Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = passive magnetic method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 1676 KB  
Review
Neural–Computer Interfaces: Theory, Practice, Perspectives
by Ignat Dubynin, Maxim Zemlyanskov, Irina Shalayeva, Oleg Gorskii, Vladimir Grinevich and Pavel Musienko
Appl. Sci. 2025, 15(16), 8900; https://doi.org/10.3390/app15168900 - 12 Aug 2025
Viewed by 992
Abstract
This review outlines the technological principles of neural–computer interface (NCI) construction, classifying them according to: (1) the degree of intervention (invasive, semi-invasive, and non-invasive); (2) the direction of signal communication, including BCI (brain–computer interface) for converting neural activity into commands for external devices, [...] Read more.
This review outlines the technological principles of neural–computer interface (NCI) construction, classifying them according to: (1) the degree of intervention (invasive, semi-invasive, and non-invasive); (2) the direction of signal communication, including BCI (brain–computer interface) for converting neural activity into commands for external devices, CBI (computer–brain interface) for translating artificial signals into stimuli for the CNS, and BBI (brain–brain interface) for direct brain-to-brain interaction systems that account for agency; and (3) the mode of user interaction with technology (active, reactive, passive). For each NCI type, we detail the fundamental data processing principles, covering signal registration, digitization, preprocessing, classification, encoding, command execution, and stimulation, alongside engineering implementations ranging from EEG/MEG to intracortical implants and from transcranial magnetic stimulation (TMS) to intracortical microstimulation (ICMS). We also review mathematical modeling methods for NCIs, focusing on optimizing the extraction of informative features from neural signals—decoding for BCI and encoding for CBI—followed by a discussion of quasi-real-time operation and the use of DSP and neuromorphic chips. Quantitative metrics and rehabilitation measures for evaluating NCI system effectiveness are considered. Finally, we highlight promising future research directions, such as the development of electrochemical interfaces, biomimetic hierarchical systems, and energy-efficient technologies capable of expanding brain functionality. Full article
(This article belongs to the Special Issue Brain-Computer Interfaces: Development, Applications, and Challenges)
Show Figures

Figure 1

36 pages, 8597 KB  
Review
Microrheology: From Video Microscopy to Optical Tweezers
by Andrea Jannina Fernandez, Graham M. Gibson, Anna Rył and Manlio Tassieri
Micromachines 2025, 16(8), 918; https://doi.org/10.3390/mi16080918 - 8 Aug 2025
Viewed by 786
Abstract
Microrheology, a branch of rheology, focuses on studying the flow and deformation of matter at micron length scales, enabling the characterization of materials using minute sample volumes. This review article explores the principles and advancements of microrheology, covering a range of techniques that [...] Read more.
Microrheology, a branch of rheology, focuses on studying the flow and deformation of matter at micron length scales, enabling the characterization of materials using minute sample volumes. This review article explores the principles and advancements of microrheology, covering a range of techniques that infer the viscoelastic properties of soft materials from the motion of embedded tracer particles. Special emphasis is placed on methods employing optical tweezers, which have emerged as a powerful tool in both passive and active microrheology thanks to their exceptional force sensitivity and spatiotemporal resolution. The review also highlights complementary techniques such as video particle tracking, magnetic tweezers, dynamic light scattering, and atomic force microscopy. Applications across biology, materials science, and soft matter research are discussed, emphasizing the growing relevance of particle tracking microrheology and optical tweezers in probing microscale mechanics. Full article
(This article belongs to the Special Issue Microrheology with Optical Tweezers)
Show Figures

