Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = non-thermal injection techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2538 KB  
Article
Development and Evaluation of Nystatin-Loaded Novasomal Gel for the Treatment of Candida albicans Infection: In Vitro Microbiological and Skin Compatibility Study
by Muhammad Abid Mustafa, Muhammad Fahad, Maryam Mughal, Namra Rasheed, Saad S. Alqahtani and Muhammad Zahid Iqbal
Gels 2025, 11(10), 774; https://doi.org/10.3390/gels11100774 - 25 Sep 2025
Viewed by 283
Abstract
Candida infections pose a significant health threat, and conventional antifungal drugs like nystatin are limited due to poor solubility, skin permeability, and frequent dosage requirements. Nystatin effectively targets Candida species by disrupting cell membranes, but formulation issues hinder clinical use. Lipid-based vesicular carriers, [...] Read more.
Candida infections pose a significant health threat, and conventional antifungal drugs like nystatin are limited due to poor solubility, skin permeability, and frequent dosage requirements. Nystatin effectively targets Candida species by disrupting cell membranes, but formulation issues hinder clinical use. Lipid-based vesicular carriers, or novasomes, provide controlled, prolonged drug release and enhanced skin penetration. This study focuses on developing nystatin-loaded novasomal gels as an advanced drug delivery system to enhance therapeutic efficacy, bioavailability, and patient compliance. The formulation was prepared using a modified ethanol injection technique, combining stearic acid, oleic acid, Span 60, cholesterol, and Carbopol to produce a stable transdermal gel. Comprehensive in vitro characterization using FTIR, SEM, XRD, and thermal analysis confirmed the chemical compatibility, morphological uniformity, and physical stability of the nystatin-loaded novasomal gel. Entrapment efficiency differed significantly among the formulations (p < 0.05), with F7 achieving the highest value (80%). All formulations maintained pH levels within the skin-friendly range of 5.5 to 7.0. Viscosity measurements, ranging from 3900 ± 110 to 4510 ± 105 cP, confirmed their appropriate consistency for dermal use. Rheological analysis showed a dominant elastic response, as indicated by storage modulus values consistently higher than the loss modulus. Particle size ranged from 4143 to 9570 nm, while PDI values remained below 0.3, reflecting uniform particle distribution. Zeta potential values were strongly negative, supporting physical stability. XRD studies indicated reduced crystallinity of nystatin within the formulations, while FTIR confirmed drug-excipient compatibility. SEM images showed spherical particles within the micrometer range. In vitro release studies demonstrated sustained drug release over 12 h, with F6 releasing the highest amount. The novasomal gel formulations-maintained stability for 30 days, with no notable alterations in pH, viscosity, or entrapment efficiency. Antifungal evaluation showed a larger inhibition zone (23 ± 2 mm) compared with the plain drug solution (15 ± 1.6 mm), while the MIC value was reduced (4.57 µg/mL), indicating greater potency. Skin irritation assessment in rats revealed only minor, temporary erythema, and the calculated Primary Irritation Index (0.22) confirmed a non-irritant profile. These findings suggest that the developed novasomal gel offers a promising approach for enhancing the treatment of fungal infections by enabling prolonged drug release, minimizing dosing frequency, and improving patient compliance. Full article
(This article belongs to the Special Issue Antimicrobial Gels and Related Process Technologies)
Show Figures

