Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (709)

Search Parameters:
Keywords = permeability transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 10857 KB  
Article
A Damage-Based Fully Coupled DFN Study of Fracture-Driven Interactions in Zipper Fracturing for Shale Gas Production
by Fushen Liu, Yang Mou, Fenggang Wen, Zhiguang Yao, Xinzheng Yi, Rui Xu and Nanlin Zhang
Energies 2025, 18(17), 4722; https://doi.org/10.3390/en18174722 - 4 Sep 2025
Abstract
As a significant energy source enabling the global energy transition, efficient shale gas development is critical for diversifying supplies and reducing carbon emissions. Zipper fracturing widely enhances the stimulated reservoir volume (SRV) by generating complex fracture networks of shale reservoirs. However, recent trends [...] Read more.
As a significant energy source enabling the global energy transition, efficient shale gas development is critical for diversifying supplies and reducing carbon emissions. Zipper fracturing widely enhances the stimulated reservoir volume (SRV) by generating complex fracture networks of shale reservoirs. However, recent trends of reduced well spacing and increased injection intensity have significantly intensified interwell interference, particularly fracture-driven interactions (FDIs), leading to early production decline and well integrity issues. This study develops a fully coupled hydro–mechanical–damage (HMD) numerical model incorporating an explicit discrete fracture network (DFN), opening and closure of fractures, and an aperture–permeability relationship to capture the nonlinear mechanical behavior of natural fractures and their role in FDIs. After model validation, sensitivity analyses are conducted. Results show that when the horizontal differential stress exceeds 12 MPa, fractures tend to propagate as single dominant planes due to stress concentration, increasing the risks of FDIs and reducing effective SRV. Increasing well spacing from 60 m to 110 m delays or eliminates FDIs while significantly improving reservoir stimulation. Fracture approach angle governs the interaction mechanisms between hydraulic and natural fractures, influencing the deflection and branching behavior of primary fractures. Injection rate exerts a dual influence on fracture extension and FDI risk, requiring an optimized balance between stimulation efficiency and interference control. This work enriches the multi-physics coupling theory of FDIs during fracturing processes, for better understanding the fracturing design and optimization in shale gas production. Full article
Show Figures

Figure 1

29 pages, 8264 KB  
Review
Construction Biotechnology: Integrating Bacterial Systems into Civil Engineering Practices
by Olja Šovljanski, Ana Tomić, Tiana Milović, Vesna Bulatović, Aleksandra Ranitović, Dragoljub Cvetković and Siniša Markov
Microorganisms 2025, 13(9), 2051; https://doi.org/10.3390/microorganisms13092051 - 3 Sep 2025
Abstract
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 [...] Read more.
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 and a five-fold increase in annual output since 2020. Beyond bibliometric growth, technical studies have demonstrated the remarkable performance of bacterial systems: for example, microbial-induced calcium carbonate precipitation (MICP) can increase the compressive strength of treated soils by 60–70% and reduce permeability by more than 90% in field-scale trials. In concrete applications, bacterial self-healing has been shown to seal cracks up to 0.8 mm wide and improve water tightness by 70–90%. Similarly, biofilm-mediated corrosion barriers can extend the durability of reinforced steel by significantly reducing chloride ingress, while bacterial biopolymers such as xanthan gum and curdlan enhance soil cohesion and water retention in eco-grouting and erosion control. The novelty of this review lies in its interdisciplinary scope, integrating microbiological mechanisms, materials science, and engineering practice to highlight how bacterial processes can transition from laboratory models to real-world applications. By combining quantitative evidence with critical assessment of scalability, biosafety, and regulatory challenges, this paper provides a comprehensive framework that positions construction biotechnology as a transformative pathway towards low-carbon, adaptive, and resilient infrastructure systems. Full article
(This article belongs to the Special Issue Microbial Bioprocesses)
Show Figures

