Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = powertrain concepts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5391 KB  
Article
Comparative Study of Hybrid Electric Distributed Propulsion Aircraft Through Multiple Powertrain Component Modeling Approaches
by Baptiste Legrand, Arnaud Gaillard and David Bouquain
Aerospace 2025, 12(8), 732; https://doi.org/10.3390/aerospace12080732 - 19 Aug 2025
Viewed by 539
Abstract
Aircraft design is an ever-expanding field of research. Disruptive aircraft architectures and the long-standing need for fast design processes are the main drivers behind the domain growth. Novel concepts like distributed propulsion, Vertical Take-Off and Landing, electrification, hybridization, etc., require new models and [...] Read more.
Aircraft design is an ever-expanding field of research. Disruptive aircraft architectures and the long-standing need for fast design processes are the main drivers behind the domain growth. Novel concepts like distributed propulsion, Vertical Take-Off and Landing, electrification, hybridization, etc., require new models and design strategies to achieve a significant degree of fidelity at every stage of the design. This paper proposes a framework targeting key techniques and assumptions to improve the accuracy of the preliminary aircraft design stage. Based on a review of modern design strategies, a model-based method has been developed. Two distinct approaches to component modeling have been compared for a hybrid-electric distributed propulsion aircraft. To complement this comparative study, the second modeling approach has been tested for three different hybrid electric architectures. The results showcase the feasibility of the three architectures, with promising results for the hydrogen powertrain system. Full article
(This article belongs to the Special Issue Aircraft Design (SI-7/2025))
Show Figures

Graphical abstract

33 pages, 1633 KB  
Article
Quantifying the State of the Art of Electric Powertrains in Battery Electric Vehicles: Comprehensive Analysis of the Two-Speed Transmission and 800 V Technology of the Porsche Taycan
by Nico Rosenberger, Nicolas Wagner, Alexander Fredl, Linus Riederle and Markus Lienkamp
World Electr. Veh. J. 2025, 16(6), 296; https://doi.org/10.3390/wevj16060296 - 27 May 2025
Cited by 1 | Viewed by 1228
Abstract
In the automotive industry, battery electric vehicles (BEVs) represent the future of individual mobility. To establish a long-term market presence, innovative vehicle and powertrain concepts are essential, and therefore, identifying the most promising concepts is crucial to determine where to focus research and [...] Read more.
In the automotive industry, battery electric vehicles (BEVs) represent the future of individual mobility. To establish a long-term market presence, innovative vehicle and powertrain concepts are essential, and therefore, identifying the most promising concepts is crucial to determine where to focus research and development further. Academia plays a significant role in this identification process; however, researchers often face restricted access to data from the industry, and identifying different technological approaches is often connected to significant costs. We present a comprehensive study of the Porsche Taycan Performance Battery Plus, which integrates two technological advancements: the first series-production implementation of a two-speed transmission in an electric vehicle allowing for high acceleration while reaching high top speeds and a 800 V battery system architecture providing more efficient charging capabilities. This study details vehicle dynamics, electric powertrain efficiencies, their impact on vehicle level, and the two technological advancements. This work aims to provide researchers access to vehicle dynamometer and real-world data from one of the most advanced and innovative battery electric sports cars. This allows for further analysis of cutting-edge technologies that have yet to reach the mass market. In addition to providing researchers with this study’s results, all data utilized in this study will be made available as open-access, enabling individual use of test data for parameter identification and the development of simulation models. Full article
Show Figures

Figure 1

23 pages, 9227 KB  
Article
Achieving NOx Emissions with Zero-Impact on Air Quality from Diesel Light-Duty Commercial Vehicles
by Theodoros Kossioris, Robert Maurer, Stefan Sterlepper, Marco Günther and Stefan Pischinger
Energies 2025, 18(8), 1882; https://doi.org/10.3390/en18081882 - 8 Apr 2025
Viewed by 813
Abstract
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even [...] Read more.
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even zero-impact levels. In a novel, holistic powertrain design approach, this paper presents powertrain solutions to achieve zero-impact NOx emissions with an N1 class III diesel light commercial vehicle. The design is based on a compliance test matrix consisting of six real-world scenarios that are critical for emissions and air quality. As a design baseline, a vehicle concept meeting the emission requirements as set out in the European Commission’s 2022 Euro 7 regulation proposal is used. The baseline vehicle concept can achieve zero-impact NOx emissions in 67% of these scenarios. To achieve zero-impact NOx emissions in all scenarios, further advanced emission solutions are mandatory. In congested urban areas, the use of an exhaust gas aftertreatment system preheating device with at least 20 kW of power for 1 min is required. In high-traffic highway situations, an underfloor SCR unit with a minimum volume of 12 l or the restriction of the maximum vehicle speed at 130 km/h is required. Full article
(This article belongs to the Special Issue Emission Control Technology in Internal Combustion Engines)
Show Figures

