Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = natural mineral vermiculite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4037 KB  
Article
Tuning Magneto-Birefringence of Two-Dimensional Vermiculite Dispersions Through Magnetic Ion Exchange
by An Wu, Tengxuan Cao, Hangkuan Ji, Wenjun Kuang, Jiarong Liu, Zichen Song, Jiandong Yao and Yi-Chao Zou
Inorganics 2025, 13(5), 139; https://doi.org/10.3390/inorganics13050139 - 29 Apr 2025
Viewed by 521
Abstract
Liquid crystals based on dispersions of two-dimensional (2D) materials have recently been developed for light modulation, exhibiting superior performances compared to conventional organic liquid crystals in a variety of prototypical applications, including coloration, solar-blind communications and blue-light fluoresce. Among the diverse family of [...] Read more.
Liquid crystals based on dispersions of two-dimensional (2D) materials have recently been developed for light modulation, exhibiting superior performances compared to conventional organic liquid crystals in a variety of prototypical applications, including coloration, solar-blind communications and blue-light fluoresce. Among the diverse family of 2D liquid crystals, vermiculite-based liquid crystals stand out with advantages in low cost, ease of mass production and environmental sustainability, owing to the high natural abundance of the material. Here, we demonstrated magnetic-field tunable optics with 2D vermiculite dispersions prepared through a facile ‘exchange and redispersion’ method. By exploiting the intrinsic ion-exchange capability of clay minerals, we observed a significantly enhanced magneto-birefringence of the vermiculite dispersion upon replacing the native cations with magnetic ions, manifesting in a doubled Cotton–Mouton coefficient, representing the highest value among previous reports. Magnetization measurements reveal that there is a remarkable magnetic anisotropy in Fe ion-exchanged vermiculite samples in contrast to the isotropic magnetism of pristine vermiculite, which accounts for the observed enhancement of magneto-birefringence. Our findings demonstrate that ion exchange can serve as a simple and effective strategy to modulate the physical and chemical properties of 2D materials’ dispersions, thereby opening avenues for broader and more diverse applications. Full article
(This article belongs to the Special Issue Physicochemical Characterization of 2D Materials)
Show Figures

Graphical abstract

19 pages, 4826 KB  
Article
Mechanisms and Implications of Phosphate Retention in Soils: Insights from Batch Adsorption Experiments and Geochemical Modeling
by Zhi Tang, Zeyong Chi, Fengcheng Jiang, Mingzhe Zhao, Shengbo Fu, Lingqiao Wei, Qingsheng Feng, Yongming Wu and Nuchao Xu
Water 2025, 17(7), 998; https://doi.org/10.3390/w17070998 - 28 Mar 2025
Viewed by 1162
Abstract
Soil plays a critical role as a natural barrier in mitigating the infiltration of industrial-derived phosphate pollution into groundwater, with its phosphate retention capacity governed mainly by its mineralogical composition. In this study, three soil samples were collected from the Huangmailing phosphate mine [...] Read more.
Soil plays a critical role as a natural barrier in mitigating the infiltration of industrial-derived phosphate pollution into groundwater, with its phosphate retention capacity governed mainly by its mineralogical composition. In this study, three soil samples were collected from the Huangmailing phosphate mine area, and the minerals responsible for phosphate retention were identified through batch adsorption experiments, chemical extraction, and spectroscopy analyses. The distribution of phosphate retention within soil samples was further quantified using a geochemical model. The results indicate that the adsorption capacity of soils to phosphate ranges from 0.193 to 0.217 mg/g. Adsorption equilibrium was reached at 750 min, conforming to the intra-particle diffusion kinetic model. Elevated temperatures facilitate phosphate adsorption. Under acidic and neutral conditions, approximately 80–90% of the phosphate is adsorbed onto iron oxides, primarily through inner-sphere surface complexation, thus unaffected by ionic strength. Under alkaline conditions, the retention mechanism was dominated by the release of exchangeable Ca2+ from vermiculite and biotite, as well as the precipitation of hydroxyapatite. Notably, the critical pH at which the retention mechanism shifts decreased with increasing content of layered silicate minerals and the concentration of cations in the solution. Our study underscores the distinct roles of effective minerals in phosphate retention under different pH conditions and highlights the significance of exchangeable Ca2+ in layered silicate minerals under alkaline conditions. Based on these findings, it is recommended that sites with favorable mineralogical characteristics tailored to the pH of phosphate-containing wastewater be prioritized for phosphorus chemical industries. This study also assesses the cost-effectiveness of adding vermiculite to soil in industrial and agricultural applications. The findings can provide a scientific basis for preventing groundwater phosphorus pollution in critical areas. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

