Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = non-resonating scanner

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1704 KB  
Article
Quantitative Volumetric Analysis Using 3D Ultrasound Tomography for Breast Mass Characterization
by Maria L. Anzola, David Alberico, Joyce Yip, James Wiskin, Bilal Malik, Raluca Dinu, Belinda Curpen, Michael L. Oelze and Gregory J. Czarnota
Tomography 2025, 11(10), 111; https://doi.org/10.3390/tomography11100111 - 30 Sep 2025
Viewed by 293
Abstract
Breast cancer detection remains a significant challenge, with traditional mammography presenting barriers such as discomfort, radiation exposure, high false-positive rates, and financial burden. Moreover, younger women frequently fall outside routine mammographic screening guidelines, leaving critical gaps in early detection. Objectives: This study investigates [...] Read more.
Breast cancer detection remains a significant challenge, with traditional mammography presenting barriers such as discomfort, radiation exposure, high false-positive rates, and financial burden. Moreover, younger women frequently fall outside routine mammographic screening guidelines, leaving critical gaps in early detection. Objectives: This study investigates the potential of quantitative transmission breast acoustic computed tomography scanner imaging (QT3D) as an innovative, non-invasive imaging modality for characterizing and evaluating breast masses. Methods: A comparative analysis between QT3D imaging and magnetic resonance imaging (MRI) was conducted in a cohort of patients with biopsy-proven benign or malignant breast lesions, comparing key metrics in quantifying breast masses for the purposes of breast mass characterization. Results: The findings in this study highlight its capability in identifying relatively small tumors, multiple lesions, satellite lesions, intraductal extensions, and calcifications, in addition to offering valuable diagnostic insights. Conclusions: This work is a first step toward studies essential for confirming its clinical feasibility, establishing its role in breast cancer tumor characterization, and potentially improving patient outcomes. Full article
(This article belongs to the Special Issue Imaging in Cancer Diagnosis)
Show Figures

Figure 1

15 pages, 1329 KB  
Article
First In Vitro Characterization of Salinomycinic Acid-Containing Two-Line Ferrihydrite Composites with Pronounced Antitumor Activity as MRI Contrast Agents
by Irena Pashkunova-Martic, Joachim Friske, Daniela Paneva, Zara Cherkezova-Zheleva, Michaela Hejl, Michael Jakupec, Simone Braeuer, Peter Dorkov, Bernhard K. Keppler, Thomas H. Helbich and Juliana Ivanova
Int. J. Mol. Sci. 2025, 26(17), 8405; https://doi.org/10.3390/ijms26178405 - 29 Aug 2025
Viewed by 543
Abstract
Iron(III) (Fe(III)) complexes have recently emerged as safer alternatives to magnetic resonance imaging (MRI) contrast agents (CAs), reigniting interest in biomedical research. Although gadolinium Gd(III)-based contrast agents (CAs) have been widely used in MRI over the past four decades, their use in the [...] Read more.
Iron(III) (Fe(III)) complexes have recently emerged as safer alternatives to magnetic resonance imaging (MRI) contrast agents (CAs), reigniting interest in biomedical research. Although gadolinium Gd(III)-based contrast agents (CAs) have been widely used in MRI over the past four decades, their use in the current clinical routine is severely constrained due to concerns about high toxicity and environmental impact. Research is now focusing on synthesizing safer contrast agents with alternative paramagnetic ions like Fe(III) or Mn(II). MRI CAs with integrated potent therapeutic moieties may offer synergistic advantages over traditional contrast agents in clinical use. The study explored the use of salinomycin-ferrihydrite composites as possible effective ensembles of imaging and therapeutic units in the same molecule, evaluating their anticancer activity and influence on the signal in MRI. The composites were characterized using Mössbauer spectroscopy and ICP-MS for iron content determination. The in vitro relaxivity measurements in a high-field MR scanner demonstrated the potency of the composites as T2 enhancers. The antitumor activity of one selected Sal-ferrihydrite composite was tested in three human cancer cell lines: A549 (non-small cell lung cancer); SW480 (colon cancer); and CH1/PA1 (ovarian teratocarcinoma) by the MTT cell viability assay. The new Sal-ferrihydrite composite showed a pronounced cytotoxicity in all three human cancers in line with enhanced signal in MRI, which makes it a promising candidate for future biomedical applications. The superior cytotoxic effect, together with the strong signal enhancement, makes these compounds promising candidates for further detailed investigations as future theranostic agents. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

