Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = polymeric interfacial layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 8799 KiB  
Article
Correlation Between Conditions of Polyaniline Interlayer Formation and the Structure and Performance of Thin-Film Composite Membranes for Nanofiltration Prepared via Interfacial Polymerization
by Katsiaryna S. Burts, Tatiana V. Plisko, Anastasia V. Penkova, Bingbing Yuan, Sergey S. Ermakov and Alexandr V. Bildyukevich
Polymers 2025, 17(9), 1199; https://doi.org/10.3390/polym17091199 - 28 Apr 2025
Viewed by 418
Abstract
Correlations between conditions of the polyaniline (PANI) interlayer formation on the surface of a polysulfone (PSF) porous membrane substrate and the structure and performance of thin-film composite (TFC) membranes for nanofiltration with a polyamide (PA) selective layer prepared via interfacial polymerization (IP) were [...] Read more.
Correlations between conditions of the polyaniline (PANI) interlayer formation on the surface of a polysulfone (PSF) porous membrane substrate and the structure and performance of thin-film composite (TFC) membranes for nanofiltration with a polyamide (PA) selective layer prepared via interfacial polymerization (IP) were studied. It was shown that application of the PANI layer significantly enhanced hydrophilicity (the water contact angle decreased from 55 ± 2° down to 26–49 ± 2°), decreased pore size and porosity, and increased the surface roughness of the selective layer surface of porous PSF/PANI membrane substrates due to the formation of bigger PANI globules, which affect the formation of the PA layer of TFC membranes via IP. It was shown that the application of the PANI intermediate layer yielded the formation of a thinner PA selective layer, a decline in surface roughness, and an increase in hydrophilicity (the water contact angle declined from 28 to <10°) and crosslinking degree of the selective layer of TFC NF membranes. The developed approach allows us to enhance the water permeation up to 45–64 L·m−2·h−1 at ΔP = 0.5 MPa and improve membrane selectivity (rejection coefficient of MgSO4—>99.99%; LiCl—5–25%; sulfadimetoxine—80–95%) and also ensure enhanced long-term operational stability of TFC nanofiltration membranes with a PANI interlayer. Moreover, Mg2+/Li+ separation factor values were found to increase to 37 and 58 for PANI-modified membranes compared to 9 and 8 for the reference NF-PSF membranes. Full article
Show Figures

Graphical abstract

23 pages, 6561 KiB  
Article
Thin-Film Composite Polyamide Membranes Modified with HKUST-1 for Water Treatment: Characterization and Nanofiltration Performance
by Roman Dubovenko, Mariia Dmitrenko, Anna Mikulan, Margarita Puzikova, Ilnur Dzhakashov, Nadezhda Rakovskaya, Anna Kuzminova, Olga Mikhailovskaya, Rongxin Su and Anastasia Penkova
Polymers 2025, 17(9), 1137; https://doi.org/10.3390/polym17091137 - 22 Apr 2025
Viewed by 469
Abstract
The development of sustainable nanofiltration membranes requires alternatives to petroleum-derived polymer substrates. This study demonstrates the successful use of an eco-friendly cellulose acetate/cellulose nitrate (CA/CN) blend substrate for fabricating high-performance modified thin-film composite (mTFC) membranes. A dense, non-porous polyamide (PA) selective layer was [...] Read more.
The development of sustainable nanofiltration membranes requires alternatives to petroleum-derived polymer substrates. This study demonstrates the successful use of an eco-friendly cellulose acetate/cellulose nitrate (CA/CN) blend substrate for fabricating high-performance modified thin-film composite (mTFC) membranes. A dense, non-porous polyamide (PA) selective layer was formed via the interfacial polymerization method and modified with 0.05–0.1 wt.% HKUST-1 (Cu3BTC2, MOF-199). Characterization by FTIR, XPS, SEM, AFM, and contact angle measurements confirmed the CA/CN substrate’s suitability for TFC membrane fabrication. HKUST-1 incorporation created a distinctive ridge-and-valley morphology while significantly altering PA layer hydrophilicity and roughness. The mTFC membrane performance could be fine-tuned by the controlled incorporation of HKUST-1; incorporation through the aqueous phase slowed down the formation of the PA layer and significantly reduced its thickness, while the addition through the organic phase resulted in the formation of a denser layer due to HKUST-1 agglomeration. Thus, either enhanced permeability (123 LMH bar−1 with 0.05 wt.% aqueous-phase incorporation) or rejection (>89% dye removal with 0.05 wt.% organic-phase incorporation) were achieved. Both mTFC membranes also exhibited improved heavy metal ion rejection (>91.7%), confirming their industrial potential. Higher HKUST-1 loading (0.1 wt.%) caused MOF agglomeration, reducing performance. This approach establishes a sustainable fabrication route for tunable TFC membranes targeting specific separation tasks. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