Figure 1

20 pages, 7451 KB  
Article
Research on Circulating-Current Suppression Strategy of MMC Based on Passivity-Based Integral Sliding Mode Control for Multiphase Wind Power Grid-Connected Systems
by Wei Zhang, Jianying Li, Mai Zhang, Xiuhai Yang and Dingai Zhong
Electronics 2025, 14(13), 2722; https://doi.org/10.3390/electronics14132722 - 5 Jul 2025
Viewed by 346
Abstract
To deal with the interphase circulating-current problem of modular multilevel converters (MMCs) in multiphase wind power systems, a cooperative circulating-current suppression strategy based on a second-order generalized integrator (SOGI) and passivity-based control–integral sliding mode control (PBC-ISMC) is proposed in this paper. Firstly, a [...] Read more.
To deal with the interphase circulating-current problem of modular multilevel converters (MMCs) in multiphase wind power systems, a cooperative circulating-current suppression strategy based on a second-order generalized integrator (SOGI) and passivity-based control–integral sliding mode control (PBC-ISMC) is proposed in this paper. Firstly, a multiphase permanent magnet direct-drive wind power system topology without a step-up transformer is established. On this basis, SOGI is utilized to construct a circulating current extractor, which is utilized to accurately extract the double-frequency component in the circulating current, and, at the same time, effectively filter out the DC components and high-frequency noise. Secondly, passivity-based control (PBC), with its fast energy dissipation, and integral sliding mode control (ISMC), with its strong robustness, are combined to construct the PBC-ISMC circulating-current suppressor, which realizes the nonlinear decoupling and dynamic immunity of the circulating-current model. Finally, simulation results demonstrate that the proposed strategy significantly reduces the harmonic content of the circulating current, optimizes both the bridge-arm current and output current, and achieves superior suppression performance and dynamic response compared to traditional methods, thereby effectively enhancing system power quality and operational reliability. Full article
Show Figures

Figure 1

18 pages, 5314 KB  
Article
Model-Free Predictive Current Control for an Improved Transverse-Flux Flux-Reversal Linear Motor
by Quanmao Li, Xin He and Xiaobao Yang
Electronics 2025, 14(12), 2477; https://doi.org/10.3390/electronics14122477 - 18 Jun 2025
Viewed by 316
Abstract
One of the significant features of the transverse flux linear motors (TFLMs) is the relatively higher thrust density, since the main flux loop of TFLM is located on a perpendicular plane to the motion direction. As one type of reluctance TFLM, the transverse-flux [...] Read more.
One of the significant features of the transverse flux linear motors (TFLMs) is the relatively higher thrust density, since the main flux loop of TFLM is located on a perpendicular plane to the motion direction. As one type of reluctance TFLM, the transverse-flux flux-reversal linear motor (TF-FRLM) is an interesting topology for the long stroke scene, which owns a passive reluctance type secondary, and the high-priced permanent magnets are only fixed on the short primary. To further enhance the practicality of the TF-FRLM, this paper focuses on the topology improvement and the control methods of TF-FRLM. Based on an improved TF-FRLM, a model-free predictive current control (MFPCC) method with suppressed sampling noise is proposed in this paper. Firstly, the details of structural improvements on the TF-FRLM topology are described, and some typical performances of TF-FRLMs are simulated by the three-dimensional finite element method and tested by a prototype. Then, based on the proposed basic principle of MFPCC, the reference current for inner-loop control is predicted. To ensure the prediction accuracy of the current in the MFPCC control method, the average filtering principle is used to suppress the impact of current sampling noise on performance. Finally, through comparative experiments on MFPCC schemes on the prototype platform, the effectiveness of the proposed control method is verified. Full article
Show Figures