16 pages, 6704 KB  
Article
Marble Waste Dump Yard in Rajasthan, India Revealed as a Potential Asbestos Exposure Hazard
by Raja Singh, Sean Fitzgerald, Rima Dada and Arthur L. Frank
Int. J. Environ. Res. Public Health 2025, 22(2), 215; https://doi.org/10.3390/ijerph22020215 - 4 Feb 2025
Viewed by 2769
Abstract
Asbestos is a fibrous variety of certain minerals, some of which occur naturally as an accessory to a wide variety of mineral resources. Although asbestos itself has been historically mined for various useful properties, the negative health effects of asbestos dust have greatly [...] Read more.
Asbestos is a fibrous variety of certain minerals, some of which occur naturally as an accessory to a wide variety of mineral resources. Although asbestos itself has been historically mined for various useful properties, the negative health effects of asbestos dust have greatly diminished it as a useful earth material, as many countries have banned the use of these fibrous minerals based on those health concerns. Resulting regulations of asbestos have focused primarily on intentionally mined material used in product manufacturing, such as building materials made with beneficiated asbestos and their derivative exposures, e.g., airborne asbestos in schools with asbestos-containing materials. The hazards of asbestos as unintended byproducts have not been as extensively considered, although this “contamination” has been repeatedly observed in common earth materials including talc, vermiculite, sand, and gravel. This study reveals such contamination of ornamental and dimension stone commonly referred to as “marble”. Asbestos types that can be associated with certain Indian marble reserves include asbestiform tremolite, actinolite, anthophyllite, and chrysotile asbestos. This case reveals such contamination in a marble reserve in Rajsamand, Rajasthan. At this location, marble dust in slurry is disposed at waste collection points, unfortunately including a location now open to the public that has become a tourist destination. Using Transmission Electron Microscopy (TEM) in this study, dust from this location revealed abundant tremolite asbestos fibres in the disaggregated dust. This poses potential health risks to the workers, bystanders, and tourists that may be exposed to this recognized carcinogen, a known cause of mesothelioma, lung cancer, and other asbestos-related diseases. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