Graphical abstract

36 pages, 6078 KB  
Article
The Numerical Evaluation of Hydrate Saturation in Marine Sediment During the Injection Process of Self-Heat Generating Fluid
by Kewei Zhang, Kaixiang Shen, Yanjiang Yu, Yingsheng Wang, Jiawei Zhou and Jing Zeng
J. Mar. Sci. Eng. 2025, 13(9), 1772; https://doi.org/10.3390/jmse13091772 - 13 Sep 2025
Viewed by 397
Abstract
Marine gas hydrates are recognized as a promising offshore energy resource. Self-heat fluid injection is an innovative thermal-enhanced gas recovery technique for hydrate exploitation engineering. This study numerically investigates hydrate saturation during the self-heating reagent injection process in a sub-sea hydrate reservoir, decoupled [...] Read more.
Marine gas hydrates are recognized as a promising offshore energy resource. Self-heat fluid injection is an innovative thermal-enhanced gas recovery technique for hydrate exploitation engineering. This study numerically investigates hydrate saturation during the self-heating reagent injection process in a sub-sea hydrate reservoir, decoupled from gas production interference. This process employs two consecutive stages: reactive chemical flow stage followed by non-reactive flow stage. The simulation output parameters encompass reservoir temperature, fluid saturation, thermal conductivity, and heat flow rate. The base case demonstrates that fluid injection elevates reservoir temperature from 13.0 °C to 29.3 °C and reduces hydrate saturation from 0.40 to 0.21 through coupled heat–mass transfer mechanisms during the reactive flow stage. In the consequent non-reactive flow stage, hydrate saturation decreases to zero. Sensitivity analysis reveals that initial permeability variation governs the hydrate saturation and temperature during the non-reactive phase. The permeability range of less than 15 mD is the optimal threshold preventing hydrate reformation during fluid injection. 55–70 mD permeability triggers severe secondary hydrate generation, which decreases the fluid application feasibility. Fluid flooding demonstrates superior hydrate dissociation efficacy compared to in situ thermal stimulation. This study develops a novel simulation approach to characterize marine hydrate saturation dynamics. Full article
Show Figures

Figure 1

17 pages, 2925 KB  
Article
Correlative Raman Spectroscopy–SEM Investigations of Sintered Magnesium–Calcium Alloys for Biomedical Applications
by Eshwara Nidadavolu, Martin Mikulics, Martin Wolff, Thomas Ebel, Regine Willumeit-Römer, Berit Zeller-Plumhoff, Joachim Mayer and Hilde Helen Hardtdegen
Materials 2025, 18(16), 3873; https://doi.org/10.3390/ma18163873 - 18 Aug 2025
Viewed by 781
Abstract
In this study, a correlative approach using Raman spectroscopy and scanning electron microscopy (SEM) is introduced to meet the challenges of identifying impurities, especially carbon-related compounds in metal injection-molded (MIM) Mg-0.6Ca specimens designed for biomedical applications. This study addresses, for the first time, [...] Read more.
In this study, a correlative approach using Raman spectroscopy and scanning electron microscopy (SEM) is introduced to meet the challenges of identifying impurities, especially carbon-related compounds in metal injection-molded (MIM) Mg-0.6Ca specimens designed for biomedical applications. This study addresses, for the first time, the issue of carbon residuals in the binder-based powder metallurgy (PM) processing of Mg-0.6Ca materials. A deeper understanding of the material microstructure is important to assess the microstructure homogeneity at submicron levels as this later affects material degradation and biocompatibility behavior. Both spectroscopic and microscopic techniques used in this study respond to the concerns of secondary phase distributions and their possible stoichiometry. Our micro-Raman measurements performed over a large area reveal Raman modes at ~1370 cm−1 and ~1560 cm−1, which are ascribed to the elemental carbon, and at ~1865 cm−1, related to C≡C stretching modes. Our study found that these carbonaceous residuals/contaminations in the material microstructure originated from the polymeric binder components used in the MIM fabrication route, which then react with the base material components, including impurities, at elevated thermal debinding and sintering temperatures. Additionally, using evidence from the literature on thermal carbon cracking, the presence of both free carbon and calcium carbide phases is inferred in the sintered Mg-0.6Ca material in addition to the Mg2Ca, oxide, and silicate phases. This first-of-its-kind correlative characterization approach for PM-processed Mg biomaterials is fast, non-destructive, and provides deeper knowledge on the formed residual carbonaceous phases. This is crucial in Mg alloy development strategies to ensure reproducible in vitro degradation and cell adhesion characteristics for the next generation of biocompatible magnesium materials. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 6484 KB  
Review
Recent Developments in the CO2-Cyclic Solvent Injection Process to Improve Oil Recovery from Poorly Cemented Heavy Oil Reservoirs: The Case of Canadian Reservoirs
by Daniel Cartagena-Pérez, Alireza Rangriz Shokri and Rick Chalaturnyk
Energies 2025, 18(11), 2728; https://doi.org/10.3390/en18112728 - 24 May 2025
Cited by 1 | Viewed by 798
Abstract
One of the limitations of Cold Heavy Oil Production with Sand (CHOPS) is the low recovery factor (5–15%). To target the remaining 85–95% heavy oil resources, several enhanced oil recovery (EOR) techniques, such as cyclic solvent injection (CSI), have been proposed. Due to [...] Read more.
One of the limitations of Cold Heavy Oil Production with Sand (CHOPS) is the low recovery factor (5–15%). To target the remaining 85–95% heavy oil resources, several enhanced oil recovery (EOR) techniques, such as cyclic solvent injection (CSI), have been proposed. Due to its potential success in Canada and elsewhere, this paper reviews the technical and efficiency requirements of CSI EOR in post-CHOPS heavy oil reservoirs. We explain the dominant driving mechanisms of CSI with a focus on the application of CO2 as a solvent. Limitations of current thermal and non-thermal EOR methods were compared to the CSI in thin oil reservoirs. To complete the assessment, several case studies and lessons learned were included based on the latest laboratory experiments, numerical studies, and CSI pilot/field tests. Specific to thin and shallow heavy oil reservoirs with sand production (e.g., CHOPS), the key to recover incremental oil was found to re-energize depleted reservoirs in a cyclic manner with unexpensive solvents (e.g., CO2). Regarding the solvent use, laboratory experiences have not been conclusive about what solvent stream could improve oil recovery. To this end, successful field scale CO2 EOR applications have been reported in several post-CHOPS reservoirs indicating that highly productive wells during primary production might also outperform during a follow up CSI process. Numerical modeling still faces challenges to properly model the main CSI driving mechanisms, including fluid–solvent interaction and the deformation of subsurface reservoirs. Full article
Show Figures