15 pages, 8625 KB  
Article
Morphometric Measurement of Mean Cortical Curvature: Analysis of Alterations in Cognitive Impairment
by Renāte Rūta Apse, Nauris Zdanovskis, Kristīne Šneidere, Guntis Karelis, Ardis Platkājis and Ainārs Stepens
Medicina 2025, 61(3), 531; https://doi.org/10.3390/medicina61030531 - 18 Mar 2025
Viewed by 846
Abstract
Background and Objectives: Cognitive impairment, including mild cognitive impairment (MCI) and Alzheimer’s disease (AD), is a growing public health concern. Early detection and an understanding of structural changes are crucial for accurate diagnosis and timely intervention. Cortical curvature, a morphometric measure derived [...] Read more.
Background and Objectives: Cognitive impairment, including mild cognitive impairment (MCI) and Alzheimer’s disease (AD), is a growing public health concern. Early detection and an understanding of structural changes are crucial for accurate diagnosis and timely intervention. Cortical curvature, a morphometric measure derived from structural magnetic resonance imaging (MRI), has emerged as a potential biomarker for neurodegenerative processes. This study investigates the relationship between mean cortical curvature and cognitive impairment. Materials and Methods: A cross-sectional study was conducted with 58 participants, categorized into, first, cognitively impaired (CI) and non-cognitively impaired (NC) groups and, second, a normal cognitive group (NC), a mild cognitive performance group (MPG), and a low cognitive performance group (LPG) based on the Montreal Cognitive Assessment (MoCA) score. MRI data were acquired using a 3.0 Tesla scanner, and cortical reconstruction was performed using FreeSurfer 7.2.0. Mean cortical curvature values were extracted for 34 brain regions per hemisphere. Results: Significant differences in mean cortical curvature were found between the CI and NC groups. In the right hemisphere, statistically significant changes in mean curvature were observed in the isthmus cingulate (U = 188.5, p = 0.006), lingual (U = 202.5, p = 0.013), pars orbitalis (U = 221.5, p = 0.031), and posterior cingulate regions (U = 224.5, p = 0.035). In the left hemisphere, significant differences were detected in the cuneus (U = 226.5, p = 0.038) and posterior cingulate (U = 231.5, p = 0.046) regions. Analysis across three cognitive performance groups (NC, MPG, and LPG) showed significant curvature differences in the right isthmus cingulate (H(2) = 7.492, p = 0.024) and lingual regions (H(2) = 6.250, p = 0.044). Conclusions: Decreased mean cortical curvature in brain regions associated with cognitive function could be indicative of cognitive impairment and may reflect early neurodegenerative changes. These results highlight cortical curvature as a potential structural sign for cognitive impairment, showing the need for further investigation in longitudinal studies. Full article
(This article belongs to the Special Issue Magnetic Resonance in Various Diseases and Biomedical Applications)
Show Figures

