective bubble excitation based on the concept of different resonant frequencies for bubbles of different volumes. The proposed water skating robot can perform linear propulsion, rotation, and 2D navigation on the water surface, making it suitable for exploring small and complex water environments. Full article
Show Figures

Figure 1

24 pages, 5182 KB  
Article
Effect of Structural Materials on Monopropellant Thruster Propulsion Performance in Micro Scale
by Jeongmoo Huh and Ki Sun Park
Aerospace 2023, 10(4), 362; https://doi.org/10.3390/aerospace10040362 - 9 Apr 2023
Cited by 5 | Viewed by 2632
Abstract
This paper reports on the effect of structural materials on heat loss-associated propulsion performance degradation of monopropellant thrusters in the micro scale. In order to address the effect of fabrication materials on heat loss, propellant flow characteristics, and propulsion performance, a conjugate heat [...] Read more.
This paper reports on the effect of structural materials on heat loss-associated propulsion performance degradation of monopropellant thrusters in the micro scale. In order to address the effect of fabrication materials on heat loss, propellant flow characteristics, and propulsion performance, a conjugate heat transfer numerical study has been conducted considering several practical substrate candidates for microthrusters. The results were analyzed with respect to the thermal diffusivity of the materials, which revealed different propulsion performance characteristics and inner nozzle flow characteristics due to varying amounts of heat loss, depending on the microfabrication materials used and propellant enthalpies. Regardless of propellant enthalpies, however, there was a dramatic degradation in the amount of the thrust produced with respect to thermal diffusivity, particularly in the range of low thermal diffusivity. Glass, among the material types compatible with fabrication processes in regard to microthrusters, exhibited a 4% degradation in thrust performance for the 50 mN class microthruster considered, with the least degradation, while copper, with 7% degradation, exhibited the greatest amount of degradation among the materials considered. With varying chamber pressure and Mach number at the nozzle exit depending on structural materials, the results also indicated the necessity of heat loss consideration in a microthruster design process. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 9069 KB  
Article
DSMC Simulation of the Effect of Needle Valve Opening Ratio on the Rarefied Gas Flows inside a Micronozzle with a Large Length-to-Diameter Ratio
by Xudong Wang, Yong Li, Yong Gao, Chenguang Gao and Weichun Fu
Aerospace 2023, 10(2), 126; https://doi.org/10.3390/aerospace10020126 - 30 Jan 2023
Cited by 6 | Viewed by 2674
Abstract
The cold gas micro-propulsion system can provide low noise and ultra-high accuracy thrust for satellite platforms for space gravitational wave detection, high-precision earth gravity field measurement. In this study, the effect of different needle valve opening ratios on the rarefied flow characteristics of [...] Read more.
The cold gas micro-propulsion system can provide low noise and ultra-high accuracy thrust for satellite platforms for space gravitational wave detection, high-precision earth gravity field measurement. In this study, the effect of different needle valve opening ratios on the rarefied flow characteristics of a micro-nozzle in a cold gas micro-propulsion system was investigated based on DSMC method. The special feature of the currently studied micro-nozzle is that it has a section of micro-channel with a large length–diameter ratio up to 4.5. Due to the extremely small needle valve displacement of the nozzle (minimum needle valve displacement up to 1.7 μm), a finely structured mesh was used. The molecular particle and macro flow characteristics inside the micro-nozzle were calculated for the conditions of a needle valve opening ratio from 5% to 98%. The throttling effect of the throat has a significant effect on the rarefied flow in the micro-nozzle; especially under the tiny opening, this effect is more significant. The spatial distribution of continuous flow, transition flow, and free molecular flow in the micro-nozzle varies at different needle valve opening ratios. As the needle valve opening ratio increases, the continuous flow will gradually fill the microfluidic region. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges)
Show Figures

Figure 1

22 pages, 5443 KB  
Article
MODELING of Rarefied Gas Flows Inside a Micro-Nozzle Based on the DSMC Method Coupled with a Modified Gas–Surface Interaction Model
by Xuhui Liu, Dong Li, Xinju Fu, Yong Gao and Xudong Wang
Energies 2023, 16(1), 505; https://doi.org/10.3390/en16010505 - 2 Jan 2023
Cited by 6 | Viewed by 3042
Abstract
In this study, we first considered the influence of micro-nozzle wall roughness structure on molecular collision and reflection behavior and established a modified CLL model. The DSMC method was used to simulate and analyze the flow of the micro-nozzle in the cold gas [...] Read more.
In this study, we first considered the influence of micro-nozzle wall roughness structure on molecular collision and reflection behavior and established a modified CLL model. The DSMC method was used to simulate and analyze the flow of the micro-nozzle in the cold gas micro-propulsion system, and the deviation of simulation results before and after the improvement of CLL model were compared. Then, the rarefied flow characteristics under a small needle valve opening (less than 1%) were focused on the research, and the particle position, molecular number density, and spatial distribution of internal energy in the micro-nozzle were calculated. The spatial distributions of the flow mechanism in the micro-nozzle under different needle valve openings were compared and analyzed. It was found that when the needle valve opening is lower than 1%, the slip flow and transition flow regions move significantly upstream of the nozzle, the free molecular flow distribution region expands significantly, and the relationship between thrust force and needle valve opening is obviously different from that of medium and large needle valve openings. The effect of nitrogen temperature on the rarefied flow and thrust force is also discussed in this research. The numerical results showed that as gas temperature increases, the molecular internal energy, momentum, and molecular number density near the nozzle exit are enhanced. The thrust at small needle valve openings was significantly affected by the temperature of the working mass. The results of this study will provide key data for the design and development of cold gas micro-thrusters. Full article
(This article belongs to the Special Issue Recent Advances and Challenges in Space Propulsion Technology)
Show Figures

Figure 1

Back to TopTop