Figure 1

23 pages, 4248 KB  
Article
Development of Dual-Crosslinking N-Isopropylacrylamide-Based Injectable Hydrogel for Transcatheter Embolization in Swine Model
by Amrita Pal, Gabriel Zdrale, Michelle Loui, Jeff Blanzy, William Bichard, Thomas J. On, Yuan Xu, Oscar Alcantar-Garibay, Mark C. Preul and Brent L. Vernon
Gels 2025, 11(3), 156; https://doi.org/10.3390/gels11030156 - 21 Feb 2025
Viewed by 915
Abstract
For decades, endovascular embolization (EE) has been a common technique for the treatment of several vascular abnormalities where the affected vessel is occluded using biocompatible embolic agents. In this work, we developed a NIPAAm-based temperature responsive, dual-crosslinking biocompatible and non-toxic injectable hydrogel system [...] Read more.
For decades, endovascular embolization (EE) has been a common technique for the treatment of several vascular abnormalities where the affected vessel is occluded using biocompatible embolic agents. In this work, we developed a NIPAAm-based temperature responsive, dual-crosslinking biocompatible and non-toxic injectable hydrogel system as a liquid embolic agent for EE. The swelling and mechanical properties of the hydrogel were tuned and optimized for its in vivo application. The in vivo study was carried out with nine swine models, including three animals for exploratory study and six animals for acute confirmatory study for the occlusion of surgically created aneurysm and rete mirabile. The polymer hydrogel was delivered into the vascular malformation sites using a catheter guided by angiography. After the injection, the liquid embolic agent was transformed into a solid implant in situ via cross-linking through chemical and thermal processes. During the exploratory study, it was observed that one of the three aneurysms and all the RMs were occluded. During the acute confirmatory study, all the aneurysms and the RMs of six animals were successfully occluded. Overall, our study presents the construction and characterization of a novel injectable hydrogel system capable of successfully occluding vascular malformation in large animals. In the future, after further modification and validation, this material may be used as a liquid embolic agent in clinical studies. Full article
(This article belongs to the Special Issue Synthesis and Application of Polymer Hydrogels)
Show Figures

