Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = polyethylene and mixed-matrix membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
68 pages, 9886 KB  
Review
Polyethylene Glycol (PEG) Additive in Polymer Membranes for Carbon Dioxide Separation: A Critical Review on Performances and Correlation with Membrane Structure
by Riccardo Checchetto
Separations 2025, 12(3), 71; https://doi.org/10.3390/separations12030071 - 16 Mar 2025
Cited by 1 | Viewed by 2498
Abstract
The efficient separation and removal of carbon dioxide (CO2) from its mixtures is an important technological challenge to limit effects resulting from the increase of the carbon dioxide concentration in the atmosphere. Membrane technology is an environmentally friendly approach, [...] Read more.
The efficient separation and removal of carbon dioxide (CO2) from its mixtures is an important technological challenge to limit effects resulting from the increase of the carbon dioxide concentration in the atmosphere. Membrane technology is an environmentally friendly approach, highly scalable and less energy-consuming than conventional methods such as adsorption, absorption and cryogenic separation. Hybrid membrane materials incorporating inorganic filler nanostructures in polymer matrices having polyethylene glycol (PEG) as a plasticized additive are promising membrane materials given the presence of CO2-philic polar functional groups of PEGs and the structural refinements on the blend matrix consequent to the filler distribution. In this review, literature information on hybrid polymer/PEG membranes are critically reviewed to discuss how filler dispersion in the blend matrix gives rise to enhanced CO2 separation performances with respect to those obtained with traditional mixed matrix membranes where filler nanostructures are dispersed in the neat polymer. The discussion will be focused on the correlation between the CO2 transport properties, membrane structural properties and defect resulting from the polymer-filler incompatibility. It is shown that hybrid polymer/PEG membranes with dispersed filler nanostructures simultaneously offer improved CO2 separation performances and enhanced mechanical properties compared with nanocomposite ones where filler particles are dispersed in the neat polymer matrix. PEG addition enhances the filler-matrix compatibility, delays filler aggregation and limits the formation of filler-matrix interface defects. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Figure 1

13 pages, 5219 KB  
Article
Adsorbent-Embedded Polymeric Membranes for Efficient Dye-Water Treatment
by Junaid Saleem, Zubair Khalid Baig Moghal, Snigdhendubala Pradhan, Ahsan Hafeez, Mohammad Shoaib, Johaina Alahmad and Gordon McKay
Polymers 2024, 16(11), 1459; https://doi.org/10.3390/polym16111459 - 22 May 2024
Cited by 3 | Viewed by 1840
Abstract
Traditional bulk adsorbents, employed for the removal of dyes and metal ions, often face the drawback of requiring an additional filtration system to separate the filtrate from the adsorbent. In this study, we address this limitation by embedding the adsorbent into the polymer [...] Read more.
Traditional bulk adsorbents, employed for the removal of dyes and metal ions, often face the drawback of requiring an additional filtration system to separate the filtrate from the adsorbent. In this study, we address this limitation by embedding the adsorbent into the polymer matrix through a process involving dissolution–dispersion, spin-casting, and heat-stretching. Selective dissolution and dispersion facilitate the integration of the adsorbent into the polymer matrix. Meanwhile, spin-casting ensures the formation of a uniform and thin film structure, whereas heat-induced stretching produces a porous matrix with a reduced water contact angle. The adsorbent selectively captures dye molecules, while the porous structure contributes to water permeability. We utilized inexpensive and readily available materials, such as waste polyethylene and calcium carbonate, to fabricate membranes for the removal of methylene blue dye. The effects of various parameters, such as polymer-adsorbent ratio, initial dye concentration, and annealing temperature, were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms. The equilibrium data were best represented by the Langmuir isotherm, with maximum adsorption capacity of 35 mg/g and 43 mg/g at 25 °C and 45 °C, respectively. The membranes can be regenerated and recycled with a 97% dye removal efficiency. The study aims to present a template for adsorbent-embedded polymeric membranes for dye removal, in which adsorbent can be tailored to enhance adsorption capacity and efficiency. Full article
(This article belongs to the Special Issue Advanced Polymers for Wastewater Treatment and Toxicant Removal)
Show Figures