13 pages, 3927 KiB  
Article
Effects of Latent Solvent Content on Tuning the Nanofiltration Performance of Nanofibrous Composite Membranes
by Xu-Dong Cao, Yu-Xuan Shao, Qian Wang, Tian-Dan Lu and Jing Zhong
Membranes 2025, 15(4), 118; https://doi.org/10.3390/membranes15040118 - 8 Apr 2025
Viewed by 310
Abstract
This study aims to optimize the application of electrospun nanofibrous substrates in thin-film composite (TFC) nanofiltration (NF) membranes for enhanced liquid separation efficiency by employing a method of effective welding between fibers using latent solvents. Polyacrylonitrile (PAN) nanofiber substrates were fabricated via electrospinning, [...] Read more.
This study aims to optimize the application of electrospun nanofibrous substrates in thin-film composite (TFC) nanofiltration (NF) membranes for enhanced liquid separation efficiency by employing a method of effective welding between fibers using latent solvents. Polyacrylonitrile (PAN) nanofiber substrates were fabricated via electrospinning, and a dense polyamide selective layer was formed on their surface through interfacial polymerization (IP). The investigation focused on the effects of different solvent systems, particularly the role of dimethyl sulfoxide (DMSO) as a latent solvent, on the nanostructure and final membrane performance. The results indicate that increasing the DMSO content can enhance the greenness of the fabrication process, the substrate hydrophilicity, and the mechanical strength, while also influencing the thickness and morphology of the polyamide layer. At a DMSO rate of 30%, the composite membrane achieves optimal pure water permeability and high rejection rates; when the DMSO content exceeds 40%, structural inhomogeneity in the substrate membrane leads to an increase in defects, significantly deteriorating membrane performance. These findings provide theoretical insights and technical guidance for the application of electrospinning technology in designing efficient and stable NF membranes. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

16 pages, 6337 KiB  
Article
Preparation of Crown Ether-Containing Polyamide Membranes via Interfacial Polymerization and Their Desalination Performance
by Liqing Xing, Liping Lin, Jiaxin Guo, Xinping He and Chunhai Yi
Membranes 2025, 15(3), 77; https://doi.org/10.3390/membranes15030077 - 3 Mar 2025
Viewed by 763
Abstract
The large-scale application of aromatic polyamide (PA) thin-film composite (TFC) membranes for reverse osmosis has provided an effective way to address worldwide water scarcity. However, the water permeability and salt rejection capabilities of the PA membrane remain limited. In this work, cyclic micropores [...] Read more.
The large-scale application of aromatic polyamide (PA) thin-film composite (TFC) membranes for reverse osmosis has provided an effective way to address worldwide water scarcity. However, the water permeability and salt rejection capabilities of the PA membrane remain limited. In this work, cyclic micropores based on crown ether were introduced into the PA layer using a layer-by-layer interfacial polymerization (LbL-IP) method. After interfacial polymerization between m-phenylenediamine (MPD) and trimesoyl chloride (TMC), the di(aminobenzo)-18-crown-6 (DAB18C6) solution in methanol was poured on the membrane to react with the residual TMC. The cyclic micropores of DAB18C6 provided the membrane with rapid water transport channels and improved ion rejection due to its hydrophilicity and size sieving effect. The membranes were characterized by FTIR, XPS, SEM, and AFM. Compared to unmodified membranes, the water contact angle decreased from 54.1° to 31.6° indicating better hydrophilicity. Moreover, the crown ether-modified membrane exhibited both higher permeability and enhanced rejection performance. The permeability of the crown ether-modified membrane was more than ten times higher than unmodified membranes with a rejection above 95% for Na2SO4, MgSO4, MgCl2, and NaCl solution. These results highlight the potential of this straightforward surface grafting strategy and the modified membranes for advanced water treatment technologies, particularly in addressing seawater desalination challenges. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