Graphical abstract

18 pages, 7115 KB  
Article
The Numerical Simulation of the Injection Filling of the Fluidity Probe Die with Pattern Waxes
by Viacheslav E. Bazhenov, Arseniy S. Ovsyannikov, Elena P. Kovyshkina, Andrey A. Stepashkin, Anna A. Nikitina, Andrey V. Koltygin, Vladimir D. Belov and Dmitry N. Dmitriev
J. Manuf. Mater. Process. 2024, 8(5), 213; https://doi.org/10.3390/jmmp8050213 - 27 Sep 2024
Viewed by 1796
Abstract
Investment casting is a widely utilized casting technique that offers superior dimensional accuracy and surface quality. In this method, the wax patterns are employed in the layer-by-layer formation of a shell mold. As is customary, the patterns were created through the injection of [...] Read more.
Investment casting is a widely utilized casting technique that offers superior dimensional accuracy and surface quality. In this method, the wax patterns are employed in the layer-by-layer formation of a shell mold. As is customary, the patterns were created through the injection of molten or semi-solid wax into the die. The quality of the final casting is affected by the quality of the wax pattern. Furthermore, the filling of the die with wax can be associated with die-filling challenges, such as the formation of weld lines and misruns. In this study, the injection filling of the fluidity probe die with RG20, S1235, and S1135 pattern waxes was simulated using ProCast software. The thermal properties of the waxes, including thermal conductivity, heat capacity, and density across a wide temperature range, were determined with the assistance of a laser flash analyzer, a differential scanning calorimeter, and a dynamic mechanical analyzer. A favorable comparison of the acquired properties with those reported in the literature was observed. The Carreau model, which corresponds to non-Newtonian flow, was employed, and the parameters in the Carreau viscosity equation were determined as functions of temperature. Utilizing the thermal data associated with the wax patterns and the simulation outcomes, the interfacial heat transfer coefficients between the wax and the die were ascertained, yielding a value of 275–475 W/m2K. A strong correlation was observed between the experimental and simulated filling percentages of the fluidity probe across a wide range of injection temperatures and pressures. The analysis of the simulated temperature, fraction solid, viscosity, and shear rate in the wax pattern revealed that viscosity is a crucial factor influencing the wax fluidity. It was demonstrated that waxes with an initial high viscosity exhibit a low shear rate, which subsequently increases the viscosity, thereby hindering the wax flow. Full article
Show Figures

Figure 1

38 pages, 3380 KB  
Review
Opportunities and Challenges in the Application of Bioplastics: Perspectives from Formulation, Processing, and Performance
by Daniela Negrete-Bolagay and Víctor H. Guerrero
Polymers 2024, 16(18), 2561; https://doi.org/10.3390/polym16182561 - 10 Sep 2024
Cited by 18 | Viewed by 24631
Abstract
Tremendously negative effects have been generated in recent decades by the continuously increasing production of conventional plastics and the inadequate management of their waste products. This demands the production of materials within a circular economy, easy to recycle and to biodegrade, minimizing the [...] Read more.
Tremendously negative effects have been generated in recent decades by the continuously increasing production of conventional plastics and the inadequate management of their waste products. This demands the production of materials within a circular economy, easy to recycle and to biodegrade, minimizing the environmental impact and increasing cost competitiveness. Bioplastics represent a sustainable alternative in this scenario. However, the replacement of plastics must be addressed considering several aspects along their lifecycle, from bioplastic processing to the final application of the product. In this review, the effects of using different additives, biomass sources, and processing techniques on the mechanical and thermal behavior, as well as on the biodegradability, of bioplastics is discussed. The importance of using bioplasticizers is highlighted, besides studying the role of surfactants, compatibilizers, cross-linkers, coupling agents, and chain extenders. Cellulose, lignin, starch, chitosan, and composites are analyzed as part of the non-synthetic bioplastics considered. Throughout the study, the emphasis is on the use of well-established manufacturing processes, such as extrusion, injection, compression, or blow molding, since these are the ones that satisfy the quality, productivity, and cost requirements for large-scale industrial production. Particular attention is also given to fused deposition modeling, since this additive manufacturing technique is nowadays not only used for making prototypes, but it is being integrated into the development of parts for a wide variety of biomedical and industrial applications. Finally, recyclability and the commercial requirements for bioplastics are discussed, and some future perspectives and challenges for the development of bio-based plastics are discussed, with the conclusion that technological innovations, economic incentives, and policy changes could be coupled with individually driven solutions to mitigate the negative environmental impacts associated with conventional plastics. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

