Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = mining-induced earthquakes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7100 KB  
Article
Simulation of Strata Failure and Settlement in the Mining Process Using Numerical and Physical Methods
by Xin Wang, Wenshuai Li and Zhijie Zhang
Appl. Sci. 2025, 15(15), 8706; https://doi.org/10.3390/app15158706 - 6 Aug 2025
Viewed by 315
Abstract
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been [...] Read more.
Coal mining can cause the rupture of the overlying strata, and the energy released by large-scale fractures can therefore induce earthquake disasters, which in turn can cause more secondary disasters. In the past 50 years, countless earthquakes induced by coal mining have been reported. In this paper, the main factors relating to the mining-induced seismicity, including the mechanical properties, geometry of the space, excavation advance, and excavation rate, are investigated using both experimental and numerical methods. The sensitivity of these factors behaves differently with regard to the stress distribution and failure mode. Space geometry and excavation advances have the highest impact on the surface settlement and the failure, while the excavation rate in practical engineering projects has the least impact on the failure mode. The numerical study coincides well with the experimental observation. The result indicates that the mechanical properties given by the geological survey report can be effectively used to assess the risk of mining-induced seismicity, and the proper adjustment of the tunnel geometry can largely reduce the surface settlement and improve the safety of mining. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

24 pages, 16026 KB  
Article
Study on Surface Damage Induced by High Heavy Layer Movement and Mining-Induced Earthquakes
by Zonglong Mu, Jingqi Ji, Jinglong Cao, Maoning Shi, Jiaxin Zhuang, Chunlong Jiang and Jiaxun Li
Appl. Sci. 2025, 15(12), 6577; https://doi.org/10.3390/app15126577 - 11 Jun 2025
Viewed by 412
Abstract
In practice, the bending and fracturing of heavy layers is often considered the primary cause of surface damage, leading to significant environmental impacts, whereas heavy layer-type mining-induced earthquakes are frequently overlooked. This study combines theoretical analysis, UDEC numerical simulations, and industrial experiments to [...] Read more.
In practice, the bending and fracturing of heavy layers is often considered the primary cause of surface damage, leading to significant environmental impacts, whereas heavy layer-type mining-induced earthquakes are frequently overlooked. This study combines theoretical analysis, UDEC numerical simulations, and industrial experiments to investigate the dynamic behavior of heavy layers and the mechanisms through which mining-induced earthquakes trigger surface damage. It aims to demonstrate that heavy layer movement and mining-induced earthquakes cause surface damage and to develop a replicable engineering solution for seismic prevention and subsidence control in heavy layer mining areas. The results reveal that surface damage stems from the synergistic effects of heavy layer fracturing and associated mining-induced earthquakes, where bending subsidence from heavy layer fracturing is the primary driver, and mining-induced earthquakes act as a secondary factor by compressing fragmented rock pores to amplify overlying layer subsidence. Industrial tests at the 7202 working face using deep-hole roof pre-splitting blasting successfully fractured the heavy conglomerate layer, enhanced goaf bulking, and reduced the intensity of layer movement. This intervention significantly decreased the frequency and energy of mining-induced earthquakes, mitigating surface damage. These findings provide a practical framework for the integrated control of mining-induced earthquakes and subsidence in heavy layer environments. Full article
Show Figures