27 pages, 7929 KiB  
Review
Recent Progress of Chemical Reactions Induced by Contact Electrification
by Xinyi Huo, Shaoxin Li, Bing Sun, Zhong Lin Wang and Di Wei
Molecules 2025, 30(3), 584; https://doi.org/10.3390/molecules30030584 - 27 Jan 2025
Cited by 1 | Viewed by 1764
Abstract
Contact electrification (CE) spans from atomic to macroscopic scales, facilitating charge transfer between materials upon contact. This interfacial charge exchange, occurring in solid–solid (S–S) or solid–liquid (S–L) systems, initiates radical generation and chemical reactions, collectively termed contact-electro-chemistry (CE-Chemistry). As an emerging platform for [...] Read more.
Contact electrification (CE) spans from atomic to macroscopic scales, facilitating charge transfer between materials upon contact. This interfacial charge exchange, occurring in solid–solid (S–S) or solid–liquid (S–L) systems, initiates radical generation and chemical reactions, collectively termed contact-electro-chemistry (CE-Chemistry). As an emerging platform for green chemistry, CE-Chemistry facilitates redox, luminescent, synthetic, and catalytic reactions without the need for external power sources as in traditional electrochemistry with noble metal catalysts, significantly reducing energy consumption and environmental impact. Despite its broad applicability, the mechanistic understanding of CE-Chemistry remains incomplete. In S–S systems, CE-Chemistry is primarily driven by surface charges, whether electrons, ions, or radicals, on charged solid interfaces. However, a comprehensive theoretical framework is yet to be established. While S–S CE offers a promising platform for exploring the interplay between chemical reactions and triboelectric charge via surface charge modulation, it faces significant challenges in achieving scalability and optimizing chemical efficiency. In contrast, S–L CE-Chemistry focuses on interfacial electron transfer as a critical step in radical generation and subsequent reactions. This approach is notably versatile, enabling bulk-phase reactions in solutions and offering the flexibility to choose various solvents and/or dielectrics to optimize reaction pathways, such as the degradation of organic pollutants and polymerization, etc. The formation of an interfacial electrical double layer (EDL), driven by surface ion adsorption following electron transfer, plays a pivotal role in CE-Chemical processes within aqueous S–L systems. However, the EDL can exert a screening effect on further electron transfer, thereby inhibiting reaction progress. A comprehensive understanding and optimization of charge transfer mechanisms are pivotal for elucidating reaction pathways and enabling precise control over CE-Chemical processes. As the foundation of CE-Chemistry, charge transfer underpins the development of energy-efficient and environmentally sustainable methodologies, holding transformative potential for advancing green innovation. This review consolidates recent advancements, systematically classifying progress based on interfacial configurations in S–S and S–L systems and the underlying charge transfer dynamics. To unlock the full potential of CE-Chemistry, future research should prioritize the strategic tuning of material electronegativity, the engineering of sophisticated surface architectures, and the enhancement of charge transport mechanisms, paving the way for sustainable chemical innovations. Full article
Show Figures