82 pages, 9093 KB  
Review
Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives
by Luis F. F. F. Gonçalves, Rui L. Reis and Emanuel M. Fernandes
Polymers 2024, 16(9), 1286; https://doi.org/10.3390/polym16091286 - 3 May 2024
Cited by 12 | Viewed by 5621
Abstract
The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, [...] Read more.
The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, in building construction, and in biomedical applications, respectively. The first foams with practical applications used polymeric materials of petrochemical origin. However, due to growing environmental concerns, considerable efforts have been made to replace some of these materials with biodegradable polymers. Foam processing has evolved greatly in recent years due to improvements in existing techniques, such as the use of supercritical fluids in extrusion foaming and foam injection moulding, as well as the advent or adaptation of existing techniques to produce foams, as in the case of the combination between additive manufacturing and foam technology. The use of supercritical CO2 is especially advantageous in the production of porous structures for biomedical applications, as CO2 is chemically inert and non-toxic; in addition, it allows for an easy tailoring of the pore structure through processing conditions. Biodegradable polymeric materials, despite their enormous advantages over petroleum-based materials, present some difficulties regarding their potential use in foaming, such as poor melt strength, slow crystallization rate, poor processability, low service temperature, low toughness, and high brittleness, which limits their field of application. Several strategies were developed to improve the melt strength, including the change in monomer composition and the use of chemical modifiers and chain extenders to extend the chain length or create a branched molecular structure, to increase the molecular weight and the viscosity of the polymer. The use of additives or fillers is also commonly used, as fillers can improve crystallization kinetics by acting as crystal-nucleating agents. Alternatively, biodegradable polymers can be blended with other biodegradable polymers to combine certain properties and to counteract certain limitations. This work therefore aims to provide the latest advances regarding the foaming of biodegradable polymers. It covers the main foaming techniques and their advances and reviews the uses of biodegradable polymers in foaming, focusing on the chemical changes of polymers that improve their foaming ability. Finally, the challenges as well as the main opportunities presented reinforce the market potential of the biodegradable polymer foam materials. Full article
(This article belongs to the Special Issue Trendings in Biobased Polymers and Biocomposites)
Show Figures

Figure 1

27 pages, 853 KB  
Article
Overlapping Grid-Based Spectral Collocation Technique for Bioconvective Flow of MHD Williamson Nanofluid over a Radiative Circular Cylindrical Body with Activation Energy
by Musawenkosi Patson Mkhatshwa
Computation 2024, 12(4), 75; https://doi.org/10.3390/computation12040075 - 5 Apr 2024
Cited by 7 | Viewed by 1765
Abstract
The amalgamation of motile microbes in nanofluid (NF) is important in upsurging the thermal conductivity of various systems, including micro-fluid devices, chip-shaped micro-devices, and enzyme biosensors. The current scrutiny focuses on the bioconvective flow of magneto-Williamson NFs containing motile microbes through a horizontal [...] Read more.
The amalgamation of motile microbes in nanofluid (NF) is important in upsurging the thermal conductivity of various systems, including micro-fluid devices, chip-shaped micro-devices, and enzyme biosensors. The current scrutiny focuses on the bioconvective flow of magneto-Williamson NFs containing motile microbes through a horizontal circular cylinder placed in a porous medium with nonlinear mixed convection and thermal radiation, heat sink/source, variable fluid properties, activation energy with chemical and microbial reactions, and Brownian motion for both nanoparticles and microbes. The flow analysis has also been considered subject to velocity slips, suction/injection, and heat convective and zero mass flux constraints at the boundary. The governing equations have been converted to a non-dimensional form using similarity variables, and the overlapping grid-based spectral collocation technique has been executed to procure solutions numerically. The graphical interpretation of various pertinent variables in the flow profiles and physical quantities of engineering attentiveness is provided and discussed. The results reveal that NF flow is accelerated by nonlinear thermal convection, velocity slip, magnetic fields, and variable viscosity parameters but decelerated by the Williamson fluid and suction parameters. The inclusion of nonlinear thermal radiation and variable thermal conductivity helps to enhance the fluid temperature and heat transfer rate. The concentration of both nanoparticles and motile microbes is promoted by the incorporation of activation energy in the flow system. The contribution of microbial Brownian motion along with microbial reactions on flow quantities justifies the importance of these features in the dynamics of motile microbes. Full article
Show Figures