Graphical abstract

9 pages, 687 KB  
Proceeding Paper
Dynamic Modeling of Fuel Cells for Applications in Aviation
by Niclas A. Dotzauer
Eng. Proc. 2025, 90(1), 68; https://doi.org/10.3390/engproc2025090068 - 20 Mar 2025
Viewed by 527
Abstract
In the development of more electric aircraft, hydrogen powered fuel cells are one possible solution to progress towards emission reductions in aviation. Currently, there are numerous concepts for integrating fuel cells into future aircraft. The goal of this work was to develop a [...] Read more.
In the development of more electric aircraft, hydrogen powered fuel cells are one possible solution to progress towards emission reductions in aviation. Currently, there are numerous concepts for integrating fuel cells into future aircraft. The goal of this work was to develop a dynamic fuel cell model for simulations of the powertrain. The Modelica language together with the ThermoFluidStream (TFS) library from the German Aerospace Center (DLR) provided a suitable framework. The fuel cell model takes into account the electrochemical as well as thermodynamic behavior. Hence, the proposed multi-physics model allows simulating the whole fuel cell system, from the hydrogen tank to the electric grid. Under certain simplifications, this enables performing mission simulations of the complete powertrain of future aircraft. As such, polymer electrolyte membrane (PEM) fuel cells and solid oxide fuel cells (SOFC) were considered. The fuel cell models are checked for plausibility in a simple test case against data from the literature. Furthermore, two setups of possible applications are introduced: one for each fuel cell type, which come from two projects. The preliminary control systems of these architectures are presented. Afterwards, the first results of the fuel cell systems are discussed. These results show that the models ran robustly in various environments and operational states. They provided the desired accuracy to predict the behavior of a fuel cell, while maintaining low CPU times and being capable of enabling real-time simulations in the future. Full article
Show Figures

Figure 1

23 pages, 7068 KB  
Article
Thermal Management for Electric Motorcycles—Multi-Scale Modelling and Battery Thermal Design Evaluation
by Tao Zhu, Mehmet Kirca, Shilei Zhou, Truong Dinh and Andrew McGordon
Appl. Sci. 2025, 15(5), 2713; https://doi.org/10.3390/app15052713 - 3 Mar 2025
Viewed by 1448
Abstract
Electric motorcycles feature a smaller size and lower weight than electric cars, meaning they have greater manoeuvrability and energy efficiency, which translate to a dynamic riding experience and reduced environmental footprint. From a thermal management perspective, one major challenge is how to maximise [...] Read more.
Electric motorcycles feature a smaller size and lower weight than electric cars, meaning they have greater manoeuvrability and energy efficiency, which translate to a dynamic riding experience and reduced environmental footprint. From a thermal management perspective, one major challenge is how to maximise the heat dissipation efficiency of the battery system within the limited space available onboard since the battery system represents one of the largest thermal loads onboard. This paper investigates electric motorcycle modelling to facilitate prototype development, emphasising a compact, integrated cooling system for high-voltage powertrain components, including the battery, inverter, and motor. Particularly, the proposed battery model is structured across the pack–module–cell hierarchy, which makes it capable of distinguishing the thermal state of each individual cell and the cell-to-cell performance variations resulting from temperature effects. The integrated cooling system and multi-scale battery modelling method proposed in this paper allow for a quick comparison of performances between different battery module thermal designs, which is specifically suited for early-stage investigation of different concepts. A series and a parallel battery module thermal design are proposed and compared, with a focus on evaluating their impacts on system-level and component-level thermal performances as well as cell-level performance variations, including but not limited to temperature, state of charge, voltage, and state of power. Specifically, the serial thermal design provides better overall cooling efficiency and lower battery pack temperatures, while the parallel design significantly reduces cell-to-cell variations. Full article
(This article belongs to the Special Issue New Insights into Lithium-Ion Batteries: Technologies and Challenges)
Show Figures