Figure 1

16 pages, 4882 KB  
Article
Developing Mixed Matrix Membranes with Good CO2 Separation Performance Based on PEG-Modified UiO-66 MOF and 6FDA-Durene Polyimide
by Kavya Adot Veetil, Asmaul Husna, Md. Homayun Kabir, Insu Jeong, Ook Choi, Iqubal Hossain and Tae-Hyun Kim
Polymers 2023, 15(22), 4442; https://doi.org/10.3390/polym15224442 - 17 Nov 2023
Cited by 14 | Viewed by 4613
Abstract
The use of mixed matrix membranes (MMMs) comprising metal–organic frameworks (MOFs) for the separation of CO2 from flue gas has gained recognition as an effective strategy for enhancing gas separation efficiency. When incorporating porous materials like MOFs into a polymeric matrix to [...] Read more.
The use of mixed matrix membranes (MMMs) comprising metal–organic frameworks (MOFs) for the separation of CO2 from flue gas has gained recognition as an effective strategy for enhancing gas separation efficiency. When incorporating porous materials like MOFs into a polymeric matrix to create MMMs, the combined characteristics of each constituent typically manifest. Nevertheless, the inadequate dispersion of an inorganic MOF filler within an organic polymer matrix can compromise the compatibility between the filler and matrix. In this context, the aspiration is to develop an MMM that not only exhibits optimal interfacial compatibility between the polymer and filler but also delivers superior gas separation performance, specifically in the efficient extraction of CO2 from flue gas. In this study, we introduce a modification technique involving the grafting of poly(ethylene glycol) diglycidyl ether (PEGDE) onto a UiO-66-NH2 MOF filler (referred to as PEG-MOF), aimed at enhancing its compatibility with the 6FDA-durene matrix. Moreover, the inherent CO2-philic nature of PEGDE is anticipated to enhance the selectivity of CO2 over N2 and CH4. The resultant MMM, incorporating 10 wt% of PEG-MOF loading, exhibits a CO2 permeability of 1671.00 Barrer and a CO2/CH4 selectivity of 22.40. Notably, these values surpass the upper bound reported by Robeson in 2008. Full article
(This article belongs to the Special Issue Polymer Membranes for Separation Processes)
Show Figures

Graphical abstract

16 pages, 17977 KB  
Article
Anion-Exchange Membrane “Polikon A” Based on Polyester Fiber Fabric (Functionalized by Low-Temperature High-Frequency Plasma) with Oxidized Metal Nanoparticles
by Denis Terin, Marina Kardash, Denis Ainetdinov, Timur Turaev and Ilya Sinev
Membranes 2023, 13(8), 742; https://doi.org/10.3390/membranes13080742 - 18 Aug 2023
Cited by 6 | Viewed by 2033
Abstract
An experimental laboratory set of samples of composite heterogeneous anion-exchange membranes was obtained by us for the development of our original method of polycondensation filling. Anion-exchange membranes were prepared on plasma-treated and non-plasma-treated polyester fiber fabrics. The fabric was treated with low-temperature argon [...] Read more.
An experimental laboratory set of samples of composite heterogeneous anion-exchange membranes was obtained by us for the development of our original method of polycondensation filling. Anion-exchange membranes were prepared on plasma-treated and non-plasma-treated polyester fiber fabrics. The fabric was treated with low-temperature argon plasma at a power of 400 W for 10 min at a pressure of 5 × 10−5 mbar. On the surface and bulk of the polyester fiber, a polyfunctional anionite of mixed basicity was synthesized and formed. The anion-exchange membrane contained secondary and tertiary amino groups and quaternary ammonium groups, which were obtained from polyethylene polyamines and epichlorohydrins. At the stage of the chemical synthesis of the anion matrix, oxidized nanoparticles (~1.5 wt.%) of silicon, nickel, and iron were added to the monomerization composition. The use of ion-plasma processing of fibers in combination with the introduction of oxidized nanoparticles at the synthesis stage makes it possible to influence the speed and depth of the synthesis and curing processes; this changes the formation of the surface morphology and the internal structure of the ion-exchange polymer matrix, as well as the hydrophobic/hydrophilic balance and—as a result—the different operational characteristics of anion-exchange membranes. Full article
Show Figures