Figure 1

21 pages, 4188 KiB  
Review
Preservation Strategies for Interfacial Integrity in Restorative Dentistry: A Non-Comprehensive Literature Review
by Carmem S. Pfeifer, Fernanda S. Lucena and Fernanda M. Tsuzuki
J. Funct. Biomater. 2025, 16(2), 42; https://doi.org/10.3390/jfb16020042 - 26 Jan 2025
Viewed by 1285
Abstract
The preservation of interfacial integrity in esthetic dental restorations remains a critical challenge, with hybrid layer degradation being a primary factor in restoration failure. This degradation is driven by a combination of host-derived enzymatic activity, including matrix metalloproteinases (MMPs), bacterial proteases, and hydrolytic [...] Read more.
The preservation of interfacial integrity in esthetic dental restorations remains a critical challenge, with hybrid layer degradation being a primary factor in restoration failure. This degradation is driven by a combination of host-derived enzymatic activity, including matrix metalloproteinases (MMPs), bacterial proteases, and hydrolytic breakdown of the polymerized adhesive due to moisture exposure. This review examines the multifactorial mechanisms underlying hybrid layer degradation and presents current advancements in restorative materials aimed at counteracting these effects. Principal strategies include collagen preservation through the inhibition of enzymatic activity, the integration of antimicrobial agents to limit biofilm formation, and the use of ester-free, hydrolysis-resistant polymeric systems. Recent research highlights acrylamide-based adhesives, which exhibit enhanced resistance to acidic and enzymatic environments, as well as dual functionality in collagen stabilization. Furthermore, innovations in bioactive resins and self-healing materials present promising future directions for developing adhesives that actively contribute to long-term restoration stability. These findings underscore the importance of continuous advancements in adhesive technology to enhance the durability and clinical performance of dental restorations. Full article
(This article belongs to the Special Issue State-of-the-Art Dental Adhesives and Restorative Composites)
Show Figures

Figure 1

22 pages, 6270 KiB  
Article
Poly(amic acid)-Polyimide Copolymer Interfacial Layers for Self-Powered CH3NH3PbI3 Photovoltaic Photodiodes
by Wonsun Kim, JaeWoo Park, HyeRyun Jeong, Kimin Lee, Sui Yang, Eun Ha Choi and Byoungchoo Park
Polymers 2025, 17(2), 163; https://doi.org/10.3390/polym17020163 - 10 Jan 2025
Cited by 1 | Viewed by 766
Abstract
Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as [...] Read more.
Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as an interfacial layer between a methylammonium lead iodide (CH3NH3PbI3, MAPbI3) perovskite light-absorbing layer and a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) hole injection layer. The PAA-PI interfacial layer effectively suppresses carrier recombination at the interfaces, resulting in a high power conversion efficiency (PCE) of 11.8% compared to 10.4% in reference devices without an interfacial layer. Moreover, applying the PAA-PI interfacial layer to the MAPbI3 PVPD significantly improves the photodiode performance, increasing the specific detectivity by 49 times to 7.82 × 1010 Jones compared to the corresponding results of reference devices without an interfacial layer. The PAA-PI-passivated MAPbI3 PVPD also exhibits a wide linear dynamic range of ~103 dB and fast response times, with rise and decay times of 61 and 18 µs, respectively. The improved dynamic response of the PAA-PI-passivated MAPbI3 PVPD enables effective weak-light detection, highlighting the potential of advanced interfacial engineering with PAA-PI interfacial layers in the development of high-performance, self-powered perovskite photovoltaic photodetectors for a wide range of optoelectronic applications. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage, 2nd Edition)
Show Figures