Figure 1

24 pages, 16405 KB  
Article
Control Mechanism of Earthquake Disasters Induced by Hard–Thick Roofs’ Breakage via Ground Hydraulic Fracturing Technology
by Feilong Guo, Mingxian Peng, Xiangbin Meng, Yang Tai and Bin Yu
Processes 2025, 13(3), 919; https://doi.org/10.3390/pr13030919 - 20 Mar 2025
Cited by 1 | Viewed by 446
Abstract
To investigate the mechanism of ground hydraulic fracturing technology in preventing mine earthquakes induced by hard–thick roof (HTR) breakage in coal mines, this study established a Timoshenko beam model on a Winkler foundation incorporating the elastoplasticity and strain-softening behavior of coal–rock masses. The [...] Read more.
To investigate the mechanism of ground hydraulic fracturing technology in preventing mine earthquakes induced by hard–thick roof (HTR) breakage in coal mines, this study established a Timoshenko beam model on a Winkler foundation incorporating the elastoplasticity and strain-softening behavior of coal–rock masses. The following conclusions were drawn: (1) The periodic breaking step distance of a 15.8 m thick HTR on the 61,304 Workface of Tangjiahui coal mine was calculated as 23 m, with an impact load of 15,308 kN on the hydraulic support, differing from measured data by 4.5% and 4.8%, respectively. (2) During periodic breakage, both the bending moment and elastic deformation energy density of the HTR exhibit a unimodal distribution, peaking 1.0–6.5 m ahead of cantilever endpoint O, while their zero points are 40–41 m ahead, defining the breaking position and advanced influence area. (3) The PBSD has a cubic relationship with the peak values of bending moment and elastic deformation energy density, and the exponential relationship with the impact load on the hydraulic support is FZJ=5185.2e0.00431Lp. (4) Theoretical and measured comparisons indicate that reducing PBSD is an effective way to control impact load. The hard–thick roof ground hydraulic fracturing technology (HTRGFT) weakens HTR strength, shortens PBSD, effectively controls impact load, and helps prevent mine earthquakes. Full article
Show Figures

Figure 1

25 pages, 8627 KB  
Article
Mining-Induced Earthquake Risk Assessment and Control Strategy Based on Microseismic and Stress Monitoring: A Case Study of Chengyang Coal Mine
by Weichen Sun, Enyuan Wang, Jingye Li, Zhe Liu, Yunpeng Zhang and Jincheng Qiu
Appl. Sci. 2024, 14(24), 11951; https://doi.org/10.3390/app142411951 - 20 Dec 2024
Cited by 2 | Viewed by 1444
Abstract
As large-scale depletion of shallow coal seams and increasing mining depths intensify, the frequency and intensity of mining-induced earthquake events have significantly risen. Due to the complex formation mechanisms of high-energy mining-induced earthquakes, precise identification and early warning cannot be achieved with a [...] Read more.
As large-scale depletion of shallow coal seams and increasing mining depths intensify, the frequency and intensity of mining-induced earthquake events have significantly risen. Due to the complex formation mechanisms of high-energy mining-induced earthquakes, precise identification and early warning cannot be achieved with a single monitoring method, posing severe challenges to coal mine safety. Therefore, this study conducts an in-depth risk analysis of two high-energy mining-induced earthquake events at the 3308 working face of Yangcheng Coal Mine, integrating microseismic monitoring, stress monitoring, and seismic source mechanism analysis. The results show that, by combining microseismic monitoring, seismic source mechanism inversion, and dynamic stress analysis, critical disaster-inducing factors such as fault activation, high-stress concentration zones, and remnant coal pillars were successfully identified, further revealing the roles these factors play in triggering mining-induced earthquakes. Through multi-dimensional data integration, especially the effective detection of the microseismic “silent period” as a key precursor signal before high-energy mining-induced earthquake events, a critical basis for early warning is provided. Additionally, by analyzing the spatiotemporal distribution patterns of different risk factors, high-risk areas within the mining region were identified and delineated, laying a foundation for formulating precise prevention and control strategies. The findings of this study are of significant importance for mining-induced earthquake risk management, providing effective assurance for safe production in coal mines and other mining environments with high seismic risks. The proposed analysis methods and control strategies also offer valuable insights for seismic risk management in other mining industries, ensuring safe operations and minimizing potential losses. Full article
Show Figures