Figure 1

23 pages, 4505 KB  
Article
Efficiency of Fabricated Adsorptive Polysulfone Mixed Matrix Membrane for Acetic Acid Separation
by Kavita Pusphanathan, Hafiza Shukor, Noor Fazliani Shoparwe, Muaz Mohd Zaini Makhtar, Nor’ Izzah Zainuddin, Nora Jullok, Masoom Raza Siddiqui, Mahboob Alam and Mohd Rafatullah
Membranes 2023, 13(6), 565; https://doi.org/10.3390/membranes13060565 - 30 May 2023
Cited by 4 | Viewed by 2342
Abstract
The ultrafiltration mixed matrix membrane (UF MMMs) process represents an applicable approach for the removal of diluted acetic acid at low concentrations, owing to the low pressures applied. The addition of efficient additives represents an approach to further improve membrane porosity and, subsequently, [...] Read more.
The ultrafiltration mixed matrix membrane (UF MMMs) process represents an applicable approach for the removal of diluted acetic acid at low concentrations, owing to the low pressures applied. The addition of efficient additives represents an approach to further improve membrane porosity and, subsequently, enhance acetic acid removal. This work demonstrates the incorporation of titanium dioxide (TiO2) and polyethylene glycol (PEG) as additives into polysulfone (PSf) polymer via the non-solvent-induced phase-inversion (NIPS) method to improve the performance of PSf MMMs performance. Eight PSf MMMs samples designated as M0 to M7, each with independent formulations, were prepared and investigated for their respective density, porosity, and degree of AA retention. Morphology analysis through scanning electron microscopy elucidated sample M7 (PSf/TiO2/PEG 6000) to have the highest density and porosity among all samples with concomitant highest AA retention at approximately 92.2%. The application of the concentration polarization method further supported this finding by the higher concentration of AA solute present on the surface of the membrane compared to that of AA feed for sample M7. Overall, this study successfully demonstrates the significance of TiO2 and PEG as high MW additives in improving PSf MMM performance. Full article
(This article belongs to the Special Issue Preparation and Application of Novel Polymer Membranes)
Show Figures