Figure 1

15 pages, 4743 KB  
Article
Upcycling Coffee Silverskin Waste into Functional Textile Coatings: Evaluation on Cotton, Lyocell, Wool, and Silk
by Agata Nolasco, Francesco Esposito, Teresa Cirillo, Augusta Silva and Carla Joana Silva
Coatings 2025, 15(9), 1033; https://doi.org/10.3390/coatings15091033 - 3 Sep 2025
Abstract
Agricultural and food by-products offer valuable opportunities for circular and bio-based innovation across sectors. In the textile industry, replacing fossil-based coatings with sustainable alternatives is increasingly urgent. This study evaluates the performance of a textile coating based on coffee silverskin (CS)—an abundant by-product [...] Read more.
Agricultural and food by-products offer valuable opportunities for circular and bio-based innovation across sectors. In the textile industry, replacing fossil-based coatings with sustainable alternatives is increasingly urgent. This study evaluates the performance of a textile coating based on coffee silverskin (CS)—an abundant by-product of coffee roasting—applied to four natural fibre substrates: cotton, lyocell, wool, and silk. A formulation combining 60% CS sludge (8% solids), treated by wet ball milling, with an aliphatic polyester-polyurethane dispersion was applied via knife coating. Standardised tests assessed mechanical resistance, air permeability, colour fastness, moisture management, and water repellency, including contact angle and drop absorption analyses. Results revealed that all substrates were compatible with the CS-based coating, which reduced air permeability and increased hydrophobicity. Notably, silk showed the most significant functional enhancement, transitioning from hydrophilic to waterproof with increased durability—indicating strong potential for technical applications such as outerwear and performance textiles. Given the renewable origin of both the substrate and coating, this study highlights the feasibility of valorising agri-food waste in high-performance, bio-based textile systems. These findings demonstrate the potential of CS as a bio-based coating for technical textiles, supporting the development of high-performance and sustainable materials within the textile industry. Full article
(This article belongs to the Special Issue Advances in Coated Fabrics and Textiles)
Show Figures

Figure 1

15 pages, 5277 KB  
Article
Application of the Transition State Theory in the Study of the Osmotic Permeabilities of AQP7, AQP10 and GlpF
by Ruth Chan and Liao Y. Chen
Membranes 2025, 15(9), 265; https://doi.org/10.3390/membranes15090265 - 2 Sep 2025
Viewed by 163
Abstract
Aquaglyceroporins, including human AQP7, AQP10, and E. coli GlpF, are known to facilitate movements of glycerol, water, and some other uncharged molecules across the cell membrane. In this study we focused on the transport of water molecules in the absence of glycerol for [...] Read more.
Aquaglyceroporins, including human AQP7, AQP10, and E. coli GlpF, are known to facilitate movements of glycerol, water, and some other uncharged molecules across the cell membrane. In this study we focused on the transport of water molecules in the absence of glycerol for AQP7, AQP10 and GlpF using the Transition State Theory for the novel application of permeability and kinetics studies. We conducted around 500 ns of in silico simulations of the aquaglyceroporins embedded in lipid bilayer membranes with intracellular-extracellular asymmetries in leaflet lipid compositions. For the water permeability analysis, we computed the transition rate constant with correction for recrossing events where the water molecules do not completely traverse the protein channel from one side of the membrane to the other side. We also studied the hydrogen bond distributions of the single-file waters and channel residues and linear water densities along the pores of the aquaglyceroporins. Interestingly, we found that there was an inverse correlation between the number of single-file water molecules in the channel and osmotic permeability. Full article
(This article belongs to the Special Issue Composition and Biophysical Properties of Lipid Membranes)
Show Figures