Figure 1

15 pages, 755 KB  
Article
Role of Electrically Evoked Muscle Hypertrophy on Spasticity in Persons with Spinal Cord Injury
by Momal A. Wasim, Ahmad M. Alazzam and Ashraf S. Gorgey
J. Clin. Med. 2025, 14(11), 3972; https://doi.org/10.3390/jcm14113972 - 4 Jun 2025
Viewed by 761
Abstract
Study Design: Pilot randomized clinical trial. Objective: To examine the effect of electrically evoked muscle hypertrophy on indices of spasticity, as measured by Biodex after spinal cord injury (SCI). Setting: Medical research center. Methods: Thirteen males with chronic SCI were [...] Read more.
Study Design: Pilot randomized clinical trial. Objective: To examine the effect of electrically evoked muscle hypertrophy on indices of spasticity, as measured by Biodex after spinal cord injury (SCI). Setting: Medical research center. Methods: Thirteen males with chronic SCI were randomized into sixteen weeks of either surface neuromuscular resistance training (NMES-RT) + testosterone treatment (TT) (n = 7) or a TT-only group (n = 6). A Biodex isokinetic dynamometer was used to measure knee extensor and flexor muscle spasticity at the beginning (baseline; BL) and at the end (post-intervention; PI) of 16 weeks. The passive tension of the right knee extensor and flexor muscle groups were evaluated at angles of 5°, 30°, 60°, 90°, 180°, and 270° per second (sec). Dual energy X-ray absorptiometry and magnetic resonance imaging were used to measure leg lean mass and thigh muscle cross-sectional areas (CSAs). Results: Robust muscle hypertrophy was noted in leg lean mass [11%, p = 0.023] as well as whole thigh [17%, p = 0.001] and knee extensor muscle [28%, p = 0.001] CSAs in the NMES-RT+TT compared to the TT-only group. There was no difference in extensor or flexor spasticity between the NMES-RT+TT or TT-only groups at different angular velocities following 16 weeks of intervention. Collapsing the extensor passive torques indicated an (24–28%) increase (p < 0.004) in response to angular velocities at BL and following PI measurements [180 deg/sec (23%; p = 0.03) and 270 deg/sec (32%; p = 0.009)] compared to 5 deg/sec. The extensor slope showed a non-significant (p > 0.05) decrease of 15–28% across all angular velocities. The catch-AB slopes were non-significantly lower in the TT-only group compared to the NMES-RT+TT at higher speeds [90 deg/sec and 270 deg/sec] and attained a trend towards lower passive torque at 180 deg/sec [180 deg/sec: 15.5%, p = 0.05]. Conclusions: Evoking skeletal muscle hypertrophy did not increase spasticity indices at different angular velocities following sixteen weeks of NMES-RT+TT or TT in persons with chronic SCI. Augmenting muscle hypertrophy is likely to attenuate the hyper reflexive slope of the extensor spasticity. The findings may suggest that evoking muscle hypertrophy following NMES-RT does not increase indices of spasticity after SCI. The clinical implications are highly important in managing spasticity after SCI. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Graphical abstract

40 pages, 3743 KB  
Review
Droplet Generation and Manipulation in Microfluidics: A Comprehensive Overview of Passive and Active Strategies
by Andrea Fergola, Alberto Ballesio, Francesca Frascella, Lucia Napione, Matteo Cocuzza and Simone Luigi Marasso
Biosensors 2025, 15(6), 345; https://doi.org/10.3390/bios15060345 - 29 May 2025
Cited by 2 | Viewed by 3544
Abstract
Droplet-based microfluidics (DBM) has emerged as a powerful tool for a wide range of biochemical applications, from single-cell analysis and drug screening to diagnostics and tissue engineering. This review provides a comprehensive overview of the latest advancements in droplet generation and trapping techniques, [...] Read more.
Droplet-based microfluidics (DBM) has emerged as a powerful tool for a wide range of biochemical applications, from single-cell analysis and drug screening to diagnostics and tissue engineering. This review provides a comprehensive overview of the latest advancements in droplet generation and trapping techniques, highlighting both passive and active approaches. Passive methods—such as co-flow, cross-flow, and flow-focusing geometries—rely on hydrodynamic instabilities and capillary effects, offering simplicity and integration with compact devices, though often at the cost of tunability. In contrast, active methods exploit external fields—electric, magnetic, thermal, or mechanical—to enable on-demand droplet control, allowing for higher precision and throughput. Furthermore, we explore innovative trapping mechanisms such as hydrodynamic resistance networks, microfabricated U-shaped wells, and anchor-based systems that enable precise spatial immobilization of droplets. In the final section, we also examine active droplet sorting strategies, including electric, magnetic, acoustic, and thermal methods, as essential tools for downstream analysis and high-throughput workflows. These manipulation strategies facilitate in situ chemical and biological analyses, enhance experimental reproducibility, and are increasingly adaptable to industrial-scale applications. Emphasis is placed on the design flexibility, scalability, and biological compatibility of each method, offering critical insights for selecting appropriate techniques based on experimental needs and operational constraints. Full article
(This article belongs to the Special Issue Micro/Nanofluidic System-Based Biosensors)
Show Figures