Figure 1

19 pages, 4761 KB  
Article
Preparation and Characterization of PVDF–TiO2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection
by Rianyza Gayatri, Ahmad Noor Syimir Fizal, Erna Yuliwati, Md Sohrab Hossain, Juhana Jaafar, Muzafar Zulkifli, Wirach Taweepreda and Ahmad Naim Ahmad Yahaya
Nanomaterials 2023, 13(6), 1023; https://doi.org/10.3390/nano13061023 - 12 Mar 2023
Cited by 41 | Viewed by 4925
Abstract
Polymeric membranes offer straightforward modification methods that make industry scaling affordable and easy; however, these materials are hydrophobic, prone to fouling, and vulnerable to extreme operating conditions. Various attempts were made in this study to fix the challenges in using polymeric membranes and [...] Read more.
Polymeric membranes offer straightforward modification methods that make industry scaling affordable and easy; however, these materials are hydrophobic, prone to fouling, and vulnerable to extreme operating conditions. Various attempts were made in this study to fix the challenges in using polymeric membranes and create mixed-matrix membrane (MMMs) with improved properties and hydrophilicity by adding titanium dioxide (TiO2) and pore-forming agents to hydrophobic polyvinylidene fluoride (PVDF). The PVDF mixed-matrix ultrafiltration membranes in this study were made using the non-solvent phase inversion approach which is a simple and effective method for increasing the hydrophilic nature of membranes. Polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) as pore-forming chemicals were created. Pure water flux, BSA flux, and BSA rejection were calculated to evaluate the mixed-matrix membrane’s efficiency. Bovine serum albumin (BSA) solution was employed in this study to examine the protein rejection ability. Increases in hydrophilicity, viscosity, and flux in pure water and BSA solution were achieved using PVP and PEG additives. The PVDF membrane’s hydrophilicity was raised with the addition of TiO2, showing an increased contact angle to 71°. The results show that the PVDF–PVP–TiO2 membrane achieved its optimum water flux of 97 L/(m2h) while the PVDF–PEG–TiO2 membrane rejected BSA at a rate greater than 97%. The findings demonstrate that use of a support or additive improved filtration performance compared to a pristine polymeric membrane by increasing its hydrophilicity. Full article
(This article belongs to the Special Issue Advanced Nanocomposite Materials for Water and Wastewater Treatment)
Show Figures

Figure 1

22 pages, 4348 KB  
Article
Semi-Synthetic Click-Gelatin Hydrogels as Tunable Platforms for 3D Cancer Cell Culture
by Luke Hipwood, Julien Clegg, Angus Weekes, Jordan W. Davern, Tim R. Dargaville, Christoph Meinert and Nathalie Bock
Gels 2022, 8(12), 821; https://doi.org/10.3390/gels8120821 - 12 Dec 2022
Cited by 11 | Viewed by 5146
Abstract
Basement membrane extracts (BME) derived from Engelbreth–Holm–Swarm (EHS) mouse sarcomas such as Matrigel® remain the gold standard extracellular matrix (ECM) for three-dimensional (3D) cell culture in cancer research. Yet, BMEs suffer from substantial batch-to-batch variation, ill-defined composition, and lack the ability for [...] Read more.
Basement membrane extracts (BME) derived from Engelbreth–Holm–Swarm (EHS) mouse sarcomas such as Matrigel® remain the gold standard extracellular matrix (ECM) for three-dimensional (3D) cell culture in cancer research. Yet, BMEs suffer from substantial batch-to-batch variation, ill-defined composition, and lack the ability for physichochemical manipulation. Here, we developed a novel 3D cell culture system based on thiolated gelatin (Gel-SH), an inexpensive and highly controlled raw material capable of forming hydrogels with a high level of biophysical control and cell-instructive bioactivity. We demonstrate the successful thiolation of gelatin raw materials to enable rapid covalent crosslinking upon mixing with a synthetic poly(ethylene glycol) (PEG)-based crosslinker. The mechanical properties of the resulting gelatin-based hydrogels were readily tuned by varying precursor material concentrations, with Young’s moduli ranging from ~2.5 to 5.8 kPa. All hydrogels of varying stiffnesses supported the viability and proliferation of MDA-MB-231 and MCF-7 breast cancer cell lines for 14 and 21 days of cell culture, respectively. Additionally, the gelatin-based hydrogels supported the growth, viability, and osteogenic differentiation of patient-derived preosteoblasts over 28 days of culture. Collectively, our data demonstrate that gelatin-based biomaterials provide an inexpensive and tunable 3D cell culture platform that may overcome the limitations of traditional BMEs. Full article
(This article belongs to the Special Issue Polymer Hydrogels for Cancer Therapy)
Show Figures