Figure 1

14 pages, 13165 KB  
Article
Detection and Monitoring of Mining-Induced Seismicity Based on Machine Learning and Template Matching: A Case Study from Dongchuan Copper Mine, China
by Tao Wu, Zhikun Liu and Shaopeng Yan
Sensors 2024, 24(22), 7312; https://doi.org/10.3390/s24227312 - 15 Nov 2024
Cited by 2 | Viewed by 1404
Abstract
The detection and monitoring of mining-induced seismicity are essential for understanding the mechanisms behind earthquakes and mitigating seismic hazards. However, traditional underground seismic monitoring networks for mining-induced seismicity are challenging to install and operate, which has limited their widespread application. In recent years, [...] Read more.
The detection and monitoring of mining-induced seismicity are essential for understanding the mechanisms behind earthquakes and mitigating seismic hazards. However, traditional underground seismic monitoring networks for mining-induced seismicity are challenging to install and operate, which has limited their widespread application. In recent years, an alternative approach has emerged: utilizing dense seismic arrays at the surface to monitor mining-induced seismicity. This paper proposes a rapid and efficient data processing scheme for the detection and monitoring of mining-induced seismicity based on the surface dense array. The proposed workflow includes machine learning-based phase picking and P-wave first-motion-polarity picking, followed by rapid phase association, precise earthquake location, and template matching for detecting small earthquakes to enhance the completeness of the earthquake catalog. Additionally, it also provides focal mechanism solutions for larger mining-induced events. We applied this workflow to the continuous waveform data from 90 seismic stations over a period of 27 days around the Dongchuan Copper Mine, Yunnan Province, China. Our results yielded 1536 high-quality earthquake locations and two focal mechanism solutions for larger events. By analyzing the spatiotemporal distribution of these events, we are able to investigate the mechanisms of the induced seismic clusters near the Shijiangjun and Lanniping deposits. Our findings highlight the excellent monitoring capability and application potential of the workflow based on machine learning and template matching compared with conventional techniques. Full article
(This article belongs to the Special Issue Sensors and Sensing Technologies for Seismic Detection and Monitoring)
Show Figures

Figure 1

38 pages, 18360 KB  
Review
A Review of Rotational Seismology Area of Interest from a Recording and Rotational Sensors Point of View
by Anna T. Kurzych and Leszek R. Jaroszewicz
Sensors 2024, 24(21), 7003; https://doi.org/10.3390/s24217003 - 31 Oct 2024
Cited by 3 | Viewed by 3375
Abstract
This article reviews rotational seismology, considering different areas of interest, as well as measuring devices used for rotational events investigations. After a short theoretical description defining the fundamental parameters, the authors summarized data published in the literature in areas such as the indirect [...] Read more.
This article reviews rotational seismology, considering different areas of interest, as well as measuring devices used for rotational events investigations. After a short theoretical description defining the fundamental parameters, the authors summarized data published in the literature in areas such as the indirect numerical investigation of rotational effects, rotation measured during earthquakes, teleseismic wave investigation, rotation induced by artificial explosions, and mining activity. The fundamental data on the measured rotation parameters and devices used for the recording are summarized and compared for the above areas. In the section on recording the rotational effects associated with artificial explosions and mining activities, the authors included results recorded by a rotational seismograph of their construction—FOSREM (fibre-optic system for rotational events and phenomena monitoring). FOSREM has a broad range of capabilities to measure rotation rates, from several dozen nrad/s to 10 rad/. It can be controlled remotely and operated autonomously for a long time. It is a useful tool for systematic seismological investigations in various places. The report concludes with a short discussion of the importance of rotational seismology and the great need to obtain experimental data in this field. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 18944 KB  
Article
The Detectability of Post-Seismic Ground Displacement Using DInSAR and SBAS in Longwall Coal Mining: A Case Study in the Upper Silesian Coal Basin, Poland
by K. Pawłuszek-Filipiak, N. Wielgocka and Ł. Rudziński
Remote Sens. 2024, 16(14), 2533; https://doi.org/10.3390/rs16142533 - 10 Jul 2024
Cited by 2 | Viewed by 1647
Abstract
The Upper Silesian coal basin (USCB) in Poland faces significant ground deformation issues resulting from mining activities conducted without backfill, which can persist for years. These activities can cause damage to surface structures and phenomena such as induced seismicity. Ground deformations can be [...] Read more.
The Upper Silesian coal basin (USCB) in Poland faces significant ground deformation issues resulting from mining activities conducted without backfill, which can persist for years. These activities can cause damage to surface structures and phenomena such as induced seismicity. Ground deformations can be monitored using differential synthetic aperture radar interferometry (DInSAR). However, various DInSAR approaches have their own advantages and limitations, particularly regarding accuracy and atmospheric filtering. This is especially important for high-frequency displacement signals associated with seismic activity, which can be filtered out. Therefore, this study aims to assess the detectability of mining-induced seismic events using interferometric techniques, focusing on the USCB area. In this experiment, we tested two InSAR approaches: conventional DInSAR without atmospheric filtering and the small baseline subset (SBAS) approach, where the atmospheric phase screen was estimated and removed using high-pass and low-pass filtering. The results indicate that, in most cases, post-seismic ground displacement is not detectable using both methods. This suggests that mining-related seismic events typically do not cause significant post-seismic ground displacement. Out of the 17 selected seismic events, only two were clearly visible in the DInSAR estimated deformation, while for four other events, some displacement signals could neither be definitively confirmed nor negated. Conversely, only one seismic event was clearly detectable in the SBAS displacement time series, with no evidence of induced tremors found for the other events. DInSAR proved to be more effective in capturing displacement signals compared to SBAS. This could be attributed to the small magnitude of the tremors and, consequently, the small size of the seismic sources. Throughout the investigated period, all registered events had magnitudes less than 4.0. This highlights the challenge of identifying any significant influence of low-magnitude tremors on ground deformation, necessitating further investigations. Moreover, SBAS techniques tend to underestimate mining displacement rates, leading to smoothed deformation estimates, which may render post-seismic effects invisible for events with low magnitudes. However, after an in-depth analysis of the 17 seismic events in the USCB, DInSAR was found to be more effective in capturing displacement signals compared to SBAS. This indicates the need for significant caution when applying atmospheric filtering to high-frequency displacement signals. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