Figure 1

20 pages, 5879 KB  
Article
Drug-Checking and Monitoring New Psychoactive Substances: Identification of the U-48800 Synthetic Opioid Using Mass Spectrometry, Nuclear Magnetic Resonance Spectroscopy, and Bioinformatic Tools
by Maria Beatriz Pereira, Carlos Família, Daniel Martins, Mar Cunha, Mário Dias, Nuno R. Neng, Helena Gaspar and Alexandre Quintas
Int. J. Mol. Sci. 2025, 26(5), 2219; https://doi.org/10.3390/ijms26052219 - 28 Feb 2025
Viewed by 1297
Abstract
The misuse of opioids and opiates has remained a persistent issue since the 19th century. The recent resurgence of non-fentanyl synthetic opioids, such as U-type opioids and nitazenes, has further exacerbated the ongoing crisis. Identifying these synthetic opioids presents many challenges, including the [...] Read more.
The misuse of opioids and opiates has remained a persistent issue since the 19th century. The recent resurgence of non-fentanyl synthetic opioids, such as U-type opioids and nitazenes, has further exacerbated the ongoing crisis. Identifying these synthetic opioids presents many challenges, including the emergence of new substances, the lack of standards, and the presence of structural isomers. This highlights the need for a robust structural characterisation strategy in forensic laboratories. To address these challenges, we developed a methodology to identify a U-type opioid sample received by Kosmicare from the European Union-funded SCANNER project, which was suspected to be either U-48800 or U-51754. Our innovative approach combined gas chromatography coupled with mass spectrometry (GC-MS), nuclear magnetic resonance spectroscopy (NMR), and molecular dynamics to characterise the questioned sample unequivocally. While the GC-MS analysis suggested a potential match with the mass spectrum of U-51754 and its structural isomer U-48800, NMR analysis confirmed the presence of U-48800 in the sample, which was further validated through molecular dynamics experiments. These experiments provided additional insights, confirming the structural features underlying the obtained NMR profile. The presented methodology offers a valuable solution for cases involving the identification of isomers, which are currently one of the most significant challenges in identifying new psychoactive substances. Full article
(This article belongs to the Special Issue New Advances in Opioid Research)
Show Figures

Figure 1

12 pages, 4197 KB  
Article
Estimation of Trabecular Bone Volume with Dual-Echo Ultrashort Echo Time (UTE) Magnetic Resonance Imaging (MRI) Significantly Correlates with High-Resolution Computed Tomography (CT)
by Karen Y. Cheng, Dina Moazamian, Behnam Namiranian, Hamidreza Shaterian Mohammadi, Salem Alenezi, Christine B. Chung and Saeed Jerban
J. Imaging 2025, 11(2), 57; https://doi.org/10.3390/jimaging11020057 - 13 Feb 2025
Viewed by 1639
Abstract
Trabecular bone architecture has important implications for the mechanical strength of bone. Trabecular elements appear as signal void when imaged utilizing conventional magnetic resonance imaging (MRI) sequences. Ultrashort echo time (UTE) MRI can acquire high signal from trabecular bone, allowing for quantitative evaluation. [...] Read more.
Trabecular bone architecture has important implications for the mechanical strength of bone. Trabecular elements appear as signal void when imaged utilizing conventional magnetic resonance imaging (MRI) sequences. Ultrashort echo time (UTE) MRI can acquire high signal from trabecular bone, allowing for quantitative evaluation. However, the trabecular morphology is often disturbed in UTE-MRI due to chemical shift artifacts caused by the presence of fat in marrow. This study aimed to evaluate a UTE-MRI technique to estimate the trabecular bone volume fraction (BVTV) without requiring trabecular-level morphological assessment. A total of six cadaveric distal tibial diaphyseal trabecular bone cubes were scanned using a dual-echo UTE Cones sequence (TE = 0.03 and 2.2 ms) on a clinical 3T MRI scanner and on a micro-computed tomography (μCT) scanner. The BVTV was calculated from 10 consecutive slices on both the MR and μCT images. BVTV calculated from the MR images showed strongly significant correlation with the BVTV determined from μCT images (R = 0.84, p < 0.01), suggesting that UTE-MRI is a feasible technique for the assessment of trabecular bone microarchitecture. This would allow for the non-invasive assessment of information regarding bone strength, and UTE-MRI may potentially serve as a novel tool for assessment of fracture risk. Full article
(This article belongs to the Special Issue Advances and Challenges in Bone Imaging)
Show Figures