Figure 1

18 pages, 7222 KB  
Article
Pebax-Based Composite Membranes with High Transport Properties Enhanced by ZIF-8 for CO2 Separation
by Tarik Eljaddi, Julien Bouillon, Denis Roizard and Laurent Lebrun
Membranes 2022, 12(9), 836; https://doi.org/10.3390/membranes12090836 - 27 Aug 2022
Cited by 9 | Viewed by 3853
Abstract
A series of mixed matrix membranes containing poly (ether-block-amide) Pebax 1657 as matrix and polyethylene glycol (PEG) and Zeolitic Imidazolate Framework-8 (ZIF-8) as additives, were prepared and tested for CO2 separation. The membranes were prepared by solvent evaporation method and were characterized [...] Read more.
A series of mixed matrix membranes containing poly (ether-block-amide) Pebax 1657 as matrix and polyethylene glycol (PEG) and Zeolitic Imidazolate Framework-8 (ZIF-8) as additives, were prepared and tested for CO2 separation. The membranes were prepared by solvent evaporation method and were characterized by TGA, DSC, SEM, and gas permeation measurements. The effects of PEG and its molecular weight, and the percentage of ZIF-8 into Pebax matrix were investigated. The results showed that the addition of PEG to Pebax/ZIF-8 blends avoid the agglomeration of ZIF-8 particles. A synergic effect between PEG and ZIF was particularly observed for high ZIF-8 content, because the initial permeability of pristine Pebax was multiplied by three (from 54 to 161 Barrers) while keeping the CO2 selectivity (αCO2/N2 = 61, αCO2/CH4 = 12 and αCO2/O2 = 23). Finally, the mechanism of CO2 transport is essentially governed by the solubility of CO2 into the membranes. Therefore, this new Pebax/PEG/ZIF-8 system seems to be a promising approach to develop new selective membranes for CO2 with high permeability. Full article
(This article belongs to the Special Issue State-of-the-Art Membrane Science and Technology in France 2021-2022)
Show Figures

Figure 1

17 pages, 4619 KB  
Article
Modified Graphene Oxide-Incorporated Thin-Film Composite Hollow Fiber Membranes through Interface Polymerization on Hydrophilic Substrate for CO2 Separation
by Ook Choi, Iqubal Hossain, Insu Jeong, Chul-Ho Park, Yeonho Kim and Tae-Hyun Kim
Membranes 2021, 11(9), 650; https://doi.org/10.3390/membranes11090650 - 25 Aug 2021
Cited by 13 | Viewed by 3721
Abstract
Thin-film composite mixed matrix membranes (CMMMs) were fabricated using interfacial polymerization to achieve high permeance and selectivity for CO2 separation. This study revealed the role of substrate properties on performance, which are not typically considered important. In order to enhance the affinity [...] Read more.
Thin-film composite mixed matrix membranes (CMMMs) were fabricated using interfacial polymerization to achieve high permeance and selectivity for CO2 separation. This study revealed the role of substrate properties on performance, which are not typically considered important. In order to enhance the affinity between the substrate and the coating solution during interfacial polymerization and increase the selectivity of CO2, a mixture of polyethylene glycol (PEG) and dopamine (DOPA) was subjected to a spinning process. Then, the surface of the substrate was subjected to interfacial polymerization using polyethyleneimine (PEI), trimesoyl chloride (TMC), and sodium dodecyl sulfate (SDS). The effect of adding SDS as a surfactant on the structure and gas permeation properties of the fabricated membranes was examined. Thin-film composite hollow fiber membranes containing modified graphene oxide (mGO) were fabricated, and their characteristics were analyzed. The membranes exhibited very promising separation performance, with CO2 permeance of 73 GPU and CO2/N2 selectivity of 60. From the design of a membrane substrate for separating CO2, the CMMMs hollow fiber membrane was optimized using the active layer and mGO nanoparticles through interfacial polymerization. Full article
(This article belongs to the Special Issue Recent Membrane Research and Development in Korea)
Show Figures