21 pages, 18737 KB  
Article
Research on the Laws of Overlying Rock Fracture and Energy Release under Different Mining Speeds
by Xin Yu, Mingshi Gao, Hongchao Zhao, Shifan Zhao and Huashan Zhao
Appl. Sci. 2024, 14(8), 3222; https://doi.org/10.3390/app14083222 - 11 Apr 2024
Cited by 3 | Viewed by 1222
Abstract
Mining activities are key triggers for strong mine earthquakes and even rock bursts in coal mines. This study explores the impact of mining speed on the overlying strata’s deformation and energy release through theoretical analysis, numerical simulation, and the digital speckle method. The [...] Read more.
Mining activities are key triggers for strong mine earthquakes and even rock bursts in coal mines. This study explores the impact of mining speed on the overlying strata’s deformation and energy release through theoretical analysis, numerical simulation, and the digital speckle method. The temporal and spatial evolution characteristics of the impact energy during mining are simulated. The digital speckle method illustrates a positive correlation between rapid mining and increased fracture block degree of overburden rock and roof separation, confirming that accelerated mining speed extends the fracture distance of the stope. Furthermore, numerical simulations establish that both the energy associated with overlying rock breaking and the frequency of energy occurrence events are amplified during rapid mining, in contrast to slow mining. This observation corroborates that escalating mining speed augments the energy dispensed by the breaking of the upper rock. Consequently, this escalation induces a transformation in the energy levels of mine earthquakes, culminating in a heightened incidence of large-energy mine earthquakes. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

23 pages, 10508 KB  
Article
On the Susceptibility of Reinforced Concrete Beam and Rigid-Frame Bridges Subjected to Spatially Varying Mining-Induced Seismic Excitation
by Paweł Boroń, Izabela Drygała, Joanna Maria Dulińska and Szymon Burdak
Materials 2024, 17(2), 512; https://doi.org/10.3390/ma17020512 - 21 Jan 2024
Viewed by 1328
Abstract
This paper aims to identify the optimal reinforced concrete bridge construction for regions at risk of mining-induced seismic shocks. This study compares the performances of two common bridge types made of the same structural tissue, i.e., a reinforced concrete beam bridge and rigid-frame [...] Read more.
This paper aims to identify the optimal reinforced concrete bridge construction for regions at risk of mining-induced seismic shocks. This study compares the performances of two common bridge types made of the same structural tissue, i.e., a reinforced concrete beam bridge and rigid-frame bridge under real mining-induced tremors using uniform and spatially varying ground motion models. This study investigates the dynamic responses of the bridges depending on wave velocity and assesses their susceptibility to mining-triggered tremors based on the contribution of quasi-static and dynamic effects in the global dynamic responses of the bridges. This study revealed significant changes in dynamic response under spatially varying ground excitation for both bridge types. It was observed that rigid-frame bridges show higher susceptibility to quasi-static effects due to their stiffness, whereas beam bridges are more susceptible to dynamic stresses. This study recommends that in regions with mining tremors, the choice between bridge types should consider the possibility of limiting individual components of stress. A solution may involve the reduction in quasi-static components through structural reinforcement or decreasing dynamic components by using vibration absorbers. It was found that beam bridges are more cost-effective and practical in mining-affected areas, especially when founded on weak grounds. Full article
Show Figures