Figure 1

34 pages, 13658 KB  
Project Report
Clean Propulsion Technologies: Securing Technological Dominance for the Finnish Marine and Off-Road Powertrain Sectors
by Maciej Mikulski, Teemu Ovaska, Rodrigo Rabetino, Merja Kangasjärvi and Aino Myllykangas
Energies 2025, 18(5), 1240; https://doi.org/10.3390/en18051240 - 3 Mar 2025
Viewed by 957
Abstract
The Clean Propulsion Technologies (CPT) project, established in 2021, brought together 15 research partners and original equipment manufacturers. The goal was to create a common vision and sustainable business solutions so that the worldwide technological leadership of the Finnish powertrain industry is secured. [...] Read more.
The Clean Propulsion Technologies (CPT) project, established in 2021, brought together 15 research partners and original equipment manufacturers. The goal was to create a common vision and sustainable business solutions so that the worldwide technological leadership of the Finnish powertrain industry is secured. With a EUR 15.5 M budget, CPT brought early-stage innovative concepts towards technology readiness level (TRL) 6. The project’s particular significance was its unique cross-coupling of marine and off-road sectors, which have similar emission reduction targets but which do not compete for similar customers. The project yielded 21 innovative solutions, from accelerated model-based design methodologies and progress in combustion and aftertreatment control to hybrid energy management solutions. These were encapsulated in four ground-breaking demonstrations, including a next-generation marine engine working in low-temperature, reactivity-controlled compression ignition (RCCI) mode and a hydrogen off-road engine. An advanced close-coupled selective catalyst reduction (SCR) system and a hybrid wheel-platform with digital hydraulics were also demonstrated. The University of Vaasa led the consortium and was responsible for coordinated model-based rapid prototyping. This report examines University of Vaasa’s achievements during the CPT in terms of 26 milestones, 13 deliverables, and 32 research papers. It focuses also on other aspects, including lessons learned from managing large-scale academic–industry research. Full article
Show Figures

Figure 1

27 pages, 984 KB  
Article
Holistic Electric Powertrain Component Design for Battery Electric Vehicles in an Early Development Phase
by Nico Rosenberger, Silvan Deininger, Jan Koloch and Markus Lienkamp
World Electr. Veh. J. 2025, 16(2), 61; https://doi.org/10.3390/wevj16020061 - 21 Jan 2025
Cited by 3 | Viewed by 2276
Abstract
As battery electric vehicles (BEVs) gain significance in the automotive industry, manufacturers must diversify their vehicle portfolios with a wide range of electric vehicle models. Electric powertrains must be designed to meet the unique requirements and boundary conditions of different vehicle concepts to [...] Read more.
As battery electric vehicles (BEVs) gain significance in the automotive industry, manufacturers must diversify their vehicle portfolios with a wide range of electric vehicle models. Electric powertrains must be designed to meet the unique requirements and boundary conditions of different vehicle concepts to provide satisfying solutions for their customers. During the early development phases, it is crucial to establish an initial powertrain component design that allows the respective divisions to develop their components independently and minimize interdependencies, avoiding time- and cost-intensive iterations. This study presents a holistic electric powertrain component design model, including the high-voltage battery, power electronics, electric machine, and transmission, which is meant to be used as a foundation for further development. This model’s simulation results and performance characteristics are validated against a reference vehicle, which was torn down and tested on a vehicle dynamometer. This tool is applicable for an optimization approach, focusing on achieving optimal energy consumption, which is crucial for the design of battery electric vehicles. Full article
Show Figures

Figure 1

27 pages, 9517 KB  
Article
Semi-Active Suspension Design for an In-Wheel-Motor-Driven Electric Vehicle Using a Dynamic Vibration-Absorbing Structure and PID-Controlled Magnetorheological Damper
by Kyle Samaroo, Abdul Waheed Awan and Sheikh Islam
Machines 2025, 13(1), 47; https://doi.org/10.3390/machines13010047 - 11 Jan 2025
Cited by 5 | Viewed by 1576
Abstract
The in-wheel motor (IWM) powertrain layout offers greater design flexibility and higher efficiency of an electric vehicle but has limited commercial success mainly due to the concerns of increased unsprung mass. This paper proposes a semi-active suspension system for in-wheel motors that combines [...] Read more.
The in-wheel motor (IWM) powertrain layout offers greater design flexibility and higher efficiency of an electric vehicle but has limited commercial success mainly due to the concerns of increased unsprung mass. This paper proposes a semi-active suspension system for in-wheel motors that combines both a dynamic vibration-absorbing structure (DVAS) and a PID-controlled MR damper, in order to achieve optimised comfort, handling and IWM vibration for a small car application. Whilst PID control and DVAS are not entirely new concepts, the usage of both optimisation techniques in a semi-active in-wheel motor suspension has seen limited implementation, which makes the current work novel and significant. The semi-active suspension operating both in passive fail-safe mode and full feedback control was compared to a conventional in-wheel motor passive suspension in terms of sprung mass acceleration, displacement, stator acceleration, tyre deflection and suspension travel for three different road profile inputs using MATLAB/Simulink. The implementation of a PID-controlled MR damper improved road comfort and road holding performance and decreased in-wheel motor vibration over the DVAS passive suspension mainly in terms of a maximum peak amplitude decrease of 40%, 35% and 32% for the sprung mass acceleration, tyre deflection and stator acceleration, respectively. The results are significant since they show that the use of a simple, easily implemented control scheme like PID control was able to significantly improve IWM suspension performance when paired with a DVAS. This study provides further confidence to manufacturers to commercially develop and implement the IWM layout as its major disadvantage can be reasonably addressed using a simple readily available control approach. Full article
(This article belongs to the Special Issue Semi-Active Vibration Control: Strategies and Applications)
Show Figures