Figure 1

15 pages, 14611 KB  
Article
Radiofrequency Enhancer to Recover Signal Dropouts in 7 Tesla Diffusion MRI
by Varun Subramaniam, Andrew Frankini, Ameen Al Qadi, Mackenzie T. Herb, Gaurav Verma, Bradley N. Delman, Priti Balchandani and Akbar Alipour
Sensors 2024, 24(21), 6981; https://doi.org/10.3390/s24216981 - 30 Oct 2024
Viewed by 1653
Abstract
Diffusion magnetic resonance imaging (dMRI) allows for a non-invasive visualization and quantitative assessment of white matter architecture in the brain by characterizing restrictions on the random motion of water molecules. Ultra-high field MRI scanners, such as those operating at 7 Tesla (7T) or [...] Read more.
Diffusion magnetic resonance imaging (dMRI) allows for a non-invasive visualization and quantitative assessment of white matter architecture in the brain by characterizing restrictions on the random motion of water molecules. Ultra-high field MRI scanners, such as those operating at 7 Tesla (7T) or higher, can boost the signal-to-noise ratio (SNR) to improve dMRI compared with what is attainable at conventional field strengths such as 3T or 1.5T. However, wavelength effects at 7T cause reduced transmit magnetic field efficiency in the human brain, mainly in the posterior fossa, manifesting as signal dropouts in this region. Recently, we reported a simple approach of using a wireless radiofrequency (RF) surface array to improve transmit efficiency and signal sensitivity at 7T. In this study, we demonstrate the feasibility and effectiveness of the RF enhancer in improving in vivo dMRI at 7T. The electromagnetic simulation results demonstrated a 2.1-fold increase in transmit efficiency with the use of the RF enhancer. The experimental results similarly showed a 1.9-fold improvement in transmit efficiency and a 1.4-fold increase in normalized SNR. These improvements effectively mitigated signal dropouts in regions with inherently lower SNR, such as the cerebellum, resulting in a better depiction of principal fiber orientations and an enhanced visualization of extended tracts. Full article
(This article belongs to the Special Issue Sensors in Magnetic Resonance Imaging)
Show Figures

Figure 1

13 pages, 2739 KB  
Article
ZnO Nanoparticles-Induced MRI Alterations to the Rat Olfactory Epithelium and Olfactory Bulb after Intranasal Instillation
by Lifeng Gao, Yuguang Meng, Xiaowen Luo, Jiangyuan Chen and Xuxia Wang
Toxics 2024, 12(10), 724; https://doi.org/10.3390/toxics12100724 - 5 Oct 2024
Cited by 3 | Viewed by 1649
Abstract
Since zinc oxide (ZnO) nanoparticles (NPs) have been widely applied, the nano community and the general public have paid great attention to the toxicity of ZnO NPs. We detected 20-nm ZnO NPs biotoxicity following nasal exposure utilizing the non-invasive and real-time magnetic resonance [...] Read more.
Since zinc oxide (ZnO) nanoparticles (NPs) have been widely applied, the nano community and the general public have paid great attention to the toxicity of ZnO NPs. We detected 20-nm ZnO NPs biotoxicity following nasal exposure utilizing the non-invasive and real-time magnetic resonance imaging (MRI) technique. MR images were scanned in the rat olfactory epithelium (OE) and olfactory bulb (OB) on a 4.7 T scanner following the treatment (as early as 1 day and up to 21 days after), and the histological changes were evaluated. The influence of the size of the ZnO NPs and chemical components was also investigated. Our study revealed that 20-nm ZnO NPs induced obvious structural disruption and inflammation in the OE and OB at the acute stage. The results suggest that the real-time and non-invasive advantages of MRI allow it to observe and assess, directly and dynamically, the potential toxicity of long-term exposure to ZnO NPs in the olfactory system. These findings indicate the size-dependent toxicity of ZnO NPs with respect to the olfactory bulb. Further study is needed to reveal the mechanism behind ZnO NPs’ toxicity. Full article
(This article belongs to the Special Issue Health Effects of Exposure to Environmental Pollutants)
Show Figures