Figure 1

18 pages, 5450 KB  
Article
Strata Movement and Mining-Induced Stress Identification for an Isolated Working Face Surrounded by Two Goafs
by Yingyuan Wen, Anye Cao, Wenhao Guo, Chengchun Xue, Guowei Lv and Xianlei Yan
Energies 2023, 16(6), 2839; https://doi.org/10.3390/en16062839 - 18 Mar 2023
Cited by 10 | Viewed by 1763
Abstract
Solutions for the maintenance of safety in an isolated working face has not been well achieved; this is attributed to its unique overburden structure and the strong mining-induced stress during the advancement. This paper is devoted to filling this research gap and is [...] Read more.
Solutions for the maintenance of safety in an isolated working face has not been well achieved; this is attributed to its unique overburden structure and the strong mining-induced stress during the advancement. This paper is devoted to filling this research gap and is based on the case study of LW 10304 in the Xinglongzhuang Coal Mine, in China. The overburden structure and stress distribution characteristics of this isolated working face were theoretically investigated, followed by the development of a comprehensive identification method. The research results showed the following: (1) The overburden strata of LW 10304 is in the form of a short “T” shape and the stress increment is featured with the overall “saddle” shape before the extraction of the isolated working face. During this period, the lower key strata and main key strata affect the stress level at the two ends and the central part of the working face, respectively; (2) Both the frequency and energy of micro-earthquakes in the working face account for more than 95%, which is positively correlated with roof damage and rib spalling, associated with some overlaps between the damaged zones; (3) The fracture movement of inferior key strata near the coal seam plays a dominant role in affecting microseism activity and mining-induced stress. The microseism energy attributed to roof breakage accounts for 43.34% of the overall energy; (4) A comprehensive indexing system, covering microseism frequency, microseism energy, and support resistance, was established to identify the mining-induced stress intensity of the isolated working face. The early warning efficiency of the “strong” degree of mining-induced stress is 0.94, which is believed to provide an option for other isolated working faces with similar geological and mining conditions. Full article
(This article belongs to the Special Issue New Challenges in the Utilization of Underground Energy and Space)
Show Figures

Figure 1

22 pages, 6843 KB  
Article
Study on Dynamic Disaster Mechanisms of Thick Hard Roof Induced by Hydraulic Fracturing in Surface Vertical Well
by Xiaoguang Shang, Sitao Zhu, Fuxing Jiang, Jinhai Liu, Jiajie Li, Michael Hitch, Hongliang Liu, Shibin Tang and Chun Zhu
Minerals 2022, 12(12), 1537; https://doi.org/10.3390/min12121537 - 29 Nov 2022
Cited by 12 | Viewed by 2060
Abstract
With the increase in mining depth and the deterioration of mining conditions, thick and hard overburden movement frequently induces mine earthquakes and rock bursts. Some mines are expected to prevent and control super thick hard rock mine earthquakes through vertical ground well water [...] Read more.
With the increase in mining depth and the deterioration of mining conditions, thick and hard overburden movement frequently induces mine earthquakes and rock bursts. Some mines are expected to prevent and control super thick hard rock mine earthquakes through vertical ground well water fracturing technology. However, the dynamic underground disaster appears more intense. Taking the ‘11.30’ mine earthquake in a mine in Shandong Province as the engineering background, the dynamic disaster mechanism of an extraordinarily thick and hard roof induced by hydraulic fracturing of vertical wells on the ground was studied utilizing field investigation, accident case analysis, similar material simulation test, and theoretical analysis. The main conclusions are as follows: (1) After hydraulic fracturing vertical wells on the ground, the movement mode of thick and hard roofs changed from layer-by-layer to overall sliding movement; (2) The influence range of the advanced abutment pressure of the working face is reduced by the hydraulic fracturing of the vertical shaft, and the peak value of the advanced abutment pressure increases. Furthermore, the advanced abutment pressure’s peak is far from the coal wall; (3) The hydraulic fracturing technology of cross-arranged vertical surface deep and shallow wells and the hydraulic fracturing technology of cross-perforated surface multi-branch horizontal wells are proposed to avoid the dynamic disaster of overall sliding movement of an extremely thick hard roof induced by surface hydraulic fracturing. Therefore, these research results provide significance for preventing and controlling mine earthquakes and rock bursts in super thick hard roof mines. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