Figure 1

19 pages, 2704 KB  
Review
A Prospective Concept on the Fabrication of Blend PES/PEG/DMF/NMP Mixed Matrix Membranes with Functionalised Carbon Nanotubes for CO2/N2 Separation
by Ashvin Viknesh Mahenthiran and Zeinab Abbas Jawad
Membranes 2021, 11(7), 519; https://doi.org/10.3390/membranes11070519 - 10 Jul 2021
Cited by 8 | Viewed by 4824
Abstract
With an ever-increasing global population, the combustion of fossil fuels has risen immensely to meet the demand for electricity, resulting in significant increase in carbon dioxide (CO2) emissions. In recent years, CO2 separation technology, such as membrane technology, has become [...] Read more.
With an ever-increasing global population, the combustion of fossil fuels has risen immensely to meet the demand for electricity, resulting in significant increase in carbon dioxide (CO2) emissions. In recent years, CO2 separation technology, such as membrane technology, has become highly desirable. Fabricated mixed matrix membranes (MMMs) have the most desirable gas separation performances, as these membranes have the ability to overcome the trade-off limitations. In this paper, blended MMMs are reviewed along with two polymers, namely polyether sulfone (PES) and polyethylene glycol (PEG). Both polymers can efficiently separate CO2 because of their chemical properties. In addition, blended N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) solvents were also reviewed to understand the impact of blended MMMs’ morphology on separation of CO2. However, the fabricated MMMs had challenges, such as filler agglomeration and void formation. To combat this, functionalised multi-walled carbon nanotube (MWCNTs-F) fillers were utilised to aid gas separation performance and polymer compatibility issues. Additionally, a summary of the different fabrication techniques was identified to further optimise the fabrication methodology. Thus, a blended MMM fabricated using PES, PEG, NMP, DMF and MWCNTs-F is believed to improve CO2/nitrogen separation. Full article
Show Figures

Graphical abstract

12 pages, 2019 KB  
Article
The Effect of the Temperature and Moisture to the Permeation Properties of PEO-Based Membranes for Carbon-Dioxide Separation
by Dragutin Nedeljkovic
Polymers 2021, 13(13), 2053; https://doi.org/10.3390/polym13132053 - 23 Jun 2021
Cited by 4 | Viewed by 2596
Abstract
An increased demand for energy in recent decades has caused an increase in the emissions of combustion products, among which carbon-dioxide is the most harmful. As carbon-dioxide induces negative environmental effects, like global warming and the greenhouse effect, a decrease of the carbon-dioxide [...] Read more.
An increased demand for energy in recent decades has caused an increase in the emissions of combustion products, among which carbon-dioxide is the most harmful. As carbon-dioxide induces negative environmental effects, like global warming and the greenhouse effect, a decrease of the carbon-dioxide emission has emerged as one of the most urgent tasks in engineering. In this work, the possibility for the application of the polymer-based, dense, mixed matrix membranes for flue gas treatment was tested. The task was to test a potential decrease in the permeability and selectivity of a mixed-matrix membrane in the presence of moisture and at elevated temperature. Membranes are based on two different poly(ethylene oxide)-based polymers filled with two different zeolite powders (ITR and IWS). An additive of detergent type was added to improve the contact properties between the zeolite and polymer matrix. The measurements were performed at three different temperatures (30, 60, and 90 °C) under wet conditions, with partial pressure of the water equal to the vapor pressure of the water at the given temperature. The permeability of carbon-dioxide, hydrogen, nitrogen, and oxygen was measured, and the selectivity of the carbon-dioxide versus other gases was determined. Obtained results have shown that an increase of temperature and partial pressure of the vapor slightly increase both the selectivity and permeability of the synthesized membranes. It was also shown that the addition of the zeolite powder increases the permeability of carbon-dioxide while maintaining the selectivity, compared to hydrogen, oxygen, and nitrogen. Full article
(This article belongs to the Special Issue Advanced Polymeric Films)
Show Figures