13 pages, 3642 KB  
Article
Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid Using a Natural Mineral Vermiculite-Loaded Gold–Palladium Bimetallic Catalyst
by Hongke Li, Yiwang Li, Qinghua Xia, Yiran Liu, Wen Guan and Yao Chen
Catalysts 2024, 14(12), 949; https://doi.org/10.3390/catal14120949 - 22 Dec 2024
Cited by 2 | Viewed by 1109
Abstract
Upgrading the bio-derived platform chemical 5-hydroxymethylfurfural (HMF) into the high value-added bioplastic monomer 2,5-furandicarboxylic acid (FDCA) is a promising pathway for biomass conversion. In this work, the natural and abundant available mineral vermiculite was employed as a carrier for loading a Au-Pd bimetal [...] Read more.
Upgrading the bio-derived platform chemical 5-hydroxymethylfurfural (HMF) into the high value-added bioplastic monomer 2,5-furandicarboxylic acid (FDCA) is a promising pathway for biomass conversion. In this work, the natural and abundant available mineral vermiculite was employed as a carrier for loading a Au-Pd bimetal catalyst. Due to the high dispersion of bimetallic nanoparticles, this synthesized vermiculite-supported Au-Pd bimetal catalyst revealed excellent catalytic performance for the aerobic oxidation of HMF to FDCA. By adjusting the ratio of Au and Pd metals, the catalytic performance of the catalyst can be optimized. Finally, 100% HMF conversion and 99.9% FDCA yield could be obtained under the conditions of Au/Pd = 2/1, 2 h, 2 MPa O2, and 100 °C. The catalyst revealed good stability, and the FDCA yield can be maintained at 90.1% after five recycle usages. The physicochemical properties of the synthesized catalysts were characterized by various characterization methods. It could be concluded that the high dispersion and alloying effect of bimetallic nanoparticles promoted the activation of reactants and intermediates, resulting in the effective production of FDCA. This study could provide ideas and references for the development and utilization of natural minerals and also offer a new way to realize the efficient conversion of HMF to FDCA under green conditions. Full article
(This article belongs to the Special Issue Mineral-Based Composite Catalytic Materials)
Show Figures

Graphical abstract

17 pages, 4953 KB  
Article
Oxidation of Geraniol on Vermiculite—The Influence of Selected Parameters on the Oxidation Process
by Sylwia Gajewska, Agnieszka Wróblewska, Anna Fajdek-Bieda, Adrianna Kamińska, Joanna Sreńscek-Nazzal, Piotr Miądlicki and Beata Michalkiewicz
Catalysts 2024, 14(10), 714; https://doi.org/10.3390/catal14100714 - 12 Oct 2024
Cited by 1 | Viewed by 1982
Abstract
Geraniol is a compound belonging to the group of monoterpenes that finds many applications in organic syntheses, medicine and cosmetics. The following properties of geraniol and its derivatives are of particular interest in medicine: its anti-inflammatory, antioxidant, antimicrobial and anticancer effects. The geraniol [...] Read more.
Geraniol is a compound belonging to the group of monoterpenes that finds many applications in organic syntheses, medicine and cosmetics. The following properties of geraniol and its derivatives are of particular interest in medicine: its anti-inflammatory, antioxidant, antimicrobial and anticancer effects. The geraniol oxidation process was carried out using a mineral of natural origin—vermiculite. Vermiculite is a catalyst that perfectly fits into modern trends in the organic industry, where the aim is to use cheap, renewable and relatively easily available catalytic materials (vermiculite is found on continents including Africa, North America, South America, Australia and Asia). Preliminary studies on the oxidation process of geraniol on vermiculite was carried out in a glass apparatus using molecular oxygen supplied by means of a bubbler and magnetic stirrer with a heating function. During the oxidation process of geraniol on vermiculite, the influence of the following parameters was examined: the temperature, amount of catalyst and reaction time. The main parameters of the process, on the basis of which the most favorable process conditions were selected, were the selectivity of the transformation to 2,3-epoxygeraniol, citral and 2,3-epoxycitral, and the conversion of geraniol. The composition of the post-reaction mixtures was determined qualitatively and quantitatively using the gas chromatography method. In addition, vermiculite was subjected to instrumental tests, such as XRD, SEM, EDX, FTIR and UV-VIS. Moreover, the specific surface area, pore volume and pore volume distribution were estimated on the basis of N2 sorption at −196 °C and also the acid-site concentration in vermiculite was established. Full article
Show Figures