Figure 1

23 pages, 4396 KiB  
Review
Polymer/Clay Nanocomposites as Advanced Adsorbents for Textile Wastewater Treatment
by Adel Mokhtar, Boubekeur Asli, Soumia Abdelkrim, Mohammed Hachemaoui, Bouhadjar Boukoussa, Mohammed Sassi, Gianluca Viscusi and Mohamed Abboud
Minerals 2024, 14(12), 1216; https://doi.org/10.3390/min14121216 - 28 Nov 2024
Cited by 2 | Viewed by 1554
Abstract
This review explores the removal of textile dyes from wastewater using advanced polymer/clay composites. It provides an in-depth analysis of the chemical and physical properties of these composites, emphasizing how the combination of polymers and clays creates a synergistic effect that significantly improves [...] Read more.
This review explores the removal of textile dyes from wastewater using advanced polymer/clay composites. It provides an in-depth analysis of the chemical and physical properties of these composites, emphasizing how the combination of polymers and clays creates a synergistic effect that significantly improves the efficiency of dye removal. The structural versatility of the composites, derived from the interaction between the layered clay sheets and the flexible polymer matrices, is detailed, showcasing their enhanced adsorption capacity and catalytic properties for wastewater treatment. The review outlines the key functional groups present in both polymers and clays, which are crucial for binding and degrading a wide range of dyes, including acidic, basic, and reactive dyes. The role of specific interactions, such as hydrogen bonding, ion exchange, and electrostatic attractions between the dye molecules and the composite surface, is highlighted. Moreover, the selection criteria for different types of clays such as montmorillonite, kaolinite, and bentonite and their modifications are examined to demonstrate how structural and surface modifications can further improve their performance in composite materials. Various synthesis methods for creating polymer/clay composites, including in situ polymerization, solution intercalation, and melt blending, are discussed. These fabrication techniques are evaluated for their ability to control particle dispersion, optimize interfacial bonding, and enhance the mechanical and chemical stability of the composites. Furthermore, the review introduces advanced characterization techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), to help researchers assess the morphological, structural, and thermal properties of the composites, aligning these features with their potential application in dye removal. Additionally, the review delves into the primary mechanisms involved in the dye removal process, such as adsorption, photocatalytic degradation, and catalytic reduction. It also provides an overview of the kinetic and thermodynamic models commonly used to describe the adsorption processes in polymer/clay composites. The environmental and operational factors influencing the efficiency of dye removal, such as pH, temperature, and composite dosage, are analyzed in detail, offering practical insights for optimizing performance under various wastewater conditions. In conclusion, this review not only highlights the promising potential of polymer/clay composites for textile dye removal but also identifies current challenges and future research directions. It underscores the importance of developing eco-friendly, cost-effective, and scalable solutions to address the growing concerns related to water pollution and sustainability in wastewater management. Full article
(This article belongs to the Special Issue Environmental Pollution and Assessment in Mining Areas)
Show Figures

Figure 1

11 pages, 7113 KiB  
Article
In Situ Fluorescent Visualization of the Interfacial Layer of Induced Crystallization in Polyvinyl Chloride
by Zhihang An, Renping Liu, Zhenhao Dai, Jiaping Liu, Jiaying Du, Zhongyi Sheng and Heyang Liu
Polymers 2024, 16(22), 3147; https://doi.org/10.3390/polym16223147 - 12 Nov 2024
Viewed by 1007
Abstract
Despite the remarkable progress in the modification and application of polyvinyl chloride (PVC), developing processing aids for the induced crystallization of PVC and characterizing its interfacial layer remain challenges. Herein, we propose a new polymeric nucleating agent, polyamidea12-graft-styrene–maleic anhydride copolymer (PA12-g-SMA), which possesses [...] Read more.
Despite the remarkable progress in the modification and application of polyvinyl chloride (PVC), developing processing aids for the induced crystallization of PVC and characterizing its interfacial layer remain challenges. Herein, we propose a new polymeric nucleating agent, polyamidea12-graft-styrene–maleic anhydride copolymer (PA12-g-SMA), which possesses high compatibility and crystallinity, effectively improving the crystallinity to 15.1%, the impact strength to 61.03 kJ/m2, and the degradation temperature of PVC to 267 °C through a single and straightforward processing step. Additionally, after the introduction of two different fluorescent sensors in PA12-g-SMA and PVC, the interfacial layer of the induced crystallization can be monitored in situ via a confocal laser scanning microscope (CLSM). This study highlights a rare strategy for significantly enhancing the physical properties of rigid PVC through simply adding a polymeric nucleating agent during processing, while also emphasizing the importance of visualizing the interfacial layer to understand various polymer crystallization processes. Full article
(This article belongs to the Special Issue Additively Manufactured Polymers: Design, Testing and Applications)
Show Figures