Figure 1

15 pages, 3221 KB  
Article
Sustainable Biocomposites Based on Invasive Rugulopteryx okamurae Seaweed and Cassava Starch
by Ismael Santana, Manuel Felix and Carlos Bengoechea
Sustainability 2024, 16(1), 76; https://doi.org/10.3390/su16010076 - 21 Dec 2023
Cited by 7 | Viewed by 1852
Abstract
The development of plastic materials based on cassava reduces the dependence on non-biodegradable petroplastics, and enhances the sustainability of the cassava value chain. In this sense, cassava starch (CS) is used as a reinforcer of biocomposites that also contain brown seaweed Rugulopteryx okamurae [...] Read more.
The development of plastic materials based on cassava reduces the dependence on non-biodegradable petroplastics, and enhances the sustainability of the cassava value chain. In this sense, cassava starch (CS) is used as a reinforcer of biocomposites that also contain brown seaweed Rugulopteryx okamurae (RO). RO is an invasive species whose accumulation poses a strong environmental burden in the strait of Gibraltar. Because it can be used as a biopolymer, its use in the plastics industry would promote a healthy ecosystem. Thus, RO/CS mixtures with different RO/CS ratios (from 100/0 to 30/70) were processed through injection moulding at 140 °C. The thermal properties of plastic samples have been analysed through calorimetric, thermogravimetric and rheological techniques. Moreover, the mechanical properties, hydrophilicity, and microstructure of samples have also been studied. Thus, biopolymer degradation of the composites seems to happen at 213–303 °C, as revealed by thermal gravimetric analysis (TGA) of the samples, whereas an exothermic peak observed in DSC at 350–500 °C would be related to the degradation of organic compounds in anaerobic conditions. Rheological tests evidenced a softening of the RO/CS biocomposites when CS content increased in the formulation, so that elastic moduli dropped from 23.72 MPa in the 70/30 to 5.69 MPa for 30/70. However, RO/CS biocomposites became more resistant and deformable as CS content increased: maximum stress and strain at break increased from 78.2 kPa and 0.14% (70/30 system) to 580 kPa and 25.2% (30/70), respectively. Finally, no important differences were observed in their water uptake capacities or microstructures when increasing CS ratio in the mixture. As cassava starch can be extracted from agro-industrial wastes (i.e., cassava peel and bagasse), its use in biocomposites could be of great use for a more sustainable approach for plastic materials. Full article
Show Figures

Figure 1

12 pages, 1965 KB  
Article
Laser-Scribed Pencil Lead Electrodes for Amperometric Quantification of Indapamide
by Thawan G. Oliveira, Irlan S. Lima, Wilson A. Ameku, Josué M. Gonçalves, Rodrigo S. Souza, Henrique E. Toma and Lúcio Angnes
Chemosensors 2023, 11(12), 574; https://doi.org/10.3390/chemosensors11120574 - 5 Dec 2023
Cited by 2 | Viewed by 2503
Abstract
Laser engraving is a convenient, fast, one-step, and environmentally friendly technique used to produce more conductive surfaces by local pyrolysis. The laser’s thermal treatment can also remove non-conductive materials from the electrode surfaces and improve electrochemical performance. The improvement was assessed by electrochemical [...] Read more.
Laser engraving is a convenient, fast, one-step, and environmentally friendly technique used to produce more conductive surfaces by local pyrolysis. The laser’s thermal treatment can also remove non-conductive materials from the electrode surfaces and improve electrochemical performance. The improvement was assessed by electrochemical tools such as cyclic voltammograms and electrochemical impedance spectroscopy using [Fe(CN)6]3−/4− and dopamine as redox probes. The electrochemical results observed showed that a treated surface showed an improvement in electron transfer and less resistance to charge transfer. To optimize the electrode performance, it was necessary to search for the most favorable graphite mines and optimize the parameters of the laser machine (laser power, scan rate, and output distance). The resultant material was adequately characterized by Raman spectroscopy and scanning electron microscopy (SEM), where an irregular surface composed of crystalline graphite particles was noticed. Furthermore, as a proof-of-concept, it was applied to detect indapamide (IND) in synthetic urine by flow injection analysis (FIA), a diuretic drug often used by athletes to alter urine composition to hide forbidden substance consumption in doping tests. Full article
(This article belongs to the Special Issue Advanced Electrochemical Sensors or Biosensors Based on Nanomaterial)
Show Figures