Graphical abstract

22 pages, 765 KB  
Entry
Physical-Chemical Properties of Nano-Sized Phyllosilicates: Recent Environmental and Industrial Advancements
by Chiara Elmi
Encyclopedia 2023, 3(4), 1439-1460; https://doi.org/10.3390/encyclopedia3040103 - 17 Nov 2023
Cited by 10 | Viewed by 4290
Definition
Phyllosilicates are common minerals that include the most widely known micas and clay minerals. These minerals are found in several natural environments and have unique physical-chemical features, such as cation exchange capacity (CEC) and surface charge properties. When phyllosilicates are nano-sized, their physical-chemical [...] Read more.
Phyllosilicates are common minerals that include the most widely known micas and clay minerals. These minerals are found in several natural environments and have unique physical-chemical features, such as cation exchange capacity (CEC) and surface charge properties. When phyllosilicates are nano-sized, their physical-chemical properties are enhanced from those of the micro-sized counterpart. Because of their unique crystal chemical and physical-chemical features, kinetics, and particle size, nano-sized clay minerals (i.e., kaolinite, montmorillonite/illite) and micas (i.e., muscovite) are of great interest in several fields spanning from environmental applications to engineered materials. This paper aims to overview the recent developments of environmental protection and technological applications employing nano-sized natural micas and clay minerals. Emphasis is given to the role that the unique physical-chemical properties of montmorillonite, vermiculite, kaolinite, and muscovite play in nanoparticle formulations, manufacture, and technical performance. Full article
(This article belongs to the Section Chemistry)
Show Figures

Graphical abstract

15 pages, 4655 KB  
Article
An Investigative Study on the Structural, Thermal and Mechanical Properties of Clay-Based PVC Polymer Composite Films
by Neeraj Kumari, Chandra Mohan and Arvind Negi
Polymers 2023, 15(8), 1922; https://doi.org/10.3390/polym15081922 - 18 Apr 2023
Cited by 26 | Viewed by 3045
Abstract
The present study aims to explore the impact of pristine and surfactant-modified clays (montmorillonite, bentonite and vermiculite) on the thermomechanical properties of a poly (vinyl chloride) (PVC) polymer film. Initially, clay was modified by employing the ion exchange method. The modification of clay [...] Read more.
The present study aims to explore the impact of pristine and surfactant-modified clays (montmorillonite, bentonite and vermiculite) on the thermomechanical properties of a poly (vinyl chloride) (PVC) polymer film. Initially, clay was modified by employing the ion exchange method. The modification of clay minerals was confirmed by the XRD pattern and thermogravimetric analysis. Pristine PVC polymer film and clay (montmorillonite, bentonite and vermiculite)-based PVC polymer composite films were fabricated using solution casting. The ideal dispersion of surfactant-modified organo-clays was observed in the PVC polymer matrix due to the hydrophobic nature of modified clays. The resultant pure polymer film and clay polymer composite film were characterized using XRD and TGA, and their mechanical properties were determined using a tensile strength tester and Durometer. From the XRD pattern, the intercalation of the PVC polymer film was found in the interlayer of organo-clay while exfoliation or partial intercalation and exfoliation were observed for pristine clay mineral-based PVC polymer composite films. Thermal analysis indicated a lowering of the decomposition temperature of the composite film as clay promotes the thermal degradation temperature of PVC. Improvement in the tensile strength and hardness was found to be more frequent in the case of organo-clay-based PVC polymer films, which is only due to the hydrophobic nature of organ clays, resulting in greater compatibility with the polymer matrix. Full article
(This article belongs to the Special Issue Thermoplastic Polymer-Based Multifunctional Materials)
Show Figures