Figure 1

19 pages, 733 KB  
Review
Methane, Bacteria, Fungi, and Fermentation: Pathophysiology, Diagnosis and Treatment Strategies for Small Intestinal Bacterial Overgrowth, Intestinal Methanogen Overgrowth and Small Intestinal Fungal Overgrowth
by Adam Wawrzeńczyk, Marta Czarnowska, Samira Darwish, Aleksandra Ćwirko-Godycka, Kinga Lis, Maciej Szota, Paweł Treichel, Aleksandra Wojtkiewicz and Katarzyna Napiórkowska-Baran
Curr. Issues Mol. Biol. 2025, 47(9), 713; https://doi.org/10.3390/cimb47090713 - 2 Sep 2025
Viewed by 188
Abstract
The human gastrointestinal tract hosts a complex ecosystem known as the gut microbiota, which plays a crucial part in digestion and immune system function. Among the clinically recognized manifestations of dysbiosis in this system are Small Intestinal Bacterial Overgrowth (SIBO), Intestinal Methanogen Overgrowth [...] Read more.
The human gastrointestinal tract hosts a complex ecosystem known as the gut microbiota, which plays a crucial part in digestion and immune system function. Among the clinically recognized manifestations of dysbiosis in this system are Small Intestinal Bacterial Overgrowth (SIBO), Intestinal Methanogen Overgrowth (IMO), Small Intestinal Fungal Overgrowth (SIFO), and Large Intestinal Bacterial Overgrowth (LIBO). This study aims to investigate the complex pathophysiological mechanisms underlying these syndromes and their diagnostics and therapeutic options, focusing primarily on the roles of methane-producing archaea and fungal overgrowth. The methods employed in this study involve a comprehensive analysis and synthesis of peer-reviewed articles, systematic reviews, clinical trials, and meta-analyses. This review summarizes that methane production by Methanobrevibacter smithii was linked to altered fermentation, reduced microbial diversity, and slowed intestinal transit. Fungal species were associated with increased intestinal permeability, inflammation, and biofilm formation. Targeted interventions addressing microbial imbalances demonstrated potential therapeutic value. This review highlights the complex and multifactorial nature of gut dysbiosis, revealing its impact beyond the gastrointestinal tract. While emerging therapies targeting methanogens, fungi, and biofilms show promise, further research is essential to optimize their clinical application. The findings emphasize the need for interdisciplinary collaboration to refine diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Figure 1

34 pages, 2865 KB  
Review
Mitochondrial Transport Proteins in Cardiovascular Diseases: Metabolic Gatekeepers, Pathogenic Mediators and Therapeutic Targets
by Yue Pei, Sitong Wan, Jingyi Qi, Xueyao Xi, Yinhua Zhu, Peng An, Junjie Luo and Yongting Luo
Int. J. Mol. Sci. 2025, 26(17), 8475; https://doi.org/10.3390/ijms26178475 - 31 Aug 2025
Viewed by 373
Abstract
Mitochondria, as the metabolic hubs of cells, play a pivotal role in maintaining cardiovascular homeostasis through dynamic regulation of energy metabolism, redox balance, and calcium signaling. Cardiovascular diseases (CVDs), including heart failure, ischemic heart disease, cardiomyopathies, and myocardial infarction, remain the leading cause [...] Read more.
Mitochondria, as the metabolic hubs of cells, play a pivotal role in maintaining cardiovascular homeostasis through dynamic regulation of energy metabolism, redox balance, and calcium signaling. Cardiovascular diseases (CVDs), including heart failure, ischemic heart disease, cardiomyopathies, and myocardial infarction, remain the leading cause of global mortality, with mitochondrial dysfunction emerging as a unifying pathological mechanism across these conditions. Emerging evidence suggests that impaired mitochondrial transport systems—critical gatekeepers of metabolite flux, ion exchange, and organelle communication—drive disease progression by disrupting bioenergetic efficiency and exacerbating oxidative stress. This review synthesizes current knowledge on mitochondrial transport proteins, such as the voltage-dependent anion channels, transient receptor potential channels, mitochondrial calcium uniporter, and adenine nucleotide translocator, focusing on their structural–functional relationships and dysregulation in CVD pathogenesis. We highlight how aberrant activity of these transporters contributes to hallmark features of cardiac pathology, including metabolic inflexibility, mitochondrial permeability transition pore destabilization, and programmed cell death. Furthermore, we critically evaluate preclinical advances in targeting mitochondrial transport systems through pharmacological modulation, gene editing, and nanoparticle-based delivery strategies. By elucidating the mechanistic interplay between transport protein dysfunction and cardiac metabolic reprogramming, we address a critical knowledge gap in cardiovascular biology and provide a roadmap for developing precision therapies. Our insights underscore the translational potential of mitochondrial transport machinery as both diagnostic biomarkers and therapeutic targets, offering new avenues to combat the growing burden of CVDs in aging populations. Full article
(This article belongs to the Special Issue Mitochondria in Aging and Aging-Related Diseases)
Show Figures