18 pages, 4019 KB  
Article
The Impact of Surface Water Seepage on Seismicity and Rockbursting in Mines
by Anatoly Kozyrev, Andrian Batugin, Jianping Zuo and Svetlana Zhukova
Sustainability 2022, 14(22), 15414; https://doi.org/10.3390/su142215414 - 20 Nov 2022
Cited by 4 | Viewed by 2530
Abstract
Retrospective analysis of data obtained from long-term monitoring of technogenic seismicity and rockbursts at the Apatitovy Tsirk and the Rasvumchorr Plateau deposits (Russia) showed that there is a significant (by 50% or more) increase in the number of geodynamic events during spring snowmelt [...] Read more.
Retrospective analysis of data obtained from long-term monitoring of technogenic seismicity and rockbursts at the Apatitovy Tsirk and the Rasvumchorr Plateau deposits (Russia) showed that there is a significant (by 50% or more) increase in the number of geodynamic events during spring snowmelt periods. An upswing of seismic activity within this rock massif occurs when following conditions are true: water reserve in the snow cover on the deposit area is more than 3 × 108 m3; snowmelt period exceeds 40 days; increase in water ingress rates continues for over 5 days and total water inflow volume exceeds the previous daily measurements by at least a factor of 2. Seismic activity of the massif starts to intensify after the snowmelt develops momentum. Major induced earthquakes occurred in the years when these conditions were met (for example, in 2005 there was a magnitude 2.3 earthquake; in 2009, M = 1.6 earthquake), and more than 1000 seismic events were recorded during the snowmelt period. It has been established that when mining reaches the depths of more than 500 m, seismic events during infiltration of atmospheric precipitation begin to occur from a depth of 100–200 m and are recorded to depths of about 900 m. A possible controlling factor of the seismic activation is the reactivation of tectonic faults, which occurs under conditions of the critically stressed state of the massif, due to a decrease in their normal compression during infiltration. Retrospective analysis of the factors contributing to a strong rockburst (K = 10–11) in 1990 at a bauxite mine in the South Urals shows that prior to this disaster there was an inrush of the Ai River waters into the mine workings through a large tectonic disturbance, which has not been previously taken into account when analyzing the mechanism of this geodynamic event. The intrusion of water into the fault located in the field of regional stresses and subsequent partial relief of its fault plane from normal stresses could have triggered the rockburst with fault-slip mechanism. The study of the relationship between amount of precipitation and the degree of water encroachment into the field, on the one hand, and seismicity, on the other hand, is needed to draw up recommendations on improving geodynamic and environmental safety of mining regions in order to ensure their sustainable development. Full article
Show Figures

Figure 1

28 pages, 7686 KB  
Article
Statistical Analysis of the Potential of Landslides Induced by Combination between Rainfall and Earthquakes
by Chih-Ming Tseng, Yie-Ruey Chen, Chwen-Ming Chang, Ya-Ling Yang, Yu-Ru Chen and Shun-Chieh Hsieh
Water 2022, 14(22), 3691; https://doi.org/10.3390/w14223691 - 15 Nov 2022
Cited by 3 | Viewed by 2961
Abstract
This study analyzed the potential of landslides induced by the interaction between rainfall and earthquakes. Dapu Township and Alishan Township in Chiayi County, southern Taiwan, were included as study areas. From satellite images and the literature, we collected data for multiple years and [...] Read more.
This study analyzed the potential of landslides induced by the interaction between rainfall and earthquakes. Dapu Township and Alishan Township in Chiayi County, southern Taiwan, were included as study areas. From satellite images and the literature, we collected data for multiple years and time series and then used the random forest data mining algorithm for satellite image interpretation. A hazard index for the interaction between earthquakes and rainfall (IHERI) was proposed, and an index for the degree of land disturbance (IDLD) was estimated to explore the characteristics of IHERI under specific natural environmental and slope land use conditions. The results revealed that among the investigated disaster-causing factors, the degree of slope land use disturbance, the slope of the natural environment, and rainfall exerted the strongest effect on landslide occurrence. When IHERI or IDLD was higher, the probability of a landslide also increased, and under conditions of a similar IDLD, the probability of landslides increased as the IHERI value increased, and vice versa. Thus, given the interaction between rainfall and earthquakes in the study area, the effect of the degree of slope land use disturbance on landslides should not be ignored. The results of a receiver operating characteristic (ROC) curve analysis indicated that the areas under the ROC curve for landslides induced by different trigger factors were all above 0.94. The results indicate that the area in which medium–high-level landslides are induced by an interaction between rainfall and earthquakes is large. Full article
(This article belongs to the Special Issue Rainfall-Induced Geological Disasters)
Show Figures