Figure 1

20 pages, 7241 KB  
Article
Hollow Fiber Porous Nanocomposite Membranes Produced via Continuous Extrusion: Morphology and Gas Transport Properties
by Zahir Razzaz and Denis Rodrigue
Materials 2018, 11(11), 2311; https://doi.org/10.3390/ma11112311 - 17 Nov 2018
Cited by 7 | Viewed by 3937
Abstract
In this work, hollow fiber porous nanocomposite membranes were successfully prepared by the incorporation of a porous nanoparticle (zeolite 5A) into a blend of linear low-density polyethylene (LLDPE)/low-density polyethylene (LDPE) combined with azodicarbonamide as a chemical blowing agent (CBA). Processing was performed via [...] Read more.
In this work, hollow fiber porous nanocomposite membranes were successfully prepared by the incorporation of a porous nanoparticle (zeolite 5A) into a blend of linear low-density polyethylene (LLDPE)/low-density polyethylene (LDPE) combined with azodicarbonamide as a chemical blowing agent (CBA). Processing was performed via continuous extrusion using a twin-screw extruder coupled with a calendaring system. The process was firstly optimized in terms of extrusion and post-extrusion conditions, as well as formulation to obtain a good cellular structure (uniform cell size distribution and high cell density). Scanning electron microscopy (SEM) was used to determine the cellular structure as well as nanoparticle dispersion. Then, the samples were characterized in terms of mechanical and thermal stability via tensile tests and thermogravimetric analysis (TGA), as well as differential scanning calorimetry (DSC). The results showed that the zeolite nanoparticles were able to act as effective nucleating agents during the foaming process. However, the optimum nanoparticle content was strongly related to the foaming conditions. Finally, the membrane separation performances were investigated for different gases (CO2, CH4, N2, O2, and H2) showing that the incorporation of porous zeolite significantly improved the gas transport properties of semi-crystalline polyolefin membranes due to lower cell wall thickness (controlling permeability) and improved separation properties (controlling selectivity). These results show that mixed matrix membranes (MMMs) can be cost-effective, easy to process, and efficient in terms of processing rate, especially for the petroleum industry where H2/CH4 and H2/N2 separation/purification are important for hydrogen recovery. Full article
(This article belongs to the Special Issue New Trends in Polymeric Foams)
Show Figures

Graphical abstract

15 pages, 2351 KB  
Article
PES-Kaolin Mixed Matrix Membranes for Arsenic Removal from Water
by Tiziana Marino, Francesca Russo, Lina Rezzouk, Abderrazak Bouzid and Alberto Figoli
Membranes 2017, 7(4), 57; https://doi.org/10.3390/membranes7040057 - 30 Sep 2017
Cited by 33 | Viewed by 6359
Abstract
The aim of this work was the fabrication and the characterization of mixed matrix membranes (MMMs) for arsenic (As) removal from water. Membrane separation was combined with an adsorption process by incorporating the kaolin (KT2) Algerian natural clay in polymeric membranes. The effects [...] Read more.
The aim of this work was the fabrication and the characterization of mixed matrix membranes (MMMs) for arsenic (As) removal from water. Membrane separation was combined with an adsorption process by incorporating the kaolin (KT2) Algerian natural clay in polymeric membranes. The effects of casting solution composition was explored using different amounts of polyethersufone (PES) as a polymer, polyvinyl-pyrrolidone (PVP K17) and polyethylene glycol (PEG 200) as pore former agents, N-methyl pyrrolidone (NMP) as a solvent, and kaolin. Membranes were prepared by coupling Non-solvent Induced Phase Separation and Vapour Induced Phase Separation (NIPS and VIPS, respectively). The influence of the exposure time to controlled humid air and temperature was also investigated. The MMMs obtained were characterized in terms of morphology, pore size, porosity, thickness, contact angle and pure water permeability. Adsorption membrane-based tests were carried out in order to assess the applicability of the membranes produced for As removal from contaminated water. Among the investigated kaolin concentrations (ranging from 0 wt % to 5 wt %), a content of 1.25 wt % led to the MMM with the most promising performance. Full article
(This article belongs to the Special Issue Seven Years of Membranes: Feature Paper 2017)
Show Figures