Figure 1

21 pages, 12309 KB  
Article
Analysis of Surface Runoff and Ponding Infiltration Patterns Induced by Underground Block Caving Mining—A Case Study
by Shihui Jiao, Yong Zhao, Tianhong Yang, Xin Wen, Qingshan Ma, Qianbai Zhao and Honglei Liu
Appl. Sci. 2025, 15(17), 9516; https://doi.org/10.3390/app15179516 - 29 Aug 2025
Viewed by 146
Abstract
Surface subsidence induced by underground mining in mining areas significantly alters surface topography and hydrogeological conditions, forming depressions and fissures, thereby affecting regional runoff-ponding processes and groundwater infiltration patterns. Accurate assessment of infiltration volumes in subsidence zones under heavy rainfall is crucial for [...] Read more.
Surface subsidence induced by underground mining in mining areas significantly alters surface topography and hydrogeological conditions, forming depressions and fissures, thereby affecting regional runoff-ponding processes and groundwater infiltration patterns. Accurate assessment of infiltration volumes in subsidence zones under heavy rainfall is crucial for designing underground drainage systems and evaluating water-inrush risks in open-pit to underground transition mines. Taking the surface subsidence area of the Dahongshan Iron Mine as a case study, this paper proposes a rainfall infiltration calculation method based on the precise delineation of surface ponding-infiltration zones. By numerically simulating the subsidence range, the study divides the area into two distinct infiltration characteristic zones under different mining states: the caved zone and the water-conducting fracture zone. The rainfall infiltration volume under storm conditions was calculated separately for each zone. The results indicate that high-intensity mining-induced subsidence leads to a nonlinear surge in stormwater infiltration, primarily due to the significant expansion of the highly permeable caved zone. The core mechanism lies in the area expansion of the caved zone as a rapid infiltration channel, which dominates the overall infiltration capacity multiplication. These findings provide a scientific basis for the design of mine drainage systems and the prevention of water-inrush disasters. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

24 pages, 8255 KB  
Article
Practical Approach for Formation Damage Control in CO2 Gas Flooding in Asphaltenic Crude Systems
by David Sergio, Derrick Amoah Oladele, Francis Dela Nuetor, Himakshi Goswami, Racha Trabelsi, Haithem Trabelsi and Fathi Boukadi
Processes 2025, 13(9), 2740; https://doi.org/10.3390/pr13092740 - 27 Aug 2025
Viewed by 338
Abstract
CO2 flooding has become a strategic tool for enhanced oil recovery and reservoir management in mature fields. This technique, however, is rarely utilized in asphaltenic crude oil systems, due to the likely occurrence of high asphaltene precipitation. The effect of asphaltene concentrations [...] Read more.
CO2 flooding has become a strategic tool for enhanced oil recovery and reservoir management in mature fields. This technique, however, is rarely utilized in asphaltenic crude oil systems, due to the likely occurrence of high asphaltene precipitation. The effect of asphaltene concentrations and CO2 injection pressures has mostly been the focus of studies in determining asphaltene precipitation rates. However, asphaltene precipitation is not the only direct factor to be considered in predicting the extent of damage in an asphaltenic crude oil system. In this study, a compositional reservoir simulation was conducted using Eclipse 300 to investigate the injection pressure at which asphaltene-induced formation damage can be avoided during both miscible and immiscible CO2 flooding in an asphaltenic crude system. Simulation results indicate that asphaltene-induced permeability reduction exceeded 35% in most affected zones, with a corresponding drop in injectivity of 28%. Cumulative oil recovery improved by 19% compared to base cases without CO2 injection, achieving peak recovery after approximately 4200 days of simulation time. As CO2 was injected below the Minimum Miscibility Pressure (MMP) of 2079.2 psi, a significantly lower asphaltene precipitation was observed near the injector. This could be attributed to the stripping of lighter hydrocarbon components (C2–C7+) occurring in the transition zone at the gas–oil interface. Injecting CO2 at pressures above the MMP resulted in precipitation occurring throughout the entire reservoir at 3200 psia and 1000 bbl/day injection rates. An increase in the injection rate at pressures above the MMP increased the rate of precipitation. However, a further increase in the injection rate from 1000 bbl/day to 4200 bbl/day resulted in a decrease in asphaltene deposition. The pressure drop in the water phase caused by pore throat increase demonstrated that water injection was effective in removing asphaltene deposits and restoring permeability. This work provides critical insights into optimizing CO2 injection strategies to enhance oil recovery while minimizing asphaltene-induced formation damage in heavy oil reservoirs. Full article
Show Figures

Figure 1

17 pages, 3055 KB  
Article
Development of an In-Situ Multifrequency Electromagnetic Sensor for Real-Time Microstructure Monitoring in a Continuous Annealing Furnace
by John W. Wilson, Mohsen A. Jolfaei, Lei Zhou, Carl Slater, Claire Davis and Anthony J. Peyton
Sensors 2025, 25(16), 5158; https://doi.org/10.3390/s25165158 - 19 Aug 2025
Viewed by 438
Abstract
The continuous annealing process is widely used in the production of advanced high-strength steels. However, to tightly regulate the mechanical properties of the steel, precise control of processing parameters is needed. Although some techniques are available to monitor the mechanical properties of the [...] Read more.
The continuous annealing process is widely used in the production of advanced high-strength steels. However, to tightly regulate the mechanical properties of the steel, precise control of processing parameters is needed. Although some techniques are available to monitor the mechanical properties of the steel on entry and exit to the furnace, monitoring the evolving microstructure of the steel through installation of sensors in the annealing line is extremely challenging due to the high temperature, high speed of the steel strip and limited space in the furnace. This study presents the development and validation of a multifrequency electromagnetic sensor system for real-time monitoring of microstructural transformations in steel during thermal cycling, intended for deployment in a continuous annealing line. Experiments were conducted on austenitic stainless steel to study the signal response to an increase in resistivity without a change in magnetic permeability. Pure nickel was tested to investigate the response to a change in magnetic permeability and the ferromagnetic-to-paramagnetic transition at its Curie temperature. A ferritic stainless steel was also tested to assess the performance of the system for high-temperature ferromagnetic materials and a higher-temperature ferromagnetic-to-paramagnetic transition. The tests indicate a strong response to material resistivity and permeability changes, with complementary information from different frequencies. Test results are supplemented by a finite element modelling study into the effect of a change in frequency and permeability on sensor response, with a discussion on the implications of experimental and modelling results for future applications. The results show that the developed system has the potential to characterise thermally induced changes in steels, establishing proof of concept for non-destructive, high-temperature electromagnetic sensing in steel processing and setting the foundation for further industrial deployment in phase and recrystallisation monitoring. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

19 pages, 2887 KB  
Article
Multifractal Characterization of Heterogeneous Pore Water Redistribution and Its Influence on Permeability During Depletion: Insights from Centrifugal NMR Analysis
by Fangkai Quan, Wei Lu, Yu Song, Wenbo Sheng, Zhengyuan Qin and Huogen Luo
Fractal Fract. 2025, 9(8), 536; https://doi.org/10.3390/fractalfract9080536 - 15 Aug 2025
Viewed by 301
Abstract
The dynamic process of water depletion plays a critical role in both surface coalbed methane (CBM) development and underground gas extraction, reshaping water–rock interactions and inducing complex permeability responses. Addressing the limited understanding of the coupling mechanism between heterogeneous pore water evolution and [...] Read more.
The dynamic process of water depletion plays a critical role in both surface coalbed methane (CBM) development and underground gas extraction, reshaping water–rock interactions and inducing complex permeability responses. Addressing the limited understanding of the coupling mechanism between heterogeneous pore water evolution and permeability during dynamic processes, this study simulates reservoir transitions across four zones (prospective planning, production preparation, active production, and mining-affected zones) via centrifugal experiments. The results reveal a pronounced scale dependence in pore water distribution. During low-pressure stages (0–0.54 MPa), rapid drainage from fractures and seepage pores leads to a ~12% reduction in total water content. In contrast, high-pressure stages (0.54–3.83 MPa) promote water retention in adsorption pores, with their relative contribution rising to 95.8%, forming a dual-structure of macropore drainage and micropore retention. Multifractal analysis indicates a dual-mode evolution of movable pore space. Under low centrifugal pressure, D−10 and Δα decrease by approximately 34% and 36%, respectively, reflecting improved connectivity within large-pore networks. At high centrifugal pressure, an ~8% increase in D0D2 suggests that pore-scale heterogeneity in adsorption pores inhibits further seepage. A quantitative coupling model establishes a quadratic relationship between fractal parameters and permeability, illustrating that permeability enhancement results from the combined effects of pore volume expansion and structural homogenization. As water saturation decreases from 1.0 to 0.64, permeability increases by more than 3.5 times. These findings offer theoretical insights into optimizing seepage pathways and improving gas recovery efficiency in dynamically evolving reservoirs. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

28 pages, 5630 KB  
Article
The Impact of Elastoplastic Deformation Behavior on the Apparent Gas Permeability of Deep Fractal Shale Rocks
by Xu Zhou, Zhaoqin Huang, Aifen Li, Jun Yao and Xu Zhang
Fractal Fract. 2025, 9(8), 526; https://doi.org/10.3390/fractalfract9080526 - 13 Aug 2025
Viewed by 285
Abstract
Deep shale gas reservoirs are vital sources of unconventional natural gas and present unique challenges for exploration and development due to their multiscale flow characteristics and elastoplastic deformation behavior of reservoir rocks. Accurately predicting permeability in these reservoirs is crucial. This study introduces [...] Read more.
Deep shale gas reservoirs are vital sources of unconventional natural gas and present unique challenges for exploration and development due to their multiscale flow characteristics and elastoplastic deformation behavior of reservoir rocks. Accurately predicting permeability in these reservoirs is crucial. This study introduces a novel model utilizing fractal theory and a thick-walled cylinder model to characterize stress-dependent apparent gas permeability. The model incorporates various flow mechanisms, including viscous flow, transition flow, Knudsen diffusion, surface diffusion, real gas effects, and gas slip effects. It enables predictions of how permeability changes with elastoplastic behavior and affects the pore volume fractions of different flow mechanisms. Experimental validation during elastic and elastoplastic deformations confirms the model’s accuracy, with each parameter having clear physical significance. Key findings reveal that, at the same effective stress, apparent gas permeability increases with pore radius fractal dimension, temperature, and Young’s modulus, while decreasing with capillary tortuosity fractal dimension. Additionally, during plastic deformation, greater magnitudes of plastic strain lead to more pronounced changes in apparent gas permeability compared to elastic deformation. These insights emphasize the importance of incorporating elastoplastic behavior in studies of deep shale gas reservoirs. Full article
Show Figures

Figure 1

23 pages, 5300 KB  
Article
Biodegradable Antioxidant Composites with Almond Skin Powder
by Irene Gil-Guillén, Idalina Gonçalves, Paula Ferreira, Chelo González-Martínez and Amparo Chiralt
Polymers 2025, 17(16), 2201; https://doi.org/10.3390/polym17162201 - 12 Aug 2025
Viewed by 303
Abstract
Almond skin (AS) from industrial almond peeling is considered an agri-food waste with adequate composition to obtain composite films for food packaging due to its richness in polysaccharides, proteins, and phenolic compounds. Composite films based on amorphous polylactic acid (PLA) or partially acetylated [...] Read more.
Almond skin (AS) from industrial almond peeling is considered an agri-food waste with adequate composition to obtain composite films for food packaging due to its richness in polysaccharides, proteins, and phenolic compounds. Composite films based on amorphous polylactic acid (PLA) or partially acetylated polyvinilalcohol (PVA) were obtained by melt blending and compression moulding, incorporating different ratios of defatted AS powder (0, 5, 10, and 15 wt.%). The filler was better integrated in the polar PVA matrix, where more interactions were detected with the filler compounds, affecting glass transition and crystallization of the polymer. The AS particles provided the films with the characteristic colour of the powder and strong UV light-blocking effect, while improving the oxygen barrier capacity of both polymeric matrices (24% in PLA with 15% AS and 42% in PVA with 10% AS). The water vapour permeability increased in PLA (by 192% at 15% AS), but decreased in PVA films, especially with low AS content (by 19% with 5% particles). The filler also provided the PLA and PVA films with antioxidant properties due to its phenolic richness, improving the oxygen barrier capacity of the materials and delaying the unsaturated oil oxidation. This was reflected in the lower peroxide and conjugated dienes and trienes values of the sunflower oil packaged in single-dose bags of the different materials. The high oxygen barrier capacity of the PVA bags mainly controlled the preservation of the oil, which made the effect of the antioxidant AS powder less noticeable. Full article
Show Figures

Graphical abstract

27 pages, 5201 KB  
Review
Geomechanical and Geochemical Considerations for Hydrogen Storage in Shale and Tight Reservoirs
by Sarath Poda and Gamadi Talal
Processes 2025, 13(8), 2522; https://doi.org/10.3390/pr13082522 - 11 Aug 2025
Viewed by 565
Abstract
Underground hydrogen storage (UHS) in shale and tight reservoirs offers a promising solution for large-scale energy storage, playing a critical role in the transition to a hydrogen-based economy. However, the successful deployment of UHS in these low-permeability formations depends on a thorough understanding [...] Read more.
Underground hydrogen storage (UHS) in shale and tight reservoirs offers a promising solution for large-scale energy storage, playing a critical role in the transition to a hydrogen-based economy. However, the successful deployment of UHS in these low-permeability formations depends on a thorough understanding of the geomechanical and geochemical factors that affect storage integrity, injectivity, and long-term stability. This review critically examines the geomechanical aspects, including stress distribution, rock deformation, fracture propagation, and caprock integrity, which govern hydrogen containment under subsurface conditions. Additionally, it explores key geochemical challenges such as hydrogen-induced mineral alterations, adsorption effects, microbial activity, and potential reactivity with formation fluids, to evaluate their impact on storage feasibility. A comprehensive analysis of experimental studies, numerical modeling approaches, and field applications is presented to identify knowledge gaps and future research directions. Full article
Show Figures