Figure 1

23 pages, 9389 KB  
Article
Focal Mechanism and Source Parameters Analysis of Mining-Induced Earthquakes Based on Relative Moment Tensor Inversion
by Anye Cao, Yaoqi Liu, Fan Chen, Qi Hao, Xu Yang, Changbin Wang and Xianxi Bai
Int. J. Environ. Res. Public Health 2022, 19(12), 7352; https://doi.org/10.3390/ijerph19127352 - 15 Jun 2022
Cited by 14 | Viewed by 2979
Abstract
Mining-induced earthquakes (MIEs) in underground coal mines have been a common phenomenon that easily triggers rock bursts, but the mechanism is not understood clearly. This research investigates the laws of focal mechanism and source parameters based on focal mechanism and source parameters analysis [...] Read more.
Mining-induced earthquakes (MIEs) in underground coal mines have been a common phenomenon that easily triggers rock bursts, but the mechanism is not understood clearly. This research investigates the laws of focal mechanism and source parameters based on focal mechanism and source parameters analysis of MIEs in three frequent rock burst areas. The relative moment tensor inversion (MTI) method was introduced, and the way to construct the inversion matrix was modified. The minimum ray and source number conditions were calculated, and an optimized identification criterion for source rupture type was proposed. Results show that the geological structure, stress environment, and source horizon influence the focal mechanism. The tensile type sources can distribute in the roof and coal seam, while the shear types are primarily located in the coal seam. In the typical fold structure area, the difference in source rupture strength and stress adjustment between tensile and shear types is negligible, while the disturbance scale of tensile types is distinct. The shear types have higher apparent volume and seismic moment in the deep buried fault area but lower source energy. The apparent stress of the tensile types is higher than that of the shear types, representing that the stress concentration still exists in the roof after the MIEs, but the stress near the faults could be effectively released. In the high-stress roadway pillar area, the primary fracture of the coal pillar easily produces a continuous shear rupture along the dominant stress direction under the extrusion of the roof and floor. The source parameters (except apparent stress) of shear types are higher than tensile types and have higher dynamic risk. The results contribute to expanding the understanding of rock burst mechanisms and guide MIEs’ prevention. Full article
(This article belongs to the Special Issue Full Life-Cycle Safety Management of Coal and Rock Dynamic Disasters)
Show Figures

Figure 1

17 pages, 1881 KB  
Article
Statistical Modeling of the Seismic Moments via Mathai Distribution
by Pedro Vega-Jorquera, Erick De la Barra, Héctor Torres and Yerko Vásquez
Entropy 2022, 24(5), 695; https://doi.org/10.3390/e24050695 - 14 May 2022
Cited by 3 | Viewed by 2194
Abstract
Mathai’s pathway model is playing an increasingly prominent role in statistical distributions. As a generalization of a great variety of distributions, the pathway model allows the studying of several non-linear dynamics of complex systems. Here, we construct a model, called the Pareto–Mathai distribution, [...] Read more.
Mathai’s pathway model is playing an increasingly prominent role in statistical distributions. As a generalization of a great variety of distributions, the pathway model allows the studying of several non-linear dynamics of complex systems. Here, we construct a model, called the Pareto–Mathai distribution, using the fact that the earthquakes’ magnitudes of full catalogues are well-modeled by a Mathai distribution. The Pareto–Mathai distribution is used to study artificially induced microseisms in the mining industry. The fitting of a distribution for entire range of magnitudes allow us to calculate the completeness magnitude (Mc). Mathematical properties of the new distribution are studied. In addition, applying this model to data recorded at a Chilean mine, the magnitude Mc is estimated for several mine sectors and also the entire mine. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

Back to TopTop