Figure 1

19 pages, 3710 KB  
Article
Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment
by Silvia Simone, Francesco Galiano, Mirko Faccini, Marcel E. Boerrigter, Christiane Chaumette, Enrico Drioli and Alberto Figoli
Fibers 2017, 5(2), 14; https://doi.org/10.3390/fib5020014 - 4 Apr 2017
Cited by 32 | Viewed by 10492
Abstract
In this work, poly(ethersulfone) (PES) ultrafiltration (UF) hollow fibers (HF) were modified by introducing TiO2 nanoparticles (TiO2-NPs) in the polymeric dope, to endow them with photocatalytic properties. Different dope compositions and spinning conditions for producing “blank” PES UF fibers with [...] Read more.
In this work, poly(ethersulfone) (PES) ultrafiltration (UF) hollow fibers (HF) were modified by introducing TiO2 nanoparticles (TiO2-NPs) in the polymeric dope, to endow them with photocatalytic properties. Different dope compositions and spinning conditions for producing “blank” PES UF fibers with suitable properties were investigated. PEO–PPO–PEO (Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol, Pluronic® (Sigma-Aldrich, Milan, Italy) was finally selected as the additive and a suitable dope composition was identified. After the detection of an appropriate dope composition and the optimization of the spinning parameters, PES-TiO2 HF was produced. The optimized composition was employed for preparing the mixed matrix HF loaded with TiO2 NPs. The effect of different TiO2 NP (0.3–1 wt %) concentrations and bore fluid compositions on the fiber morphology and properties were explored. The morphology of the produced fibers was analyzed by Scanning Electron Microscopy (SEM). Fibers were further characterized by measuring: pore size diameters and thickness, porosity, and pure water permeability (PWP). The photocatalytic activity of the new membranes was also tested by UV light irradiation. The model “foulant” methylene blue (MB) was used in order to prove the efficiency of the novel UF membrane for dye photo-degradation. Full article
(This article belongs to the Special Issue Hollow Fiber Membrane)
Show Figures

Figure 1

20 pages, 1152 KB  
Article
Carbon Nanotube- and Carbon Fiber-Reinforcement of Ethylene-Octene Copolymer Membranes for Gas and Vapor Separation
by Zuzana Sedláková, Gabriele Clarizia, Paola Bernardo, Johannes Carolus Jansen, Petr Slobodian, Petr Svoboda, Magda Kárászová, Karel Friess and Pavel Izak
Membranes 2014, 4(1), 20-39; https://doi.org/10.3390/membranes4010020 - 3 Jan 2014
Cited by 28 | Viewed by 10224
Abstract
Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene)) with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs) and carbon fibers (CFs). Helium, hydrogen, nitrogen, oxygen, methane, and [...] Read more.
Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene)) with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs) and carbon fibers (CFs). Helium, hydrogen, nitrogen, oxygen, methane, and carbon dioxide were used for gas permeation rate measurements. Vapor transport properties were studied for the aliphatic hydrocarbon (hexane), aromatic compound (toluene), alcohol (ethanol), as well as water for the representative samples. The mechanical properties and homogeneity of samples was checked by stress-strain tests. The addition of virgin CNTs and CFs improve mechanical properties. Gas permeability of EOC lies between that of the more permeable PDMS and the less permeable semi-crystalline polyethylene and polypropylene. Organic vapors are more permeable than permanent gases in the composite membranes, with toluene and hexane permeabilities being about two orders of magnitude higher than permanent gas permeability. The results of the carbon-filled membranes offer perspectives for application in gas/vapor separation with improved mechanical resistance. Full article
(This article belongs to the Special Issue Nanocomposite Membranes)
Show Figures

Graphical abstract

Back to TopTop