Figure 1

17 pages, 25383 KB  
Article
RFID Sensor with Integrated Energy Harvesting for Wireless Measurement of dc Magnetic Fields
by Shijie Fu, Greg E. Bridges and Behzad Kordi
Sensors 2025, 25(10), 3024; https://doi.org/10.3390/s25103024 - 10 May 2025
Viewed by 1191
Abstract
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and [...] Read more.
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and there is a need for wireless sensing methods with high accuracy and a dynamic range. Conventional methods require direct contact with the high-voltage conductors and utilize bulky and complex equipment. In this paper, an ultra-high-frequency (UHF) radio frequency identification (RFID)-based sensor is introduced for the monitoring of the dc current of an HVdc transmission line. The sensor is composed of a passive RFID tag with a custom-designed antenna, integrated with a Hall effect magnetic field device and an RF power harvesting unit. The dc current is measured by monitoring the dc magnetic field around the conductor using the Hall effect device. The internal memory of the RFID tag is encoded with the magnetic field data. The entire RFID sensor can be wirelessly powered and interrogated using a conventional RFID reader. The advantage of this approach is that the sensor does not require batteries and does not need additional maintenance during its lifetime. This is an important feature in a high-voltage environment where any maintenance requires either an outage or special equipment. In this paper, the detailed design of the RFID sensor is presented, including the antenna design and measurements for both the RFID tag and the RF harvesting section, the microcontroller interfacing design and testing, the magnetic field sensor calibration, and the RF power harvesting section. The UHF RFID-based magnetic field sensor was fabricated and tested using a laboratory experimental setup. In the experiment, a 40 mm-diameter-aluminum conductor, typically used in 500 kV HVdc transmission lines carrying a dc current of up to 1200 A, was used to conduct dc current tests for the fabricated sensor. The sensor was placed near the conductor such that the Hall effect device was close to the surface of the conductor, and readings were acquired by the RFID reader. The sensitivity of the entire RFID sensor was 30 mV/mT, with linear behavior over a magnetic flux density range from 0 mT to 4.5 mT. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

19 pages, 2116 KB  
Article
Right Parietal rTMS Induces Bidirectional Effects of Selective Attention upon Object Integration
by Markus Conci, Leonie Nowack, Paul C. J. Taylor, Kathrin Finke and Hermann J. Müller
Brain Sci. 2025, 15(5), 483; https://doi.org/10.3390/brainsci15050483 - 3 May 2025
Viewed by 697
Abstract
Background/Objectives: Part-to-whole object completion and search guidance by salient, integrated objects has been proposed to require attentional resources, as shown by studies of neglect patients suffering from right-parietal brain damage. The current study was performed to provide further causal evidence for the link [...] Read more.
Background/Objectives: Part-to-whole object completion and search guidance by salient, integrated objects has been proposed to require attentional resources, as shown by studies of neglect patients suffering from right-parietal brain damage. The current study was performed to provide further causal evidence for the link between attention and object integration. Methods: Healthy observers detected targets in the left and/or right hemifields, and these targets were in turn embedded in various Kanizsa-type configurations that systematically varied in the extent to which individual items could be integrated into a complete, whole object. Moreover, repetitive transcranial magnetic stimulation (rTMS) was applied over the right intraparietal sulcus (IPS) and compared to both active and passive baseline conditions. Results: The results showed that target detection was substantially facilitated when the to-be detected item(s) were fully embedded in a salient, grouped Kanizsa figure, either a unilateral triangle or a bilateral diamond. However, object groupings in one hemifield did not facilitate target detection to the same extent when there were bilateral targets, one inside the (triangle) grouping and the other outside of the grouped object. These results extend previous findings from neglect patients. Moreover, a subgroup of observers was found to be particularly sensitive to IPS stimulation, revealing neglect-like extinction behavior with the single-hemifield triangle groupings and bilateral targets. Conversely, a second subgroup showed the opposite effect, namely an overall, IPS-dependent improvement in performance. Conclusions: These explorative analyses show that the parietal cortex, in particular IPS, seems to modulate the processing of object groupings by up- and downregulating the deployment of attention to spatial regions were to-be-grouped items necessitate attentional resources for object completion. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

15 pages, 4706 KB  
Article
Quaternized Polysulfone as a Solid Polymer Electrolyte Membrane with High Ionic Conductivity for All-Solid-State Zn-Air Batteries
by Luis Javier Salazar-Gastélum, Alejandro Arredondo-Espínola, Sergio Pérez-Sicairos, Lorena Álvarez-Contreras, Noé Arjona and Minerva Guerra-Balcázar
Membranes 2025, 15(4), 102; https://doi.org/10.3390/membranes15040102 - 1 Apr 2025
Viewed by 1730
Abstract
Solid polymer electrolytes (SPEs) are gaining attention as viable alternatives to traditional aqueous electrolytes in zinc–air batteries (ZABs), owing to their enhanced performance and stability. In this study, anion-exchange solid polymer electrolytes (A-SPEs) were synthesized via electrophilic aromatic substitution and substitution reactions. Thin [...] Read more.
Solid polymer electrolytes (SPEs) are gaining attention as viable alternatives to traditional aqueous electrolytes in zinc–air batteries (ZABs), owing to their enhanced performance and stability. In this study, anion-exchange solid polymer electrolytes (A-SPEs) were synthesized via electrophilic aromatic substitution and substitution reactions. Thin films were prepared using the solvent casting method and characterized using proton nuclear magnetic resonance (¹H-NMR), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The ion-exchange capacity (IEC), KOH uptake, ionic conductivity, and battery performance were also obtained by varying the degree of functionalization of the A-SPEs (30 and 120%, denoted as PSf30/PSf120, respectively). The IEC analysis revealed that PSf120 exhibited a higher quantity of functional groups, enhancing its hydroxide conductivity, which reached a value of 22.19 mS cm−1. In addition, PSf120 demonstrated a higher power density (70 vs. 50 mW cm−2) and rechargeability than benchmarked Fumapem FAA-3-50 A-SPE. Postmortem analysis further confirmed the lower formation of ZnO for PSf120, indicating the improved stability and reduced passivation of the zinc electrode. Therefore, this type of A-SPE could improve the performance and rechargeability of all-solid-state ZABs. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

22 pages, 5808 KB  
Article
Surface Acoustic Wave Sensor for Selective Multi-Parameter Measurements in Cardiac Magnetic Field Detection
by Hongbo Zhao, Chunxiao Jiao, Qi Wang, Chao Gao and Jing Sun
Appl. Sci. 2025, 15(7), 3583; https://doi.org/10.3390/app15073583 - 25 Mar 2025
Cited by 1 | Viewed by 2736
Abstract
Measuring parameters like heart temperature, heart rate, and cardiac magnetic field aids in analyzing cardiac health and disease. A multi-parameter sensor tailored to the heart can significantly enhance convenience in medical diagnosis and treatment. This work introduces a multi-parameter sensor based on Surface [...] Read more.
Measuring parameters like heart temperature, heart rate, and cardiac magnetic field aids in analyzing cardiac health and disease. A multi-parameter sensor tailored to the heart can significantly enhance convenience in medical diagnosis and treatment. This work introduces a multi-parameter sensor based on Surface Acoustic Wave Sensors (SAWSs) and magnetostrictive materials, designed to selectively measure various cardiac parameters. SAWSs are characterized by their compact dimensions, which facilitate integration into various medical devices. The wireless and passive characteristics of the sensors enable flexibility in the detection process. This sensor can detect various common physical quantities like weak magnetic fields by the control variable method, ensuring a high degree of accuracy. The working mode of SAWSs is investigated in this study, and the relationship curve concerning various influencing factors is established. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

20 pages, 1810 KB  
Article
The Application of Transformers with High-Temperature Superconducting Windings Considering the Skin Effect in Mobile Power Supply Systems
by Vadim Manusov, Inga Zicmane, Ratmir Galeev, Svetlana Beryozkina and Murodbek Safaraliev
Mathematics 2025, 13(5), 821; https://doi.org/10.3390/math13050821 - 28 Feb 2025
Viewed by 903
Abstract
The active and passive components of transformer electrical equipment have reached their limits regarding modernization and optimization, leading to the implementation of innovative approaches. This is particularly relevant for mobile and autonomous energy complexes due to the introduction of increased frequency, which can [...] Read more.
The active and passive components of transformer electrical equipment have reached their limits regarding modernization and optimization, leading to the implementation of innovative approaches. This is particularly relevant for mobile and autonomous energy complexes due to the introduction of increased frequency, which can be advantageous, especially in geoengineering, where the energy efficiency of electrical equipment is crucial. The new design of transformer equipment utilizing cryogenic technologies incorporates high-temperature superconducting (HTS) windings, a dielectric filler made of liquid nitrogen, and a three-dimensional magnetic system based on amorphous alloys. The finite element method showed that the skin effect does not impact HTS windings compared to conventional designs when the frequency increases. The analysis and synthesis of the parameters of the magnetic system made from amorphous iron and HTS windings in an HTS transformer with a dielectric medium of liquid nitrogen at a temperature of 77 K were performed, significantly reducing the mass and size characteristics of the HTS transformer compared to traditional counterparts while eliminating environmental and fire hazards. Based on these studies, an experimental prototype of an industrial HTS transformer with a capacity of 25 kVA was designed and manufactured. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

16 pages, 7388 KB  
Article
Identification of Brain Activation Areas in Response to Active Tactile Stimulation by Gripping a Stress Ball
by Kei Sasaki, Noriko Sakurai, Nobukiyo Yoshida, Misuzu Oishi, Satoshi Kasai and Naoki Kodama
Brain Sci. 2025, 15(3), 264; https://doi.org/10.3390/brainsci15030264 - 28 Feb 2025
Viewed by 1451
Abstract
Background/Objectives: Research on pleasant tactile perception has primarily focused on C-tactile fibers found in hairy skin, with the forearm and face as common study sites. Recent findings of these fibers in hairless skin, such as the palms, have sparked interest in tactile stimulation [...] Read more.
Background/Objectives: Research on pleasant tactile perception has primarily focused on C-tactile fibers found in hairy skin, with the forearm and face as common study sites. Recent findings of these fibers in hairless skin, such as the palms, have sparked interest in tactile stimulation on the hands. While studies have examined comfort and brain activity in passive touch, active touch remains underexplored. This study aimed to investigate differences in pleasant sensation and brain activity during active touch with stress balls of varying hardness. Methods: Forty healthy women participated. Using functional magnetic resonance imaging (fMRI), brain activity was measured as participants alternated between gripping stress balls of soft, medium, and hard hardness and resting without a ball. Participants rated hardness and comfort on a 9-point scale. Results: Soft stress balls were perceived as soft and comfortable, activating the thalamus and left insular cortex while reducing activity in the right insular cortex. Medium stress balls elicited similar perceptions and thalamic activation but with reduced right insular cortex activity. Hard stress balls caused discomfort, activating the insular cortex, thalamus, and amygdala while reducing anterior cingulate cortex activity. Conclusions: Soft stress balls may reduce aversive stimuli through perceived comfort, while hard stress balls may induce discomfort and are unlikely to alleviate stress. Full article
(This article belongs to the Section Neuropsychology)
Show Figures

Figure 1

16 pages, 2796 KB  
Article
Tracking Changes in Corticospinal Excitability During Visuomotor Paired Associative Stimulation to Predict Motor Resonance Rewriting
by Giacomo Guidali and Nadia Bolognini
Brain Sci. 2025, 15(3), 257; https://doi.org/10.3390/brainsci15030257 - 27 Feb 2025
Cited by 1 | Viewed by 1346
Abstract
Background/Objectives. Mirror properties of the action observation network (AON) can be modulated through Hebbian-like associative plasticity using paired associative stimulation (PAS). We recently introduced a visuomotor protocol (mirror–PAS, m-PAS) that pairs transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) with visual [...] Read more.
Background/Objectives. Mirror properties of the action observation network (AON) can be modulated through Hebbian-like associative plasticity using paired associative stimulation (PAS). We recently introduced a visuomotor protocol (mirror–PAS, m-PAS) that pairs transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) with visual stimuli of ipsilateral (to TMS) movements, leading to atypical corticospinal excitability (CSE) facilitation (i.e., motor resonance) during PAS-conditioned action observation. While m-PAS aftereffects are robust, little is known about markers of associative plasticity during its administration and their predictive value for subsequent motor resonance rewriting. The present study aims to fill this gap by investigating CSE modulations during m-PAS and their relationship with the protocol’s aftereffects. Methods. We analyzed CSE dynamics in 81 healthy participants undergoing the m-PAS before and after passively observing left- or right-hand index finger movements. Here, typical and PAS-conditioned motor resonance was assessed with TMS over the right M1. We examined CSE changes during the m-PAS and used linear regression models to explore their relationship with motor resonance modulations. Results. m-PAS transiently reshaped both typical and PAS-induced motor resonance. Importantly, we found a gradual increase in CSE during m-PAS, which predicted the loss of typical motor resonance but not the emergence of atypical responses after the protocol’s administration. Conclusions. Our results suggest that the motor resonance reshaping induced by the m-PAS is not entirely predictable by CSE online modulations. Likely, this rewriting is the product of a large-scale reorganization of the AON rather than a phenomenon restricted to the PAS-stimulated motor cortex. This study underlines that monitoring CSE during non-invasive brain stimulation protocols could provide valuable insight into some but not all plastic outcomes. Full article
Show Figures