Graphical abstract

13 pages, 5627 KiB  
Article
Organic Solvent Nanofiltration Membrane with In Situ Constructed Covalent Organic Frameworks as Separation Layer
by Fangyi Xu, Shuxin Zhao, Junjie Song, Yu Peng and Baowei Su
Membranes 2024, 14(11), 234; https://doi.org/10.3390/membranes14110234 - 8 Nov 2024
Cited by 1 | Viewed by 1467
Abstract
Organic solvent nanofiltration (OSN) technology is advantageous for separating mixtures of organic solutions owing to its low energy consumption and environmental friendliness. Covalent organic frameworks (COFs) are good candidates for enhancing the efficiency of solvent transport and ensuring precise molecular sieving of OSN [...] Read more.
Organic solvent nanofiltration (OSN) technology is advantageous for separating mixtures of organic solutions owing to its low energy consumption and environmental friendliness. Covalent organic frameworks (COFs) are good candidates for enhancing the efficiency of solvent transport and ensuring precise molecular sieving of OSN membranes. In this study, p-phenylenediamine (Pa) and 1,3,5-trimethoxybenzene (Tp) are used to construct, in situ, a TpPa COF skin layer via interfacial polymerization (IP) on a polyimide substrate surface. After subsequent crosslinking and activation steps, a kind of TpPa/polyimide (PI) OSN membrane is obtained. Under optimized fabrications, this OSN membrane exhibits an ethanol permeance of 58.0 LMH/MPa, a fast green FCF (FGF) rejection of 96.2%, as well as a pure n-hexane permeance of 102.0 LMH/MPa. Furthermore, the TpPa/PI OSN membrane exhibits good solvent resistance, which makes it suitable for the separation, purification, and concentration of organic solvents. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

28 pages, 3497 KiB  
Review
Polymer-Assisted Graphite Exfoliation: Advancing Nanostructure Preparation and Multifunctional Composites
by Jaime Orellana, Esteban Araya-Hermosilla, Andrea Pucci and Rodrigo Araya-Hermosilla
Polymers 2024, 16(16), 2273; https://doi.org/10.3390/polym16162273 - 10 Aug 2024
Cited by 2 | Viewed by 2973
Abstract
Exfoliated graphite (ExG) embedded in a polymeric matrix represents an accessible, cost-effective, and sustainable method for generating nanosized graphite-based polymer composites with multifunctional properties. This review article analyzes diverse methods currently used to exfoliate graphite into graphite nanoplatelets, few-layer graphene, and polymer-assisted graphene. [...] Read more.
Exfoliated graphite (ExG) embedded in a polymeric matrix represents an accessible, cost-effective, and sustainable method for generating nanosized graphite-based polymer composites with multifunctional properties. This review article analyzes diverse methods currently used to exfoliate graphite into graphite nanoplatelets, few-layer graphene, and polymer-assisted graphene. It also explores engineered methods for small-scale pilot production of polymer nanocomposites. It highlights the chemistry involved during the graphite intercalation and exfoliation process, particularly emphasizing the interfacial interactions related to steric repulsion forces, van der Waals forces, hydrogen bonds, π-π stacking, and covalent bonds. These interactions promote the dispersion and stabilization of the graphite derivative structures in polymeric matrices. Finally, it compares the enhanced properties of nanocomposites, such as increased thermal and electrical conductivity and electromagnetic interference (EMI) shielding applications, with those of neat polymer materials. Full article
(This article belongs to the Special Issue Functional Graphene-Polymer Composites)
Show Figures

Figure 1

9 pages, 1356 KiB  
Article
Bio-Inspired Double-Layered Hydrogel Robot with Fast Response via Thermo-Responsive Effect
by Yunsong Liu and Xiong Zheng
Materials 2024, 17(15), 3679; https://doi.org/10.3390/ma17153679 - 25 Jul 2024
Cited by 2 | Viewed by 1016
Abstract
Bio-inspired hydrogel robots have become promising due to their advantage of the interaction safety and comfort between robots and humans, while current hydrogel robots mainly focus on underwater movement due to the hydration–dehydration process of thermo-responsive hydrogels, which greatly limits their practical applications. [...] Read more.
Bio-inspired hydrogel robots have become promising due to their advantage of the interaction safety and comfort between robots and humans, while current hydrogel robots mainly focus on underwater movement due to the hydration–dehydration process of thermo-responsive hydrogels, which greatly limits their practical applications. To expand the motion of the thermo-responsive hydrogel robot to the ground, we constructed a hydrogel robot inspired by a caterpillar, which has an anisotropic double-layered structure by the interfacial diffusion polymerization method. Adding PVA and SA to PNIPAm will cause different conformation transitions. Therefore, sticking the two layers of hydrogel together will form a double-layer anisotropic structure. The ultra-high hydrophilicity of PVA and SA significantly reduces the contact angle of the hydrogel from 53.1° to about 10° and reduces its hydration time. The responsive time for bending 30° of the hydrogel robot has been greatly reduced from 1 h to half an hour through the enhancement of photo-thermal conversion and thermal conductivity via the addition of Fe3O4 nanoparticles. As a result, the fabricated hydrogel robot can achieve a high moving speed of 54.5 mm·h−1 on the ground. Additionally, the fabricated hydrogel has excellent mechanical strength and can endure significant flexibility tests. This work may pave the road for the development of soft robots and expand their applications in industry. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

25 pages, 2457 KiB  
Review
Synergistic Construction of Sub-Nanometer Channel Membranes through MOF–Polymer Composites: Strategies and Nanofiltration Applications
by Qian Chen, Ying Tang, Yang-Min Ding, Hong-Ya Jiang, Zi-Bo Zhang, Wei-Xing Li, Mei-Ling Liu and Shi-Peng Sun
Polymers 2024, 16(12), 1653; https://doi.org/10.3390/polym16121653 - 11 Jun 2024
Cited by 4 | Viewed by 1763
Abstract
The selective separation of small molecules at the sub-nanometer scale has broad application prospects in the field, such as energy, catalysis, and separation. Conventional polymeric membrane materials (e.g., nanofiltration membranes) for sub-nanometer scale separations face challenges, such as inhomogeneous channel sizes and unstable [...] Read more.
The selective separation of small molecules at the sub-nanometer scale has broad application prospects in the field, such as energy, catalysis, and separation. Conventional polymeric membrane materials (e.g., nanofiltration membranes) for sub-nanometer scale separations face challenges, such as inhomogeneous channel sizes and unstable pore structures. Combining polymers with metal–organic frameworks (MOFs), which possess uniform and intrinsic pore structures, may overcome this limitation. This combination has resulted in three distinct types of membranes: MOF polycrystalline membranes, mixed-matrix membranes (MMMs), and thin-film nanocomposite (TFN) membranes. However, their effectiveness is hindered by the limited regulation of the surface properties and growth of MOFs and their poor interfacial compatibility. The main issues in preparing MOF polycrystalline membranes are the uncontrollable growth of MOFs and the poor adhesion between MOFs and the substrate. Here, polymers could serve as a simple and precise tool for regulating the growth and surface functionalities of MOFs while enhancing their adhesion to the substrate. For MOF mixed-matrix membranes, the primary challenge is the poor interfacial compatibility between polymers and MOFs. Strategies for the mutual modification of MOFs and polymers to enhance their interfacial compatibility are introduced. For TFN membranes, the challenges include the difficulty in controlling the growth of the polymer selective layer and the performance limitations caused by the “trade-off” effect. MOFs can modulate the formation process of the polymer selective layer and establish transport channels within the polymer matrix to overcome the “trade-off” effect limitations. This review focuses on the mechanisms of synergistic construction of polymer–MOF membranes and their structure–nanofiltration performance relationships, which have not been sufficiently addressed in the past. Full article
(This article belongs to the Special Issue Highly Permselective Nanofiltration Membrane)
Show Figures

Graphical abstract

15 pages, 13986 KiB  
Article
Preparation of Polydopamine Functionalized HNIW Crystals and Application in Solid Propellants
by Fengdan Zhu, Chang Liu, Desheng Yang and Guoping Li
Polymers 2024, 16(11), 1566; https://doi.org/10.3390/polym16111566 - 1 Jun 2024
Viewed by 1208
Abstract
The application of hexanitrohexaazaisowurtzitane (HNIW) as an oxidizer in solid propellants aligns with the pursuit of high-energy materials. However, the phase transformation behavior and high impact sensitivity of HNIW are its limitations. Due to the strong adhesion and mild synthesis conditions, polydopamine (PDA) [...] Read more.
The application of hexanitrohexaazaisowurtzitane (HNIW) as an oxidizer in solid propellants aligns with the pursuit of high-energy materials. However, the phase transformation behavior and high impact sensitivity of HNIW are its limitations. Due to the strong adhesion and mild synthesis conditions, polydopamine (PDA) has been employed to modify HNIW. However, the method suffers from a slow coating process and a non-ideal coating effect under short reaction time. Herein, oxygen-accelerated dopamine in situ polymerization coating method was developed. It was found that oxygen not only reduced the coating time but also contributed to forming a dense and uniform PDA layer. HNIW@PDA coated in oxygen for 6 h exhibited the most favorable performance, with a delay of 20.8 °C in the phase transition temperature and a reduction of 145.45% in the impact sensitivity. The -OH groups on the surface of PDA enhanced the interaction between HNIW and polymer binders, resulting in a 20.36% reduction in the dewetting percentage. The lower content of PDA in HNIW@PDA (1.17%) resulted in minimal variation in the heat of explosion for HNIW@PDA-based HTPB propellant (6287 kJ/kg) in comparison to HNIW-based HTPB propellant (6297 kJ/kg). Hence, HNIW@PDA-based propellants are expected to offer an alternative with promising safety and mechanical performance compared to existing HNIW-based propellants, thus facilitating the application of HNIW in high-energy propellants. This work presents a low-cost method for efficiently inhibiting the phase transformation of polycrystalline explosives and reducing the impact sensitivity. It also offers a potential approach to enhance the interfacial interaction between nitro-containing explosives and polymer binders. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

21 pages, 6226 KiB  
Article
Fluoride Removal Using Nanofiltration-Ranged Polyamide Thin-Film Nanocomposite Membrane Incorporated Titanium Oxide Nanosheets
by Fekri Abdulraqeb Ahmed Ali, Javed Alam, Saif M. H. Qaid, Arun Kumar Shukla, Ahmed S. Al-Fatesh, Ahmad M. Alghamdi, Farid Fadhillah, Ahmed I. Osman and Mansour Alhoshan
Nanomaterials 2024, 14(8), 731; https://doi.org/10.3390/nano14080731 - 22 Apr 2024
Cited by 3 | Viewed by 2040
Abstract
Drinking water defluoridation has attracted significant attention in the scientific community, from which membrane technology, by exploring thin film nanocomposite (TFN) membranes, has demonstrated a great potential for treating fluoride-contaminated water. This study investigates the development of a TFN membrane by integrating titanium [...] Read more.
Drinking water defluoridation has attracted significant attention in the scientific community, from which membrane technology, by exploring thin film nanocomposite (TFN) membranes, has demonstrated a great potential for treating fluoride-contaminated water. This study investigates the development of a TFN membrane by integrating titanium oxide nanosheets (TiO2 NSs) into the polyamide (PA) layer using interfacial polymerization. The characterization results suggest that successfully incorporating TiO2 NSs into the PA layer of the TFN membrane led to a surface with a high negative charge, hydrophilic properties, and a smooth surface at the nanoscale. The TFN membrane, containing 80 ppm of TiO2 NSs, demonstrated a notably high fluoride rejection rate of 98%. The Donnan-steric-pore-model-dielectric-exclusion model was employed to analyze the effect of embedding TiO2 NSs into the PA layer of TFN on membrane properties, including charge density (Xd), the pore radius (rp), and pore dielectric constant (εp). The results indicated that embedding TiO2 NSs increased Xd and decreased the εp by less than the TFC membrane without significantly affecting the rp. The resulting TFN membrane demonstrates promising potential for application in water treatment systems, providing an effective and sustainable solution for fluoride remediation in drinking water. Full article
Show Figures

Figure 1

Back to TopTop