Figure 1

28 pages, 522 KB  
Review
Approaches for Numerical Modeling and Simulation of the Filling Phase in Injection Molding: A Review
by Markus Baum, Denis Anders and Tamara Reinicke
Polymers 2023, 15(21), 4220; https://doi.org/10.3390/polym15214220 - 25 Oct 2023
Cited by 21 | Viewed by 6019
Abstract
Injection molding is a multiphase process that requires accurate simulation of the filling phase. This is a key element in predicting the complete injection molding cycle. The filling phase presents a complex set of challenges, including migrating melt fronts, multi-phase flow, non-Newtonian fluid [...] Read more.
Injection molding is a multiphase process that requires accurate simulation of the filling phase. This is a key element in predicting the complete injection molding cycle. The filling phase presents a complex set of challenges, including migrating melt fronts, multi-phase flow, non-Newtonian fluid dynamics, and intertwined heat transfer. Evolving from 1D to 2D, 2.5D, and 3D techniques, filling simulation research has adapted to capture the intricacies of injection-molded parts. However, the need for accuracy in the characterization of the rheological properties of polymers during filling is still of paramount importance. In order to systematically categorize the numerical methods used to simulate the filling phase of injection molding, this review paper provides a comprehensive summary. Particular emphasis is given to the complex interaction of multiple geometric parameters that significantly influence the dynamic evolution of the filling process. In addition, a spectrum of rheological models is thoroughly and exhaustively explored in the manuscript. These models serve as basic mathematical constructs to help describe the complex viscous behavior of polymers during the filling phase. These models cover a spectrum of complexity and include widely recognized formulations such as the Power-Law, second-order, Herschel–Bulkley, Carreau, Bird–Carreau, and Cross models. The paper presents their implementation to include the temperature-dependent influence on viscosity. In this context, the extensions of these models are explained in detail. These extensions are designed to take into account the dynamic viscosity changes caused by the different thermal conditions during the filling process. An important contribution of this study is the systematic classification of these models. This categorization encompasses both academic research and practical integration into commercial software frameworks. In addition to the theoretical importance of these models, their practical value in overcoming challenges in the field of injection molding is emphasized. By systematically outlining these models within a structured framework, this classification promotes a comprehensive understanding of their intrinsic characteristics and relevance in different scenarios. Full article
Show Figures