Figure 1

9 pages, 4649 KB  
Technical Note
MAMA—Mandibular Advancement Magnetic Appliance: A Digital Workflow and a CAD–CAM Development of a New Mandibular Advancement Device for the Treatment of Obstructive Sleep Apnea Syndrome
by Riccardo Nucera, Enrico Nastro Siniscalchi, Giancarlo Consolo, Luigi Calabrese, Daniela Caccamo, Angela Mirea Bellocchio and Marco Portelli
Dent. J. 2025, 13(3), 104; https://doi.org/10.3390/dj13030104 - 27 Feb 2025
Viewed by 1008
Abstract
Background/Objectives: Mandibular advancing devices (MADs) are removable intraoral apparatuses to use during sleep that modify the spatial position of the mandible, increasing airway patency and improving respiratory function at night in patients with obstructive sleep apnea syndrome (OSAS). Methods: In this work, a [...] Read more.
Background/Objectives: Mandibular advancing devices (MADs) are removable intraoral apparatuses to use during sleep that modify the spatial position of the mandible, increasing airway patency and improving respiratory function at night in patients with obstructive sleep apnea syndrome (OSAS). Methods: In this work, a new mandibular advancement device useful for mild-to-moderate OSAS patients is presented. It is developed through a CAD–CAM process and involves a passive propulsion of the mandible thanks to the attraction of rare-earth magnets positioned in the thickness of two thermally molded PET-G devices. The use of a PET-G device compared to traditional resin ones offers several clinical advantages related to the innovative characteristics of this polymer, which allows the fabrication of thinner devices, with high resistance to fluid corrosion, resulting in less bulk inside the oral cavity. Results: The innovative feature of the device proposed by the authors is that mandibular propulsion induced by the attraction of the magnetic jigs is not affected by a patient’s mandibular posture during sleep. Conclusions: The original apparatus proposed by the authors determines a mesializing movement of the jaw through a different mechanism to traditional MADs and presents the great advantage of a digital and CAD–CAD workflow that can be developed directly by the clinicians in the practice. Full article
(This article belongs to the Special Issue New Trends in Digital Dentistry)
Show Figures

Figure 1

17 pages, 4260 KB  
Article
Model-Based Optimization of the Field-Null Configuration for Robust Plasma Breakdown on the HL-3 Tokamak
by Muwen He, Bin Yang, Yihang Chen, Xinliang Xu, Xiaobo Zhu, Jiaqi Yang, Jiang Sun, Panle Liu, Bo Li and Xiaoquan Ji
Appl. Sci. 2025, 15(4), 2175; https://doi.org/10.3390/app15042175 - 18 Feb 2025
Viewed by 729
Abstract
This paper introduces a self-consistent field-null optimization algorithm of a poloidal magnetic field that precisely accounts for the influence of vacuum vessel eddy currents. Building on existing poloidal field (PF) coil currents, the algorithm can refine these waveforms to achieve various target field-null [...] Read more.
This paper introduces a self-consistent field-null optimization algorithm of a poloidal magnetic field that precisely accounts for the influence of vacuum vessel eddy currents. Building on existing poloidal field (PF) coil currents, the algorithm can refine these waveforms to achieve various target field-null configurations. Firstly, based on the TokSys toolbox, a response model, including the PF coils and vacuum vessel circuits for the HL-3 tokamak, is developed under the MATLAB® and Simulink framework. The resistivity parameters of the model are calibrated using experimental data obtained from single-coil discharge tests. Subsequently, an iterative method was employed to simultaneously solve the dynamic field-null optimization problem within a specified spatial region and precisely account for the effect of passive eddy currents. Typically, B1 G within a large area can be obtained with this iterative scheme, which can be stably sustained for over 15 milliseconds to ensure the robustness of breakdown. Finally, a low-pass filtered PID controller is applied to the model to achieve precise control of the PF coils currents, confirming the feasibility of implementing the proposed algorithm in real experiments. Full article
Show Figures

Figure 1

Back to TopTop