Figure 1

18 pages, 4443 KB  
Article
Properties of Sound Absorption Composite Materials Developed Using Flax Fiber, Sphagnum Moss, Vermiculite, and Sapropel
by Daira Sleinus, Maris Sinka, Aleksandrs Korjakins, Vaira Obuka, Vizma Nikolajeva, Raitis Brencis and Estere Savicka
Materials 2023, 16(3), 1060; https://doi.org/10.3390/ma16031060 - 25 Jan 2023
Cited by 13 | Viewed by 3427
Abstract
To address the need to reduce consumption and pollution in the industrial sector, composite materials were created using a new type of raw materials—organic lake sediments (sapropel) as a binder; sphagnum moss, flax fiber, and vermiculite as a filler. The main application of [...] Read more.
To address the need to reduce consumption and pollution in the industrial sector, composite materials were created using a new type of raw materials—organic lake sediments (sapropel) as a binder; sphagnum moss, flax fiber, and vermiculite as a filler. The main application of these composite materials is for sound absorption and moisture buffering, but since they contain bio-based binders and fillers, they also work as carbon storage. Within the framework of this work, a total of 100 samples of composite materials were created. Fungicides—a biocide quaternary ammonium compound and its natural substitute montmorillonite mineral material were also added to the materials to improve microbiological stability. The mechanical sound absorption and microbiological properties of materials were investigated and compared to similar environmentally friendly materials, such as hemp-lime concrete (FHL), hemp magnesium oxychloride composite (MOC), and hemp magnesium phosphate cement (MPC). The results showed that sound absorption and mechanical and microbial properties of the created composite materials are sufficient for their intended use, with flax fiber and vermiculite composites showing more stable mechanical, sound absorbing, and microbiological stability properties than materials containing flax fiber and moss. Full article
Show Figures

Figure 1

12 pages, 2542 KB  
Article
Facile Synthesis of Two-Dimensional Natural Vermiculite Films for High-Performance Solid-State Electrolytes
by Yan Xing, Xiaopeng Chen, Yujia Huang, Xiali Zhen, Lujun Wei, Xiqiang Zhong and Wei Pan
Materials 2023, 16(2), 729; https://doi.org/10.3390/ma16020729 - 11 Jan 2023
Cited by 4 | Viewed by 2513
Abstract
Ceramic electrolytes hold application prospects in all-solid-state lithium batteries (ASSLB). However, the ionic conductivity of ceramic electrolytes is limited by their large thickness and intrinsic resistance. To cope with this challenge, a two-dimensional (2D) vermiculite film has been successfully prepared by self-assembling expanded [...] Read more.
Ceramic electrolytes hold application prospects in all-solid-state lithium batteries (ASSLB). However, the ionic conductivity of ceramic electrolytes is limited by their large thickness and intrinsic resistance. To cope with this challenge, a two-dimensional (2D) vermiculite film has been successfully prepared by self-assembling expanded vermiculite nanosheets. The raw vermiculite mineral is first exfoliated to thin sheets of several atomic layers with about 1.2 nm interlayer channels by a thermal expansion and ionic exchanging treatment. Then, through vacuum filtration, the ion-exchanged expanded vermiculite (IEVMT) sheets can be assembled into thin films with a controllable thickness. Benefiting from the thin thickness and naturally lamellar framework, the as-prepared IEVMT thin film exhibits excellent ionic conductivity of 0.310 S·cm−1 at 600 °C with low excitation energy. In addition, the IEVMT thin film demonstrates good mechanical and thermal stability with a low coefficient of friction of 0.51 and a low thermal conductivity of 3.9 × 10−3 W·m−1·K−1. This reveals that reducing the thickness and utilizing the framework is effective in increasing the ionic conductivity and provides a promising stable and low-cost candidate for high-performance solid electrolytes. Full article
Show Figures