Figure 1

18 pages, 311 KB  
Review
Endoscopic Ultrasound-Guided Locoregional Treatments for Solid Pancreatic Neoplasms
by Luca Di Gialleonardo, Giulia Tripodi, Gianenrico Rizzatti, Maria Elena Ainora, Cristiano Spada, Alberto Larghi, Antonio Gasbarrini and Maria Assunta Zocco
Cancers 2023, 15(19), 4718; https://doi.org/10.3390/cancers15194718 - 25 Sep 2023
Cited by 4 | Viewed by 2148
Abstract
Solid pancreatic neoplasms are one of the most diagnosed gastrointestinal malignancies thanks to the current and progressive advances in radiologic methods. Endoscopic ultrasound-guided techniques have over time gained a prominent role in the differential diagnosis and characterization of these pancreatic lesions, including pancreatic [...] Read more.
Solid pancreatic neoplasms are one of the most diagnosed gastrointestinal malignancies thanks to the current and progressive advances in radiologic methods. Endoscopic ultrasound-guided techniques have over time gained a prominent role in the differential diagnosis and characterization of these pancreatic lesions, including pancreatic cancer, neuroendocrine tumors, and metastases. Recently, several endoscopic ultrasound-guided locoregional treatment techniques, which are divided into thermal ablative techniques and non-thermal injection techniques, have been developed and applied in different settings for the treatment of solid pancreatic neoplasms. The most common ablative techniques are radiofrequency, microwave, laser, photodynamic therapy and hybrid techniques such as hybrid cryothermal ablation. The most common injection techniques are ethanol injection, immunotherapy and brachytherapy. In this review, we update evidence about the efficacy and safety of endoscopic ultrasound-guided locoregional treatments for solid pancreatic neoplasms. Full article
(This article belongs to the Special Issue Endoscopic Management of Pancreatic Neoplasms)
13 pages, 2465 KB  
Article
Multi-Objective Optimization of the Structural Design of a Combustion Chamber of a Small Agricultural Diesel Engine Fueled with B20 Blend Fuel at a High Altitude Area
by Zhipeng Shi, Jun Wang, Xiangchi Guo and Xueyuan Liu
Sustainability 2023, 15(15), 11617; https://doi.org/10.3390/su151511617 - 27 Jul 2023
Cited by 5 | Viewed by 1392
Abstract
This study focuses on a small agricultural diesel engine fueled with B20 (20% biodiesel and 80% diesel by volume) blend fuel in a plateau area. The combustion chamber’s structural parameters and fuel injection angle were taken as variables at peak torque conditions. First, [...] Read more.
This study focuses on a small agricultural diesel engine fueled with B20 (20% biodiesel and 80% diesel by volume) blend fuel in a plateau area. The combustion chamber’s structural parameters and fuel injection angle were taken as variables at peak torque conditions. First, a full factorial design was used for experimental design. Second, the back-propagation (BP) neural network was employed to predict the indicated thermal efficiency and the indicated specific NOx emission. Third, the non-dominated sorting genetic algorithm-II (NSGA-II) was utilized to optimize the indicated thermal efficiency and the indicated specific NOx emission. Finally, the technique for order of preference by similarity to ideal solution (TOPSIS) method was applied to obtain optimal solutions, and a three-dimensional numerical simulation was conducted to verify the optimization results. The optimization results indicate that the shape characteristics of the combustion chamber have a certain influence on the engine’s performance. The optimized design significantly reduces NOx emissions, by 22.83%, compared to the original engine, whilst maintaining the engine’s performance. Full article
(This article belongs to the Special Issue Sustainable and Renewable Energy: Biodiesel Production)
Show Figures

Figure 1

22 pages, 5730 KB  
Article
Stochastic Multi-Objective Optimal Reactive Power Dispatch with the Integration of Wind and Solar Generation
by Faraz Bhurt, Aamir Ali, Muhammad U. Keerio, Ghulam Abbas, Zahoor Ahmed, Noor H. Mugheri and Yun-Su Kim
Energies 2023, 16(13), 4896; https://doi.org/10.3390/en16134896 - 23 Jun 2023
Cited by 17 | Viewed by 2043
Abstract
The exponential growth of unpredictable renewable power production sources in the power grid results in difficult-to-regulate reactive power. The ultimate goal of optimal reactive power dispatch (ORPD) is to find the optimal voltage level of all the generators, the transformer tap ratio, and [...] Read more.
The exponential growth of unpredictable renewable power production sources in the power grid results in difficult-to-regulate reactive power. The ultimate goal of optimal reactive power dispatch (ORPD) is to find the optimal voltage level of all the generators, the transformer tap ratio, and the MVAR injection of shunt VAR compensators (SVC). More realistically, the ORPD problem is a nonlinear multi-objective optimization problem. Therefore, in this paper, the multi-objective ORPD problem is formulated and solved considering the simultaneous minimization of the active power loss, voltage deviation, emission, and the operating cost of renewable and thermal generators. Usually, renewable power generators such as wind and solar are uncertain; therefore, Weibull and lognormal probability distribution functions are considered to model wind and solar power, respectively. Due to the unavailability and uncertainty of wind and solar power, appropriate PDFs have been used to generate 1000 scenarios with the help of Monte Carlo simulation techniques. Practically, it is not possible to solve the problem considering all the scenarios. Therefore, the scenario reduction technique based on the distance metric is applied to select the 24 representative scenarios to reduce the size of the problem. Moreover, the efficient non-dominated sorting genetic algorithm II-based bidirectional co-evolutionary algorithm (BiCo), along with the constraint domination principle, is adopted to solve the multi-objective ORPD problem. Furthermore, a modified IEEE standard 30-bus system is employed to show the performance and superiority of the proposed algorithm. Simulation results indicate that the proposed algorithm finds uniformly distributed and near-global final non-dominated solutions compared to the recently available state-of-the-art multi-objective algorithms in the literature. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop