Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = plasmid-curing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1839 KB  
Article
A Plasmid-Encoded Surface Polysaccharide Partly Blocks Ceduovirus Infection in Lactococci
by Claudia Rendueles, Javier Nicolás Garay-Novillo, Martin Holm Rau, Paula Gaspar, José Ángel Ruiz-Masó, Jennifer Mahony, Ana Rodríguez, José Luis Barra, Gloria del Solar and Beatriz Martínez
Int. J. Mol. Sci. 2025, 26(6), 2508; https://doi.org/10.3390/ijms26062508 - 11 Mar 2025
Viewed by 903
Abstract
Bacteriophages (or phages) remain the leading cause of failure in dairy fermentations. Thereby, phage-resistant Lactococcus lactis and Lactococcus cremoris dairy starters are in continuous demand. In this work, our goal was to identify phage defense mechanisms against ceduoviruses encoded by two wild isolates [...] Read more.
Bacteriophages (or phages) remain the leading cause of failure in dairy fermentations. Thereby, phage-resistant Lactococcus lactis and Lactococcus cremoris dairy starters are in continuous demand. In this work, our goal was to identify phage defense mechanisms against ceduoviruses encoded by two wild isolates of dairy origin named L. lactis IPLA517 and IPLA1064. These strains were previously subjected to experimental evolution to select derivatives that are resistant to the bacteriocin Lcn972. It was observed that the Lcn972R derivatives became sensitive to phage infection; however, the underlying mechanism was not defined. The long-read sequencing technologies applied in this work reveal that all of the Lcn972R derivatives shared the loss of a 41 kb endogenous plasmid (p41) that harbors a putative exopolysaccharide (EPS) gene cluster with significant homology to one described in Lactococcus garvieae. Using a CRISPR-Cas9-based approach, p41 was selectively cured from L. lactis IPLA1064. Phage infection assays with three ceduoviruses demonstrated that curing p41 restored phage sensitivity at levels comparable to the Lcn972R-IPLA1064 derivatives. Phage adsorption to Δp41 cells was also increased, consistent with the hypothesis of EPS production hindering access to the phage receptor protein Pip. Our results reinforce the role of EPSs in protecting Lactococcus against phage infection, a phenomenon that is rarely reported for ceduoviruses. Moreover, the results also exemplify the likely horizontal gene transfer that can occur between L. lactis and L. garvieae in a dairy environment. Full article
(This article belongs to the Special Issue Exploring Phage–Host Interactions: Novel Findings and Perspectives)
Show Figures

Graphical abstract

25 pages, 5818 KB  
Article
A Multivalent mRNA Therapeutic Vaccine Exhibits Breakthroughs in Immune Tolerance and Virological Suppression of HBV by Stably Presenting the Pre-S Antigen on the Cell Membrane
by Shang Liu, Jie Wang, Yunxuan Li, Muhan Wang, Pei Du, Zhijie Zhang, Wenguo Li, Rongchen Sun, Mingtao Fan, Meijia Yang and Hongping Yin
Pharmaceutics 2025, 17(2), 211; https://doi.org/10.3390/pharmaceutics17020211 - 7 Feb 2025
Cited by 4 | Viewed by 2460
Abstract
Background/Objectives: In chronic hepatitis B infection (CHB), the hepatitis B surface antigen (HBsAg) continuously exhausts the hepatitis B surface antibody (HBsAb), which leads to the formation of immune tolerance. Accordingly, the hepatitis B virus (HBV) infection can be blocked by inhibiting the [...] Read more.
Background/Objectives: In chronic hepatitis B infection (CHB), the hepatitis B surface antigen (HBsAg) continuously exhausts the hepatitis B surface antibody (HBsAb), which leads to the formation of immune tolerance. Accordingly, the hepatitis B virus (HBV) infection can be blocked by inhibiting the binding of the hepatitis B surface pre-S1/pre-S2 antigen to the hepatocyte receptor NTCP, but the clinical cure rate of pre-S-based vaccines for CHB is limited. Methods: In this study, we designed and prepared multivalent hepatitis B therapeutic mRNA vaccines encoding three hepatitis B surface antigen proteins (L, M, and S) at the cell membrane, verified via in vitro transfection and expression experiments. An in vivo immunization experiment in HBV transgenic (Tg) mice was first completed. Subsequently, an adeno-associated virus plasmid vector carrying the HBV1.2-fold genome (pAAV HBV1.2) model and the adeno-associated virus vector carrying HBV1.3-fold genome (rAAV HBV1.3) model were constructed and immunized with mRNA vaccines. The HBV antigen, antibodies, and HBV DNA in serum were detected. Indirect (enzyme-linked immunosorbent assay) ELISA were made to analyze the activated antigen-specific IgG in HBV Tg mice. Antigen-dependent T-cell activation experiments were carried out, as well as the acute toxicity tests in mice. Results: The L protein/pre-S antigens could be stably presented at the cell membrane with the support of the S protein (and M protein). After vaccinations, the vaccines effectively reactivated the production of high levels of HBsAb, disrupted immune tolerance, and activated the production of high-affinity antibodies against structural pre-S antigen in HBV Tg mice. The HBsAg seroconversion and serum HBV DNA clearance were achieved in two HBV mice models. Furthermore, pre-S antigen-dependent T-cell response against HBV infection was confirmed. The therapeutic vaccine also showed safety in mice. Conclusions: A novel therapeutic mRNA vaccine was developed to break through HBsAg-mediated immune tolerance and treat CHB by stably presenting the pre-S antigen at the membrane, and the vaccine has great potential for the functional cure of CHB. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

24 pages, 2047 KB  
Article
Engineering the Marine Pseudoalteromonas haloplanktis TAC125 via the pMEGA Plasmid Targeted Curing Using PTasRNA Technology
by Angelica Severino, Concetta Lauro, Marzia Calvanese, Christopher Riccardi, Andrea Colarusso, Marco Fondi, Ermenegilda Parrilli and Maria Luisa Tutino
Microorganisms 2025, 13(2), 324; https://doi.org/10.3390/microorganisms13020324 - 2 Feb 2025
Cited by 1 | Viewed by 1325
Abstract
Marine bacteria that have adapted to thrive in extreme environments, such as Pseudoalteromonas haloplanktis TAC125 (PhTAC125), offer a unique biotechnological potential. The discovery of an endogenous megaplasmid (pMEGA) raises questions about its metabolic impact and functional role in that strain. This [...] Read more.
Marine bacteria that have adapted to thrive in extreme environments, such as Pseudoalteromonas haloplanktis TAC125 (PhTAC125), offer a unique biotechnological potential. The discovery of an endogenous megaplasmid (pMEGA) raises questions about its metabolic impact and functional role in that strain. This study aimed at streamlining the host genetic background by curing PhTAC125 of the pMEGA plasmid using a sequential genetic approach. We combined homologous recombination by exploiting a suicide vector, with the PTasRNA gene-silencing technology interfering with pMEGA replication machinery. This approach led to the construction of the novel PhTAC125 KrPL2 strain, cured of the pMEGA plasmid, which exhibited no significant differences in growth behavior, though showcasing enhanced resistance to oxidative stress and a reduced capacity for biofilm formation. These findings represent a significant achievement in developing our understanding of the role of the pMEGA plasmid and the biotechnological applications of PhTAC125 in recombinant protein production. This opens up the possibility of exploiting valuable pMEGA genetic elements and further advancing the genetic tools for PhTAC125. Full article
(This article belongs to the Special Issue Cold-Adapted Bacteria and Marine Bacteria)
Show Figures

Figure 1

14 pages, 501 KB  
Review
Self-Replicating Alphaviruses: From Pathogens to Therapeutic Agents
by Kenneth Lundstrom
Viruses 2024, 16(11), 1762; https://doi.org/10.3390/v16111762 - 12 Nov 2024
Cited by 3 | Viewed by 2604
Abstract
Alphaviruses are known for being model viruses for studying cellular functions related to viral infections but also for causing epidemics in different parts of the world. More recently, alphavirus-based expression systems have demonstrated efficacy as vaccines against infectious diseases and as therapeutic applications [...] Read more.
Alphaviruses are known for being model viruses for studying cellular functions related to viral infections but also for causing epidemics in different parts of the world. More recently, alphavirus-based expression systems have demonstrated efficacy as vaccines against infectious diseases and as therapeutic applications for different cancers. Point mutations in the non-structural alphaviral replicase genes have generated enhanced transgene expression and created temperature-sensitive expression vectors. The recently engineered trans-amplifying RNA system can provide higher translational efficiency and eliminate interference with cellular translation. The self-replicating feature of alphaviruses has provided the advantage of extremely high transgene expression of vaccine-related antigens and therapeutic anti-tumor and immunostimulatory genes, which has also permitted significantly reduced doses for prophylactic and therapeutic applications, potentially reducing adverse events. Furthermore, alphaviruses have shown favorable flexibility as they can be delivered as recombinant viral particles, RNA replicons, or DNA-replicon-based plasmids. In the context of infectious diseases, robust immune responses against the surface proteins of target agents have been observed along with protection against challenges with lethal doses of infectious agents in rodents and primates. Similarly, the expression of anti-tumor genes and immunostimulatory genes from alphavirus vectors has provided tumor growth inhibition, tumor regression, and cures in animal cancer models. Moreover, protection against tumor challenges has been observed. In clinical settings, patient benefits have been reported. Alphaviruses have also been considered for the treatment of neurological disorders due to their neurotrophic preference. Full article
(This article belongs to the Special Issue Self-Replicating RNA Viruses)
Show Figures

Figure 1

13 pages, 3663 KB  
Article
Lipid Nanoparticle-Mediated Liver-Specific Gene Therapy for Hemophilia B
by Brijesh Lohchania, Porkizhi Arjunan, Gokulnath Mahalingam, Abinaya Dandapani, Pankaj Taneja and Srujan Marepally
Pharmaceutics 2024, 16(11), 1427; https://doi.org/10.3390/pharmaceutics16111427 - 9 Nov 2024
Viewed by 1869
Abstract
Background/Objectives: Hemophilia B is a hereditary bleeding disorder due to the production of liver malfunctional factor IX (FIX). Gene therapy with viral vectors offers a cure. However, applications are limited due to pre-existing antibodies, eligibility for children under 12 years [...] Read more.
Background/Objectives: Hemophilia B is a hereditary bleeding disorder due to the production of liver malfunctional factor IX (FIX). Gene therapy with viral vectors offers a cure. However, applications are limited due to pre-existing antibodies, eligibility for children under 12 years of age, hepatotoxicity, and excessive costs. Lipid nanoparticles are a potential alternative owing to their biocompatibility, scalability, and non-immunogenicity. However, their therapeutic applications are still elusive due to the poor transfection efficiencies in delivering plasmid DNA into primary cells and target organs in vivo. To develop efficient liver-targeted lipid nanoparticles, we explored galactosylated lipids to target asialoglycoprotein receptors (ASGPRs) abundantly expressed on hepatocytes. Methods: We developed 12 novel liposomal formulations varying the galactose lipid Gal-LNC 5, cationic lipid MeOH16, DOPE, and cholesterol. We evaluated their physicochemical properties, toxicity profiles, and transfection efficiencies in hepatic cell lines. Among the formulations, Gal-LNC 5 could efficiently transfect the reporter plasmid eGFP in hepatic cell lines and specifically distribute into the liver in vivo. Toward developing functional factor IX, we cloned Padua mutant FIX-L in a CpG-free backbone to enhance the expression and duration. Results: We demonstrated superior expression of FIX with our galactosylated lipid nanoparticle system. Conclusions: The current research presents a specialized lipid nanoparticle system viz. Gal-LNC which is a specialized lipid nanoparticle system for liver-targeted gene therapy in hemophilia B patients that has potential for clinical use. The Gal-LNC successfully delivers a CpG-free Padua FIX gene to liver cells, producing therapeutically relevant levels of FIX protein. Among its benefits are the ideal qualities of stability, targeting the liver specifically, and maximizing efficiency of transfection. Optimization of liver-targeting lipid nanoparticle systems and function FIX plasmids will pave the way for novel lipid nanoparticle-based gene therapy products for hemophilia B and other monogenic liver disorders. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

16 pages, 2172 KB  
Article
Adeno-Associated Virus (AAV)-Delivered Exosomal TAT and BiTE Molecule CD4-αCD3 Facilitate the Elimination of CD4 T Cells Harboring Latent HIV-1
by Xiaoli Tang, Huafei Lu, Patrick M. Tarwater, David L. Silverberg, Christoph Schorl and Bharat Ramratnam
Microorganisms 2024, 12(8), 1707; https://doi.org/10.3390/microorganisms12081707 - 18 Aug 2024
Cited by 3 | Viewed by 3123
Abstract
Combinatorial antiretroviral therapy (cART) has transformed HIV infection from a death sentence to a controllable chronic disease, but cannot eliminate the virus. Latent HIV-1 reservoirs are the major obstacles to cure HIV-1 infection. Previously, we engineered exosomal Tat (Exo-Tat) to reactivate latent HIV-1 [...] Read more.
Combinatorial antiretroviral therapy (cART) has transformed HIV infection from a death sentence to a controllable chronic disease, but cannot eliminate the virus. Latent HIV-1 reservoirs are the major obstacles to cure HIV-1 infection. Previously, we engineered exosomal Tat (Exo-Tat) to reactivate latent HIV-1 from the reservoir of resting CD4+ T cells. Here, we present an HIV-1 eradication platform, which uses our previously described Exo-Tat to activate latent virus from resting CD4+ T cells guided by the specific binding domain of CD4 in interleukin 16 (IL16), attached to the N-terminus of exosome surface protein lysosome-associated membrane protein 2 variant B (Lamp2B). Cells with HIV-1 surface protein gp120 expressed on the cell membranes are then targeted for immune cytolysis by a BiTE molecule CD4-αCD3, which colocalizes the gp120 surface protein of HIV-1 and the CD3 of cytotoxic T lymphocytes. Using primary blood cells obtained from antiretroviral treated individuals, we find that this combined approach led to a significant reduction in replication-competent HIV-1 in infected CD4+ T cells in a clonal in vitro cell system. Furthermore, adeno-associated virus serotype DJ (AAV-DJ) was used to deliver Exo-Tat, IL16lamp2b and CD4-αCD3 genes by constructing them in one AAV-DJ vector (the plasmid was named pEliminator). The coculture of T cells from HIV-1 patients with Huh-7 cells infected with AAV-Eliminator viruses led to the clearance of HIV-1 reservoir cells in the in vitro experiment, which could have implications for reducing the viral reservoir in vivo, indicating that Eliminator AAV viruses have the potential to be developed into therapeutic biologics to cure HIV-1 infection. Full article
(This article belongs to the Special Issue Viral Diseases: Current Research and Future Directions)
Show Figures

Figure 1

12 pages, 606 KB  
Article
A Newly Incompatibility F Replicon Allele (FIB81) in Extensively Drug-Resistant Escherichia coli Isolated from Diseased Broilers
by Ahmed M. Ammar, Norhan K. Abd El-Aziz, Mohamed G. Aggour, Adel A. M. Ahmad, Adel Abdelkhalek, Florin Muselin, Laura Smuleac, Raul Pascalau and Fatma A. Attia
Int. J. Mol. Sci. 2024, 25(15), 8347; https://doi.org/10.3390/ijms25158347 - 30 Jul 2024
Cited by 1 | Viewed by 1397
Abstract
Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In [...] Read more.
Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In Egypt, the growing resistance is exacerbated by the limited clinical efficacy of many antimicrobials. In this study, IncF groups were screened and characterized in drug-resistant Salmonella spp. and E. coli isolated from broilers. The antimicrobial resistance profile, PCR-based replicon typing of bacterial isolates pre- and post-plasmid curing, and IncF replicon allele sequence typing were investigated. Five isolates of E. coli (5/31; 16.13%) and Salmonella spp. (5/36; 13.89%) were pan-susceptible to the examined antimicrobial agents, and 85.07% of tested isolates were MDR and extensively drug-resistant (XDR). Twelve MDR and XDR E. coli and Salmonella spp. isolates were examined for the existence of IncF replicons (FII, FIA, and FIB). They shared resistance to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, doxycycline, cefotaxime, and colistin. All isolates carried from one to two IncF replicons. The FII-FIA-FIB+ and FII-FIA+FIB- were the predominant replicon patterns. FIB was the most frequently detected replicon after plasmid curing. Three XDR E. coli isolates that were resistant to 12–14 antimicrobials carried a newly FIB replicon allele with four nucleotide substitutions: C99→A, G112→T, C113→T, and G114→A. These findings suggest that broilers are a significant reservoir of IncF replicons with highly divergent IncF-FIB plasmid incompatibility groups circulating among XDR Enterobacterales. Supporting these data with additional comprehensive epidemiological studies involving replicons other than the IncF can provide insights for implementing efficient policies to prevent the spreading of new replicons to humans. Full article
(This article belongs to the Special Issue Antimicrobial Resistance—New Insights, 3rd Edition)
Show Figures

Figure 1

16 pages, 872 KB  
Review
Delivery of DNA-Based Therapeutics for Treatment of Chronic Diseases
by Carleigh Sussman, Rachel A. Liberatore and Marek M. Drozdz
Pharmaceutics 2024, 16(4), 535; https://doi.org/10.3390/pharmaceutics16040535 - 13 Apr 2024
Cited by 9 | Viewed by 3278
Abstract
Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to [...] Read more.
Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to treat a variety of diseases. Its range of mechanistic applicability is wide; gene therapy has the capacity to address the symptoms of disease, the body’s ability to fight disease, and in some cases has the ability to cure disease, making it a more attractive intervention than some traditional approaches to treatment (i.e., medicine and surgery). Such versatility also suggests gene therapy has the potential to address a greater number of indications than conventional treatments. Many DNA-based therapies have shown promise in clinical trials, and several have been approved for use in humans. Whereas current treatment regimens for chronic disease often require frequent dosing, DNA-based therapies can produce robust and durable expression of therapeutic genes with fewer treatments. This benefit encourages the application of DNA-based gene therapy to manage chronic diseases, an area where improving efficiency of current treatments is urgent. Here, we provide an overview of two DNA-based gene therapies as well as their delivery methods: adeno associated virus (AAV)-based gene therapy and plasmid DNA (pDNA)-based gene therapy. We will focus on how these therapies have already been utilized to improve treatment of chronic disease, as well as how current literature supports the expansion of these therapies to treat additional chronic indications in the future. Full article
Show Figures

Figure 1

14 pages, 1843 KB  
Article
Elucidation of 4-Hydroxybenzoic Acid Catabolic Pathways in Pseudarthrobacter phenanthrenivorans Sphe3
by Epameinondas Tsagogiannis, Stamatia Asimakoula, Alexandros P. Drainas, Orfeas Marinakos, Vasiliki I. Boti, Ioanna S. Kosma and Anna-Irini Koukkou
Int. J. Mol. Sci. 2024, 25(2), 843; https://doi.org/10.3390/ijms25020843 - 10 Jan 2024
Cited by 8 | Viewed by 2805
Abstract
4-hydroxybenzoic acid (4-HBA) is an aromatic compound with high chemical stability, being extensively used in food, pharmaceutical and cosmetic industries and therefore widely distributed in various environments. Bioremediation constitutes the most sustainable approach for the removal of 4-hydroxybenzoate and its derivatives (parabens) from [...] Read more.
4-hydroxybenzoic acid (4-HBA) is an aromatic compound with high chemical stability, being extensively used in food, pharmaceutical and cosmetic industries and therefore widely distributed in various environments. Bioremediation constitutes the most sustainable approach for the removal of 4-hydroxybenzoate and its derivatives (parabens) from polluted environments. Pseudarthrobacter phenanthrenivorans Sphe3, a strain capable of degrading several aromatic compounds, is able to grow on 4-HBA as the sole carbon and energy source. Here, an attempt is made to clarify the catabolic pathways that are involved in the biodegradation of 4-hydroxybenzoate by Sphe3, applying a metabolomic and transcriptomic analysis of cells grown on 4-HBA. It seems that in Sphe3, 4-hydroxybenzoate is hydroxylated to form protocatechuate, which subsequently is either cleaved in ortho- and/or meta-positions or decarboxylated to form catechol. Protocatechuate and catechol are funneled into the TCA cycle following either the β-ketoadipate or protocatechuate meta-cleavage branches. Our results also suggest the involvement of the oxidative decarboxylation of the protocatechuate peripheral pathway to form hydroxyquinol. As a conclusion, P. phenanthrenivorans Sphe3 seems to be a rather versatile strain considering the 4-hydroxybenzoate biodegradation, as it has the advantage to carry it out effectively following different catabolic pathways concurrently. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 1595 KB  
Article
An Introduced RNA-Only Approach for Plasmid Curing via the CRISPR-Cpf1 System in Saccharomyces cerevisiae
by Bo-Chou Chen, Yu-Zhen Chen and Huan-Yu Lin
Biomolecules 2023, 13(10), 1561; https://doi.org/10.3390/biom13101561 - 23 Oct 2023
Cited by 2 | Viewed by 4466
Abstract
The CRISPR-Cas system has been widely used for genome editing due to its convenience, simplicity and flexibility. Using a plasmid-carrying Cas protein and crRNA or sgRNA expression cassettes is an efficient strategy in the CRISPR-Cas genome editing system. However, the plasmid remains in [...] Read more.
The CRISPR-Cas system has been widely used for genome editing due to its convenience, simplicity and flexibility. Using a plasmid-carrying Cas protein and crRNA or sgRNA expression cassettes is an efficient strategy in the CRISPR-Cas genome editing system. However, the plasmid remains in the cells after genome editing. Development of general plasmid-curing strategies is necessary. Based on our previous CRISPR-Cpf1 genome-editing system in Saccharomyces cerevisiae, the crRNA, designed for the replication origin of the CRISPR-Cpf1 plasmid, and the ssDNA, as a template for homologous recombination, were introduced for plasmid curing. The efficiency of the plasmid curing was 96 ± 4%. In addition, we further simplified the plasmid curing system by transforming only one crRNA into S. cerevisiae, and the curing efficiency was about 70%. In summary, we have developed a CRISPR-mediated plasmid-curing system. The RNA-only plasmid curing system is fast and easy. This plasmid curing strategy can be applied in broad hosts by designing crRNA specific for the replication origin of the plasmid. The plasmid curing system via CRISPR-Cas editing technology can be applied to produce traceless products without foreign genes and to perform iterative processes in multiple rounds of genome editing. Full article
(This article belongs to the Special Issue Yeast Models for Gene Regulation)
Show Figures

Graphical abstract

16 pages, 2365 KB  
Article
Pathogenic Microorganisms Linked to Fresh Fruits and Juices Purchased at Low-Cost Markets in Ecuador, Potential Carriers of Antibiotic Resistance
by Gabriela N. Tenea, Pamela Reyes, Diana Molina and Clara Ortega
Antibiotics 2023, 12(2), 236; https://doi.org/10.3390/antibiotics12020236 - 22 Jan 2023
Cited by 14 | Viewed by 3937
Abstract
The pathogenic microorganisms linked to fresh fruits and juices sold out in retail low-cost markets raise safety concerns as they may carry multidrug-resistant (MDR) genes. To evaluate the microbiological quality and safety of highly consumed fruits and derivatives in Imbabura Province, Ecuador, ready-to-eat [...] Read more.
The pathogenic microorganisms linked to fresh fruits and juices sold out in retail low-cost markets raise safety concerns as they may carry multidrug-resistant (MDR) genes. To evaluate the microbiological quality and safety of highly consumed fruits and derivatives in Imbabura Province, Ecuador, ready-to-eat strawberries (5 independent batches; n = 300 samples), and gooseberries (5 separate batches; n = 500 samples), purchased from a local fruit farm grower and low-cost retail market, along with 20 different natural fruit- and vegetables-based juices (3 independent batches; n = 60 samples) purchased from food courts located within the low-cost markets were analyzed. Bacteriological analysis showed that the microbial quality was lower as several indicators (n = 984) consisting of total coliforms (TCOL), total aerobes (AEROB), Enterobacter spp. (ENT), Shigella spp., (SHIGA), yeasts (YE), and molds (M) were detected. Staphylococcus spp. (STAPHY) was found in both fruits regardless of origin, while Escherichia coli (EC) isolates were found in strawberries but not gooseberries. Salmonella spp. (SALM) were detected in juices only. Antibiotic susceptibility testing showed multidrug resistance of several isolates. The hemolytic pattern revealed that 88.89% of EC and 61.11% of ENT isolates were beta-hemolytic. All STAPHY isolates were beta-hemolytic while SALM and SHIGA were alpha-hemolytic. Plasmid curing assay of MDR isolates (ENT, EC, SALM, and STAPHY) showed that the antibiotic resistance (AR) was highly indicative of being plasmid-borne. These results raise concerns about the consumption of MDR bacteria. However, good agricultural and industrial practices, behavioral change communication, and awareness-raising programs are necessary for all stakeholders along the food production and consumption supply chain. Full article
(This article belongs to the Special Issue Foodborne Antimicrobial Resistance: A Cause for Concern)
Show Figures

Figure 1

12 pages, 1157 KB  
Article
Development of Efficient Genome-Reduction Tool Based on Cre/loxP System in Rhodococcus erythropolis
by Wataru Kitagawa and Miyako Hata
Microorganisms 2023, 11(2), 268; https://doi.org/10.3390/microorganisms11020268 - 19 Jan 2023
Cited by 8 | Viewed by 3042
Abstract
Rhodococcus has been extensively studied for its excellent ability to degrade artificial chemicals and its capability to synthesize biosurfactants and antibiotics. In recent years, studies have attempted to use Rhodococcus as a gene expression host. Various genetic tools, such as plasmid vectors, transposon [...] Read more.
Rhodococcus has been extensively studied for its excellent ability to degrade artificial chemicals and its capability to synthesize biosurfactants and antibiotics. In recent years, studies have attempted to use Rhodococcus as a gene expression host. Various genetic tools, such as plasmid vectors, transposon mutagenesis, and gene disruption methods have been developed for use in Rhodococcus; however, no effective method has been reported for performing large-size genome reduction. Therefore, the present study developed an effective plasmid-curing method using the levansucrase-encoding sacB gene and a simple two-step genome-reduction method using a modified Cre/loxP system. For the results, R. erythropolis JCM 2895 was used as the model; a mutant strain that cured all four plasmids and deleted seven chromosomal regions was successfully obtained in this study. The total DNA deletion size was >600 kb, which corresponds mostly to 10% of the genome size. Using this method, a genome-structure-stabilized and unfavorable gene/function-lacking host strain can be created in Rhodococcus. This genetic tool will help develop and improve Rhodococcus strains for various industrial and environmental applications. Full article
Show Figures

Figure 1

12 pages, 1954 KB  
Article
Staphylococcus aureus-Cure-Associated Antigens Elicit Type 3 Immune Memory T Cells
by Kamila R. Santos, Fernando N. Souza, Eduardo M. Ramos-Sanchez, Camila F. Batista, Luiza C. Reis, Wesley L. Fotoran, Marcos B. Heinemann, Adriano F. Cunha, Mussya C. Rocha, Angélica R. Faria, Hélida M. Andrade, Mônica M. O. P. Cerqueira, Magnus Gidlund, Hiro Goto and Alice Maria M. P. Della Libera
Antibiotics 2022, 11(12), 1831; https://doi.org/10.3390/antibiotics11121831 - 16 Dec 2022
Cited by 1 | Viewed by 2323
Abstract
Background: Staphylococcus aureus is one of the most frequently major mastitis pathogens that cause clinical and subclinical mastitis worldwide. Current antimicrobial treatments are usually ineffective, and the commercially available vaccines lack proven effectiveness. The immunological response elicited by the recombinant S. aureus-cure-associated [...] Read more.
Background: Staphylococcus aureus is one of the most frequently major mastitis pathogens that cause clinical and subclinical mastitis worldwide. Current antimicrobial treatments are usually ineffective, and the commercially available vaccines lack proven effectiveness. The immunological response elicited by the recombinant S. aureus-cure-associated proteins phosphoglycerate kinase (PGK), enolase (ENO), and elongation factor-G (EF-G) in combination with the granulocyte-macrophage colony-stimulating factor (GM-CSF) DNA vaccination was studied in this work. Methods: Here, twenty-three C57BL/6 mice were divided into four groups and vaccinated with: G1: none (control); G2: GM-CSF DNA plasmid DNA vaccine; G3: the combination of EF-G+ENO+PGK; and G4: the combinations of EF-G+ENO+PGK proteins plus GM-CSF plasmid DNA vaccine. After 44 days, spleen cells were collected for immunophenotyping and lymphocyte proliferation evaluation by flow cytometry upon S. aureus stimulus. Results: Immunization with the three S. aureus recombinant proteins alone resulted in a higher percentage of IL-17A+ cells among CD8+ T central memory cells, as well as the highest intensity of IL-17A production by overall lymphocytes indicating that the contribution of the combined lymphocyte populations is crucial to sustaining a type 3 cell immunity environment. Conclusion: The immunization with three S. aureus-cure-associated recombinant proteins triggered type 3 immunity, which is a highly interesting path to pursue an effective bovine S. aureus mastitis vaccine. Full article
(This article belongs to the Special Issue Mastitis: Causative Agents, Drug Resistance, and Treatment Approaches)
Show Figures

Figure 1

19 pages, 1634 KB  
Review
Modified mRNA Therapeutics for Heart Diseases
by Ajit Magadum
Int. J. Mol. Sci. 2022, 23(24), 15514; https://doi.org/10.3390/ijms232415514 - 8 Dec 2022
Cited by 18 | Viewed by 5480
Abstract
Cardiovascular diseases (CVD) remain a substantial global health problem and the leading cause of death worldwide. Although many conventional small-molecule treatments are available to support the cardiac function of the patient with CVD, they are not effective as a cure. Among potential targets [...] Read more.
Cardiovascular diseases (CVD) remain a substantial global health problem and the leading cause of death worldwide. Although many conventional small-molecule treatments are available to support the cardiac function of the patient with CVD, they are not effective as a cure. Among potential targets for gene therapy are severe cardiac and peripheral ischemia, heart failure, vein graft failure, and some forms of dyslipidemias. In the last three decades, multiple gene therapy tools have been used for heart diseases caused by proteins, plasmids, adenovirus, and adeno-associated viruses (AAV), but these remain as unmet clinical needs. These gene therapy methods are ineffective due to poor and uncontrolled gene expression, low stability, immunogenicity, and transfection efficiency. The synthetic modified mRNA (modRNA) presents a novel gene therapy approach which provides a transient, stable, safe, non-immunogenic, controlled mRNA delivery to the heart tissue without any risk of genomic integration, and achieves a therapeutic effect in different organs, including the heart. The mRNA translation starts in minutes, and remains stable for 8–10 days (pulse-like kinetics). The pulse-like expression of modRNA in the heart induces cardiac repair, cardiomyocyte proliferation and survival, and inhibits cardiomyocyte apoptosis post-myocardial infarction (MI). Cell-specific (cardiomyocyte) modRNA translation developments established cell-specific modRNA therapeutics for heart diseases. With these laudable characteristics, combined with its expression kinetics in the heart, modRNA has become an attractive therapeutic for the treatment of CVD. This review discusses new developments in modRNA therapy for heart diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Cardiac Development and Disease)
Show Figures

Figure 1

19 pages, 2102 KB  
Article
CRISPR-Based Multi-Gene Integration Strategies to Create Saccharomyces cerevisiae Strains for Consolidated Bioprocessing
by Odwa Jacob, Gert Rutger van Lill and Riaan den Haan
Appl. Sci. 2022, 12(23), 12317; https://doi.org/10.3390/app122312317 - 1 Dec 2022
Cited by 7 | Viewed by 5219
Abstract
Significant engineering of Saccharomyces cerevisiae is required to enable consolidated bioprocessing (CBP) of lignocellulose to ethanol. Genome modification in S. cerevisiae has been successful partly due to its efficient homology-directed DNA repair machinery, and CRISPR technology has made multi-gene editing even more accessible. [...] Read more.
Significant engineering of Saccharomyces cerevisiae is required to enable consolidated bioprocessing (CBP) of lignocellulose to ethanol. Genome modification in S. cerevisiae has been successful partly due to its efficient homology-directed DNA repair machinery, and CRISPR technology has made multi-gene editing even more accessible. Here, we tested the integration of cellulase encoding genes to various sites on the yeast genome to inform the best strategy for creating cellulolytic strains for CBP. We targeted endoglucanase (EG) or cellobiohydrolase (CBH) encoding genes to discreet chromosomal sites for single-copy integration or to the repeated delta sites for multi-copy integration. CBH1 activity was significantly higher when the gene was targeted to the delta sequences compared to single gene integration loci. EG production was comparable, though lower when the gene was targeted to a chromosome 10 site. We subsequently used the information to construct a strain containing three cellulase encoding genes. While individual cellulase activities could be assayed and cellulose conversion demonstrated, it was shown that targeting specific genes to specific loci had dramatic effects on strain efficiency. Since marker-containing plasmids could be cured from these strains, additional genetic changes can subsequently be made to optimize strains for CBP conversion of lignocellulose. Full article
(This article belongs to the Special Issue Yeast Fermentation and Biotechnology)
Show Figures

Figure 1

Back to TopTop