Figure 1

10 pages, 2240 KB  
Article
Acid Leaching Vermiculite: A Multi-Functional Solid Catalyst with a Strongly Electrostatic Field and Brönsted Acid for Depolymerization of Cellulose in Water
by Xingtao Chen, Dongshen Tong, Zhi Fang, Zhenpeng Gao and Weihua Yu
Molecules 2022, 27(10), 3149; https://doi.org/10.3390/molecules27103149 - 14 May 2022
Cited by 6 | Viewed by 2282
Abstract
Vermiculite is a natural mineral. In this study, vermiculite and acid-activated vermiculite was used as a solid acid catalyst for the hydrolysis of cellulose in water. The catalysts were characterized by XRD, FT-IR, and BET. The effects of time, temperature, mass ratio and [...] Read more.
Vermiculite is a natural mineral. In this study, vermiculite and acid-activated vermiculite was used as a solid acid catalyst for the hydrolysis of cellulose in water. The catalysts were characterized by XRD, FT-IR, and BET. The effects of time, temperature, mass ratio and water amount on the reaction were investigated in the batch reactor. The results showed that the highest total reducing sugars (TRS) yield of 40.1% could be obtained on the vermiculite activated by 35 (wt)% H2SO4 with the mass ratio of catalyst to cellulose of 0.18 and water to cellulose of 16 at 478 K for 3.5 h. The acid-activated vermiculite was a stable catalyst through calcination at 628 K and the yield of TRS decreased to 36.2% after three times reuse. The results showed that the crystal structure of vermiculite was destroyed and the surface -OH groups increased after the acid treatment. However, the synergistic effect of a strongly electrostatic polarization and Brönsted acid was responsible for the efficient conversion of cellulose. The mechanism of cellulose hydrolysis on the acid-activated vermiculite was suggested. This work provides a promising strategy to design an efficient solid catalyst for the cellulose hydrolysis, and expands the use of vermiculite in a new field. Full article
Show Figures

Graphical abstract

17 pages, 4989 KB  
Article
Use of Clay Minerals to Control Radioactive Cesium Leaching from Municipal Solid Waste Incineration Ash in Fukushima Prefecture in Summer and Winter
by Naoharu Murasawa and Tamao Hatta
Pollutants 2021, 1(4), 253-269; https://doi.org/10.3390/pollutants1040020 - 3 Dec 2021
Cited by 2 | Viewed by 3045
Abstract
Radioactive cesium (r-Cs) released from the 2011 Fukushima Daiichi Nuclear Power Plant attaches to vegetation/soil and is collected as municipal solid waste (MSW) for incineration, being concentrated in incineration ash (bottom ash [BA], fly ash [FA], and chelate-treated FA [TFA]). r-Cs in FA [...] Read more.
Radioactive cesium (r-Cs) released from the 2011 Fukushima Daiichi Nuclear Power Plant attaches to vegetation/soil and is collected as municipal solid waste (MSW) for incineration, being concentrated in incineration ash (bottom ash [BA], fly ash [FA], and chelate-treated FA [TFA]). r-Cs in FA and TFA can easily leach upon contact with moisture. It is important to prevent further contamination, as r-Cs has negative effects on ecosystems and the human body. Naturally available clay minerals, considered effective for capturing r-Cs, are a good alternative. Here, we sampled ash from MSW incineration facilities in Fukushima in August 2016 and February 2017. We used energy dispersive X-ray fluorescence spectroscopy and Ge semiconductor detector to determine elemental composition and r-Cs concentration in the samples and conducted leaching tests. We also determined the extent of leaching suppression by zeolite, acidic clay, and vermiculite. Chloride contents and r-Cs leaching rates were higher in FA and TFA than in BA, regardless of the season. Prior direct addition and mixing of clay minerals (5 to 20 wt.%) effectively prevented r-Cs leaching. This study is the first to examine r-Cs leaching inhibition by clay mineral direct addition and mixing to MSW incineration ash. Full article
(This article belongs to the Section Radioactive Pollution)
Show Figures

Figure 1

20 pages, 5546 KB  
Article
Development of Novel Thin Polycaprolactone (PCL)/Clay Nanocomposite Films with Antimicrobial Activity Promoted by the Study of Mechanical, Thermal, and Surface Properties
by Sylva Holešová, Karla Čech Barabaszová, Marianna Hundáková, Michaela Ščuková, Kamila Hrabovská, Kamil Joszko, Magdalena Antonowicz and Bożena Gzik-Zroska
Polymers 2021, 13(18), 3193; https://doi.org/10.3390/polym13183193 - 21 Sep 2021
Cited by 20 | Viewed by 4813
Abstract
Infection with pathogenic microorganisms is of great concern in many areas, especially in healthcare, but also in food packaging and storage, or in water purification systems. Antimicrobial polymer nanocomposites have gained great popularity in these areas. Therefore, this study focused on new approaches [...] Read more.
Infection with pathogenic microorganisms is of great concern in many areas, especially in healthcare, but also in food packaging and storage, or in water purification systems. Antimicrobial polymer nanocomposites have gained great popularity in these areas. Therefore, this study focused on new approaches to develop thin antimicrobial films based on biodegradable polycaprolactone (PCL) with clay mineral natural vermiculite as a carrier for antimicrobial compounds, where the active organic antimicrobial component is antifungal ciclopirox olamine (CPX). For possible synergistic effects, a sample in combination with the inorganic antimicrobial active ingredient zinc oxide was also prepared. The structures of all the prepared samples were studied by X-ray diffraction, FTIR analysis and, predominantly, by SEM. The very different structure properties of the prepared nanofillers had a fundamental influence on the final structural arrangement of thin PCL nanocomposite films as well as on their mechanical, thermal, and surface properties. As sample PCL/ZnOVER_CPX possessed the best results for antimicrobial activity against examined microbial strains, the synergic effect of CPX and ZnO combination on antimicrobial activity was proved, but on the other hand, its mechanical resistance was the lowest. Full article
(This article belongs to the Special Issue Biopolymers for Food Packaging Films and Coatings)
Show Figures

Graphical abstract

22 pages, 5768 KB  
Article
The Pedogenesis of Soil Derived from Carbonate Rocks along a Climosequence in a Subtropical Mountain, China
by Jin Hu, En Ci, Song Li, Maoshan Lian and Shouqin Zhong
Forests 2021, 12(8), 1044; https://doi.org/10.3390/f12081044 - 5 Aug 2021
Cited by 4 | Viewed by 3061
Abstract
Revealing the pedogenesis of soil on carbonate rocks is a key step in determining the boundaries of soil types along a climosequence. However, related research is lacking for a subtropical mountain. In this study, eight pedons were sampled across an elevation gradient (789–2322 [...] Read more.
Revealing the pedogenesis of soil on carbonate rocks is a key step in determining the boundaries of soil types along a climosequence. However, related research is lacking for a subtropical mountain. In this study, eight pedons were sampled across an elevation gradient (789–2322 m) having large variation in mean annual precipitation (MAP) (1189–1764 mm) and mean annual temperature (MAT) (5.7–14.9 °C). General processes were performed, including physical, chemical, and morphological characterizations, X-ray diffraction (XRD), total elements’ content, and soil classification of the carbonate rock. In the climo-toposequence, the illite had been transformed into illite-smectite below 1300–1500 m of elevation, 1300–1370 mm of MAP, and above 10.5–11.5 °C of MAT, and into vermiculite above this climate. These findings indicated that the effects of temperature on soil mineral transformation had weakened with the gradual increases in elevation. The pedon at 861 m of elevation, 1206 mm of MAP, and 14.5 °C of MAT, which accounted for the argic horizons, was divided into Argosols after human activities. The finding revealed that changes from forest to cultivated land could potentially accelerate the formation of argic horizons, and it provided a theoretical basis for global carbonate rocks’ weathering conditions and ecological problems in subtropical mountains. When the soils reached approximately 1100–1200 m of elevation, 1250–1300 mm of MAP, and 11.5–13.5 °C of MAT, the argic horizons of the soil could be accounted for, as evolved from the Cambosols in Chinese Soil Taxonomy (CST) (Inceptisols in Soil Taxonomy (ST), Cambisols in the World Reference Base for Soil Resources (WRB)) to the Argosols in CST (Alfisols in ST, Luvisols or Alisols in WRB) under natural vegetation. Therefore, it was indicated that the soil types changed significantly in the CST, ST, and WRB with increases of MAP and decreases of MAT, which provides a reference for determining the boundaries of the soil types along a climosequence in subtropical mountains. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