Figure 1

17 pages, 2466 KB  
Article
Fabrication, Characterization, and In Vitro Digestion Behavior of Bigel Loaded with Notoginsenoside Rb1
by Yang Luo, Gao Xiong, Xiao Gong, Chunlei Xu, Yingqiu Tian and Guanrong Li
Gels 2025, 11(8), 624; https://doi.org/10.3390/gels11080624 - 9 Aug 2025
Viewed by 366
Abstract
Notoginsenoside Rb1 (Rb1), a bioactive saponin from Panax notoginseng, exerts cardio-cerebrovascular protective, anti-inflammatory, antioxidant, and glucose homeostasis-regulating effects. However, its oral bioavailability is limited by gastric degradation and poor intestinal permeability. This study presents a food-grade bigel system for encapsulating Rb1 to enhance [...] Read more.
Notoginsenoside Rb1 (Rb1), a bioactive saponin from Panax notoginseng, exerts cardio-cerebrovascular protective, anti-inflammatory, antioxidant, and glucose homeostasis-regulating effects. However, its oral bioavailability is limited by gastric degradation and poor intestinal permeability. This study presents a food-grade bigel system for encapsulating Rb1 to enhance its stability and controlled-release performance. Oleogels were structured using monoglycerides (8%, w/w) in soybean oil. Rb1-loaded binary hydrogels (gellan gum/xanthan gum, 12:1 w/w) were emulsified in 10% Tween-80 (w/w). Bigels were formulated at varying hydrogel-to-oleogel ratios, and a ratio of 4:6 was identified as optimal. Stress-sweep rheological analysis revealed a dense gel structure with a peak storage modulus (G′) of 290.64 Pa—the highest among all tested ratios—indicating superior structural integrity. Confocal microscopy confirmed homogeneous encapsulation of Rb1 within the continuous hydrogel phase, effectively preventing payload leakage. Differential scanning calorimetry (DSC) analysis detected a distinct endothermic transition at 55 °C (ΔH = 6.25 J/g), signifying energy absorption that enables thermal buffering during food processing. The system achieved an encapsulation efficiency of 99.91% and retains both water and oil retention. Effective acid protection and colon-targeted delivery were observed in the digestion test. Effective acid protection and colon-targeted delivery were observed in the digestion test. Less than 5% of Rb1 was released in the gastric phase, and over 90% sustained intestinal release occurred at 4 h. The optimized bigel effectively protected Rb1 from gastric degradation and enabled sustained intestinal release. Its food-grade composition, thermal stability, and tunable rheology offer significant potential for use in functional foods and nutraceuticals. Full article
(This article belongs to the Special Issue Advanced Gels in the Food System)
Show Figures

Figure 1

21 pages, 2302 KB  
Article
Antioxidant Effects of Exogenous Mitochondria: The Role of Outer Membrane Integrity
by Sadab Sipar Ibban, Jannatul Naima, Ryo Kato, Taichi Kuroda and Yoshihiro Ohta
Antioxidants 2025, 14(8), 951; https://doi.org/10.3390/antiox14080951 - 2 Aug 2025
Viewed by 489
Abstract
The administration of isolated mitochondria is a promising strategy for protecting cells from oxidative damage. This study aimed to identify mitochondrial characteristics that contribute to stronger protective effects. We compared two types of mitochondria isolated from C6 cells with similar ATP-producing capacity but [...] Read more.
The administration of isolated mitochondria is a promising strategy for protecting cells from oxidative damage. This study aimed to identify mitochondrial characteristics that contribute to stronger protective effects. We compared two types of mitochondria isolated from C6 cells with similar ATP-producing capacity but differing in outer membrane integrity. To evaluate their stability in extracellular conditions, we examined their behavior in serum. Both types underwent mitochondrial permeability transition to a similar extent; however, under intracellular-like conditions after serum incubation, mitochondria with intact membranes retained more polarized mitochondria. Notably, mitochondria with intact outer membranes were internalized more efficiently than those with damaged membranes. In H9c2 cells, both types of mitochondria similarly increased intracellular ATP levels 1 h after administration under all tested conditions. When co-administered with H2O2, both suppressed oxidative damage to a comparable degree, as indicated by similar H2O2-scavenging activity in solution, comparable intracellular ROS levels, and equivalent preservation of electron transport chain activity. However, at higher H2O2 concentrations, cells treated with mitochondria possessing intact outer membranes exhibited greater survival 24 h after co-administration. Furthermore, when mitochondria were added after H2O2-induced damage and their removal, intact mitochondria conferred superior cell survival compared to damaged ones. These findings suggest that while both mitochondrial types exert comparable antioxidant effects, outer membrane integrity prior to administration plays a critical role in enhancing cell survival under conditions of oxidative stress. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

Back to TopTop