Figure 1

12 pages, 3228 KB  
Communication
A Quantitative Comparison of 31P Magnetic Resonance Spectroscopy RF Coil Sensitivity and SNR between 7T and 10.5T Human MRI Scanners Using a Loop-Dipole 31P-1H Probe
by Xin Li, Xiao-Hong Zhu and Wei Chen
Sensors 2024, 24(17), 5793; https://doi.org/10.3390/s24175793 - 6 Sep 2024
Cited by 2 | Viewed by 2601
Abstract
In vivo phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) imaging (MRSI) is an important non-invasive imaging tool for studying cerebral energy metabolism, intracellular nicotinamide adenine dinucleotide (NAD) and redox ratio, and mitochondrial function. However, it is challenging to achieve high signal-to-noise ratio [...] Read more.
In vivo phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) imaging (MRSI) is an important non-invasive imaging tool for studying cerebral energy metabolism, intracellular nicotinamide adenine dinucleotide (NAD) and redox ratio, and mitochondrial function. However, it is challenging to achieve high signal-to-noise ratio (SNR) 31P MRS/MRSI results owing to low phosphorus metabolites concentration and low phosphorous gyromagnetic ratio (γ). Many works have demonstrated that ultrahigh field (UHF) could significantly improve the 31P-MRS SNR. However, there is a lack of studies of the 31P MRSI SNR in the 10.5 Tesla (T) human scanner. In this study, we designed and constructed a novel 31P-1H dual-frequency loop-dipole probe that can operate at both 7T and 10.5T for a quantitative comparison of 31P MRSI SNR between the two magnetic fields, taking into account the RF coil B1 fields (RF coil receive and transmit fields) and relaxation times. We found that the SNR of the 31P MRS signal is 1.5 times higher at 10.5T as compared to 7T, and the power dependence of SNR on magnetic field strength (B0) is 1.9. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

11 pages, 3040 KB  
Article
Full-Wave Simulation of a Helmholtz Radiofrequency Coil for Magnetic Resonance Applications
by Giulio Giovannetti, Denis Burov, Angelo Galante and Francesca Frijia
Technologies 2024, 12(9), 150; https://doi.org/10.3390/technologies12090150 - 3 Sep 2024
Viewed by 3191
Abstract
Magnetic resonance imaging (MRI) is a non-invasive diagnostic technique able to provide information about the anatomical, structural, and functional properties of different organs. A magnetic resonance (MR) scanner employs radiofrequency (RF) coils to generate a magnetic field to excite the nuclei in the [...] Read more.
Magnetic resonance imaging (MRI) is a non-invasive diagnostic technique able to provide information about the anatomical, structural, and functional properties of different organs. A magnetic resonance (MR) scanner employs radiofrequency (RF) coils to generate a magnetic field to excite the nuclei in the sample (transmit coil) and pick up the signals emitted by the nuclei (receive coil). To avoid trial-and-error approaches and optimize the RF coil performance for a given application, accurate design and simulation processes must be performed. We describe the full-wave simulation of a Helmholtz coil for high-field MRI performed with the finite-difference time-domain (FDTD) method, investigating magnetic field pattern differences between loaded and unloaded conditions. Moreover, the self-inductance of the single loops constituting the Helmholtz coil was estimated, as well as the frequency splitting between loops due to inductive coupling and the sample-induced resistance. The result accuracy was verified with data acquired with a Helmholtz prototype for small phantom experiments with a 3T MR clinical scanner. Finally, the magnetic field variations and coil detuning after the insertion of the RF shield were evaluated. Full article
(This article belongs to the Special Issue Medical Imaging & Image Processing III)
Show Figures

Figure 1

3 pages, 3130 KB  
Abstract
Thermal Behavior of Biaxial Piezoelectric MEMS Scanner
by Laurent Mollard, Christel Dieppedale, Antoine Hamelin, François Gardien, Gwenael Le Rhun, Jean Hue, Laurent Frey and Gael Castellan
Proceedings 2024, 97(1), 223; https://doi.org/10.3390/proceedings2024097223 - 14 Jun 2024
Viewed by 3572
Abstract
This paper presents the thermal behavior of a non-resonant (quasi-static) biaxial piezoelectric MEMS scanner [...] Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

23 pages, 10705 KB  
Article
Two Separate Brain Networks for Predicting Trainability and Tracking Training-Related Plasticity in Working Dogs
by Gopikrishna Deshpande, Sinan Zhao, Paul Waggoner, Ronald Beyers, Edward Morrison, Nguyen Huynh, Vitaly Vodyanoy, Thomas S. Denney and Jeffrey S. Katz
Animals 2024, 14(7), 1082; https://doi.org/10.3390/ani14071082 - 2 Apr 2024
Cited by 3 | Viewed by 3613
Abstract
Functional brain connectivity based on resting-state functional magnetic resonance imaging (fMRI) has been shown to be correlated with human personality and behavior. In this study, we sought to know whether capabilities and traits in dogs can be predicted from their resting-state connectivity, as [...] Read more.
Functional brain connectivity based on resting-state functional magnetic resonance imaging (fMRI) has been shown to be correlated with human personality and behavior. In this study, we sought to know whether capabilities and traits in dogs can be predicted from their resting-state connectivity, as in humans. We trained awake dogs to keep their head still inside a 3T MRI scanner while resting-state fMRI data was acquired. Canine behavior was characterized by an integrated behavioral score capturing their hunting, retrieving, and environmental soundness. Functional scans and behavioral measures were acquired at three different time points across detector dog training. The first time point (TP1) was prior to the dogs entering formal working detector dog training. The second time point (TP2) was soon after formal detector dog training. The third time point (TP3) was three months’ post detector dog training while the dogs were engaged in a program of maintenance training for detection work. We hypothesized that the correlation between resting-state FC in the dog brain and behavior measures would significantly change during their detection training process (from TP1 to TP2) and would maintain for the subsequent several months of detection work (from TP2 to TP3). To further study the resting-state FC features that can predict the success of training, dogs at TP1 were divided into a successful group and a non-successful group. We observed a core brain network which showed relatively stable (with respect to time) patterns of interaction that were significantly stronger in successful detector dogs compared to failures and whose connectivity strength at the first time point predicted whether a given dog was eventually successful in becoming a detector dog. A second ontologically based flexible peripheral network was observed whose changes in connectivity strength with detection training tracked corresponding changes in behavior over the training program. Comparing dog and human brains, the functional connectivity between the brain stem and the frontal cortex in dogs corresponded to that between the locus coeruleus and left middle frontal gyrus in humans, suggestive of a shared mechanism for learning and retrieval of odors. Overall, the findings point toward the influence of phylogeny and ontogeny in dogs producing two dissociable functional neural networks. Full article
Show Figures

Figure 1

21 pages, 2404 KB  
Article
Magnetic Resonance Imaging in Breast Cancer Tissue In Vitro after PDT Therapy
by Dorota Bartusik-Aebisher, Wiktoria Mytych, Klaudia Dynarowicz, Angelika Myśliwiec, Agnieszka Machorowska-Pieniążek, Grzegorz Cieślar, Aleksandra Kawczyk-Krupka and David Aebisher
Diagnostics 2024, 14(5), 563; https://doi.org/10.3390/diagnostics14050563 - 6 Mar 2024
Cited by 2 | Viewed by 2212
Abstract
Photodynamic therapy (PDT) is increasingly used in modern medicine. It has found application in the treatment of breast cancer. The most common cancer among women is breast cancer. We collected cancer cells from the breast from the material received after surgery. We focused [...] Read more.
Photodynamic therapy (PDT) is increasingly used in modern medicine. It has found application in the treatment of breast cancer. The most common cancer among women is breast cancer. We collected cancer cells from the breast from the material received after surgery. We focused on tumors that were larger than 10 mm in size. Breast cancer tissues for this quantitative non-contrast magnetic resonance imaging (MRI) study could be seen macroscopically. The current study aimed to present findings on quantitative non-contrast MRI of breast cancer cells post-PDT through the evaluation of relaxation times. The aim of this work was to use and optimize a 1.5 T MRI system. MRI tests were performed using a clinical scanner, namely the OPTIMA MR360 manufactured by General Electric HealthCare. The work included analysis of T1 and T2 relaxation times. This analysis was performed using the MATLAB package (produced by MathWorks). The created application is based on medical MRI images saved in the DICOM3.0 standard. T1 and T2 measurements were subjected to the Shapiro–Wilk test, which showed that both samples belonged to a normal distribution, so a parametric t-test for dependent samples was used to test for between-sample variability. The study included 30 sections tested in 2 stages, with consistent technical parameters. For T1 measurements, 12 scans were performed with varying repetition times (TR) and a constant echo time (TE) of 3 ms. For T2 measurements, 12 scans were performed with a fixed repetition time of 10,000 ms and varying echo times. After treating samples with PpIX disodium salt and bubbling with pure oxygen, PDT irradiation was applied. The cell relaxation time after therapy was significantly shorter than the cell relaxation time before PDT. The cells were exposed to PpIX disodium salt as the administered pharmacological substance. The study showed that the therapy significantly affected tumor cells, which was confirmed by a significant reduction in tumor cell relaxation time on the MRI results. Full article
Show Figures

Figure 1

12 pages, 2712 KB  
Article
A Gadolinium(III) Complex Based on Pyridoxine Molecule with Single-Ion Magnet and Magnetic Resonance Imaging Properties
by Marta Orts-Arroyo, Amadeo Ten-Esteve, Sonia Ginés-Cárdenas, Leonor Cerdá-Alberich, Luis Martí-Bonmatí and José Martínez-Lillo
Int. J. Mol. Sci. 2024, 25(4), 2112; https://doi.org/10.3390/ijms25042112 - 9 Feb 2024
Cited by 1 | Viewed by 1818
Abstract
Pyridoxine (pyr) is a versatile molecule that forms part of the family of B vitamins. It is used to treat and prevent vitamin B6 deficiency and certain types of metabolic disorders. Moreover, the pyridoxine molecule has been investigated as a suitable ligand [...] Read more.
Pyridoxine (pyr) is a versatile molecule that forms part of the family of B vitamins. It is used to treat and prevent vitamin B6 deficiency and certain types of metabolic disorders. Moreover, the pyridoxine molecule has been investigated as a suitable ligand toward metal ions. Nevertheless, the study of the magnetic properties of metal complexes containing lanthanide(III) ions and this biomolecule is unexplored. We have synthesized and characterized a novel pyridoxine-based GdIII complex of formula [GdIII(pyr)2(H2O)4]Cl3 · 2 H2O (1) [pyr = pyridoxine]. 1 crystallizes in the triclinic system and space group Pī. In its crystal packing, cationic [Gd(pyr)2(H2O)4]3+ entities are connected through H-bonding interactions involving non-coordinating water molecules and chloride anions. In addition, Hirshfeld surfaces of 1 were calculated to further investigate their intermolecular interactions in the crystal lattice. Our investigation of the magnetic properties of 1, through ac magnetic susceptibility measurements, reveals the occurrence of a slow relaxation in magnetization in this mononuclear GdIII complex, indicating an unusual single-ion magnet (SIM) behavior for this pseudo-isotropic metal ion at very low temperatures. We also studied the relaxometric properties of 1, as a potential contrast agent for high-field magnetic resonance imaging (MRI), from solutions of 1 prepared in physiological serum (0.0–3.2 mM range) and measured at 3 T on a clinical MRI scanner. The values of relaxivity obtained for 1 are larger than those of some commercial MRI contrast agents based on mononuclear GdIII systems. Full article
(This article belongs to the Special Issue Magnetic Materials and Their Various Applications)
Show Figures

Figure 1

16 pages, 4142 KB  
Article
Whole-Body MRI at Initial Presentation of Chronic Recurrent Multifocal Osteomyelitis, Juvenile Idiopathic Arthritis, Their Overlapping Syndrome, and Non-Specific Arthropathy
by Michał Lanckoroński, Piotr Gietka, Małgorzata Mańczak and Iwona Sudoł-Szopińska
J. Clin. Med. 2024, 13(4), 998; https://doi.org/10.3390/jcm13040998 - 9 Feb 2024
Cited by 6 | Viewed by 1978
Abstract
(1) Background: Whole-body magnetic resonance imaging (WB-MRI) is central to defining total inflammatory burden in juveniles with arthritis. Our aim was to determine and compare the initial distribution of lesions in the WB-MRI in patients with chronic recurrent multifocal osteomyelitis (CRMO), juvenile [...] Read more.
(1) Background: Whole-body magnetic resonance imaging (WB-MRI) is central to defining total inflammatory burden in juveniles with arthritis. Our aim was to determine and compare the initial distribution of lesions in the WB-MRI in patients with chronic recurrent multifocal osteomyelitis (CRMO), juvenile idiopathic arthritis (JIA), their overlapping syndrome (OS), and with Non-specific Arthropathy (NA). (2) Methods: This retrospective single center study was performed on an Avanto 1.5-T MRI scanner with a dedicated multichannel surface coil system. A total of 173 pediatric patients were included with the following final diagnoses: CRMO (15.0%), JIA (29.5%), OS (4.6%), and NA (50.9%). (3) Results: Bone marrow edema (BME) was the most common abnormality, being seen in 100% patients with CRMO, 88% with OS, 55% with JIA, and 11% with NA. The bones of the lower extremities were the most affected in all compared entities. Effusion was seen in 62.5% children with OS, and in 52.9% with JIA, and in CRMO and NA, the exudate was sporadic. Enthesitis was found in 7.8% of patients with JIA and 3.8% with CRMO, and myositis was seen in 12.5% of patients with OS and in 3.9% with JIA. (4) Conclusions: The most frequent indication for WB-MRI in our center was JIA. The most common pathology in all rheumatic entities was BME, followed by effusion mainly seen in in OS and JIA. Enthesitis and myositis were less common; no case was observed in NA. Full article
(This article belongs to the Section Immunology & Rheumatology)
Show Figures

Figure 1

20 pages, 339 KB  
Review
Innovations in Positron Emission Tomography and State of the Art in the Evaluation of Breast Cancer Treatment Response
by Luigi Castorina, Alessio Danilo Comis, Angela Prestifilippo, Natale Quartuccio, Stefano Panareo, Luca Filippi, Serena Castorina and Dario Giuffrida
J. Clin. Med. 2024, 13(1), 154; https://doi.org/10.3390/jcm13010154 - 27 Dec 2023
Cited by 4 | Viewed by 1857
Abstract
The advent of hybrid Positron Emission Tomography/Computed Tomography (PET/CT) and PET/Magnetic Resonance Imaging (MRI) scanners resulted in an increased clinical relevance of nuclear medicine in oncology. The use of [18F]-Fluorodeoxyglucose ([18F]FDG) has also made it possible to study tumors (including breast cancer) from [...] Read more.
The advent of hybrid Positron Emission Tomography/Computed Tomography (PET/CT) and PET/Magnetic Resonance Imaging (MRI) scanners resulted in an increased clinical relevance of nuclear medicine in oncology. The use of [18F]-Fluorodeoxyglucose ([18F]FDG) has also made it possible to study tumors (including breast cancer) from not only a dimensional perspective but also from a metabolic point of view. In particular, the use of [18F]FDG PET allowed early confirmation of the efficacy or failure of therapy. The purpose of this review was to assess the literature concerning the response to various therapies for different subtypes of breast cancer through PET. We start by summarizing studies that investigate the validation of PET/CT for the assessment of the response to therapy in breast cancer; then, we present studies that compare PET imaging (including PET devices dedicated to the breast) with CT and MRI, focusing on the identification of the most useful parameters obtainable from PET/CT. We also focus on novel non-FDG radiotracers, as they allow for the acquisition of information on specific aspects of the new therapies. Full article
Back to TopTop