10 pages, 1113 KB  
Article
Quantitative Analysis of Asbestos-Containing Materials Using Various Test Methods
by Kiho Yang, Kyu-Cheul Yoo and Jaewoo Jung
Minerals 2020, 10(6), 568; https://doi.org/10.3390/min10060568 - 24 Jun 2020
Cited by 5 | Viewed by 5289
Abstract
The advantages of X-ray powder diffraction (XRPD) analysis are its non-destructive nature, reliability, fast and easy sample preparation, and low costs. XRPD analysis has been used for mineral identification and the quantitative/qualitative determination of various types of fibrous minerals in asbestos-containing materials (ACMs). [...] Read more.
The advantages of X-ray powder diffraction (XRPD) analysis are its non-destructive nature, reliability, fast and easy sample preparation, and low costs. XRPD analysis has been used for mineral identification and the quantitative/qualitative determination of various types of fibrous minerals in asbestos-containing materials (ACMs). In order to test the detection limit of ACMs by XRPDD, standard samples with various concentrations of ACMs (0.1%, 1%, and 3%) were fabricated using three matrix materials (talc, vermiculite, and sepiolite). Asbestiform tremolite and chrysotile were identified in the XRPD profiles of the samples with 1% and 3% ACMs. Their integral intensities were positively correlated with the concentrations. However, the XRPD peak of asbestos was not found in the samples with 0.1% ACMs. Therefore, scanning and transmission electron microscopy were utilized to investigate the samples with a very low concentration of ACMs. Although the ACM concentration (0.1%) was negligible and its direct observation was time-consuming, electron microscopy allowed for the detection of asbestos in several matrix materials. Thus, a combination of XRPD and electron microscopy improve analytical performance and data reliability. Full article
(This article belongs to the Special Issue Application of Mineral-Based Amendments)
Show Figures

Figure 1

13 pages, 3660 KB  
Article
Characterization of Ethylene–propylene Composites Filled with Perlite and Vermiculite Minerals: Mechanical, Barrier, and Flammability Properties
by Bolesław Szadkowski, Anna Marzec, Przemysław Rybiński, Witold Żukowski and Marian Zaborski
Materials 2020, 13(3), 585; https://doi.org/10.3390/ma13030585 - 27 Jan 2020
Cited by 31 | Viewed by 4010
Abstract
Perlite and vermiculite are naturally occurring minerals, commonly used by industry to obtain highly thermoisolative and/or non-flammable materials. However, there has been little research into the preparation and application of rubber compounds containing these inexpensive mineral fillers. Here, we show the benefits of [...] Read more.
Perlite and vermiculite are naturally occurring minerals, commonly used by industry to obtain highly thermoisolative and/or non-flammable materials. However, there has been little research into the preparation and application of rubber compounds containing these inexpensive mineral fillers. Here, we show the benefits of perlite and vermiculite minerals as fillers for ethylene-propylene rubber (EPM) composites. To obtain more uniform dispersion and improved compatibility between the minerals and the elastomer matrix, 1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (AMIMTFSI) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIMTFSI) imidazolium ionic liquids (ILs) were added. The mineral fillers were found to be attractive semi-reinforcing fillers, which also act as flame retardants in the elastomer composites. Furthermore, a higher content of vermiculite mineral significantly reduced the air permeability of the composites. The incorporation of ionic liquids into the EPM-filled systems had a considerable effect on the torque increment, crosslink density, and more importantly the flammability of the studied compounds. The application of 2.5 parts per hundred parts of rubber (phr) BMIMTFSI, in particular, reduced the flammability of the EPM composite, as the maximum heat release rate (HRRmax) decreased from 189.7 kW/m2 to 170.2 kW/m2. Full article
(This article belongs to the Special Issue Advanced Methods of Flame Retardant Treatment of Polymeric Materials)
Show Figures

Graphical abstract

Back to TopTop