Figure 1

21 pages, 4887 KB  
Review
Recent Progress in Creep-Resistant Aluminum Alloys for Diesel Engine Applications: A Review
by Raul Irving Arriaga-Benitez and Mihriban Pekguleryuz
Materials 2024, 17(13), 3076; https://doi.org/10.3390/ma17133076 - 22 Jun 2024
Cited by 8 | Viewed by 1881
Abstract
Diesel engines in heavy-duty vehicles are predicted to maintain a stable presence in the future due to the difficulty of electrifying heavy trucks, mine equipment, and railway cars. This trend encourages the effort to develop new aluminum alloy systems with improved performance at [...] Read more.
Diesel engines in heavy-duty vehicles are predicted to maintain a stable presence in the future due to the difficulty of electrifying heavy trucks, mine equipment, and railway cars. This trend encourages the effort to develop new aluminum alloy systems with improved performance at diesel engine conditions of elevated temperature and stress combinations to reduce vehicle weight and, consequently, CO2 emissions. Aluminum alloys need to provide adequate creep resistance at ~300 °C and room-temperature tensile properties better than the current commercial aluminum alloys used for powertrain applications. The studies for improving creep resistance for aluminum casting alloys indicate that their high-temperature stability depends on the formation of high-density uniform dispersoids with low solid solubility and low diffusivity in aluminum. This review summarizes three generations of diesel engine aluminum alloys and focuses on recent work on the third-generation dispersoid-strengthened alloys. Additionally, new trends in developing creep resistance through the development of alloy systems other than Al-Si-based alloys, the optimization of manufacturing processes, and the use of thermal barrier coatings and composites are discussed. New progress on concepts regarding the thermal stability of rapidly solidified and nano-structured alloys and on creep-resistant alloy design via machine learning-based algorithms is also presented. Full article
Show Figures

Figure 1

22 pages, 9264 KB  
Article
E-Heater Performance for Aftertreatment Warm-Up in a 48V Mild-Hybrid Heavy-Duty Truck over Real Driving Cycles
by Praveen Kumar, Rafael Lago Sari, Ashish Shah and Brock Merritt
Energies 2024, 17(12), 3001; https://doi.org/10.3390/en17123001 - 18 Jun 2024
Cited by 1 | Viewed by 1828
Abstract
High-efficiency and low-emissions heavy-duty (HD) internal combustion engines (ICEs) offer significant GHG reduction potential. Mild hybridization via regenerative braking and enabling the use of an electric heater component (EHC) for the aftertreatment system (ATS) warm-up extends these benefits, which can mitigate tailpipe GHG [...] Read more.
High-efficiency and low-emissions heavy-duty (HD) internal combustion engines (ICEs) offer significant GHG reduction potential. Mild hybridization via regenerative braking and enabling the use of an electric heater component (EHC) for the aftertreatment system (ATS) warm-up extends these benefits, which can mitigate tailpipe GHG and NOx emissions simultaneously. Understanding such integrated hybrid powertrains is essential for the system optimization of real-world driving conditions. In the present work, the potential of a low engine-out NOx (1.5–2.5 g/kWh range) ‘Low-NOx’ HD diesel engine and EHCs were analyzed in a 48V P1 mild-hybrid system for a class 8 commercial vehicle concept and compared with those in an EPA-2010-certified HD diesel truck as a baseline under real-world driving cycles, including those from the US, Europe, India, China, as well as the world harmonized vehicle cycle (WHVC). For analysis, an integrated 1-D vehicle model was utilized that consisted of models of the ‘Low-NOx’ HD engine, the stock ATS, and a production EHC. For the real driving cycles, ‘GT-RealDrive’-based vehicle speed profiles were generated for busy trucking routes for different markets. For each cycle, the effects of the Low-NOx and EHC performances were quantified in terms of the ATS warm-up time, engine-out NOx emissions, and net fuel consumption. Depending on the driving route, the regenerative braking fully or partly neutralized the EHC power penalty without a significant impact on the ATS thermal performance. For a two-EHC system, the fueling penalty associated with every second reduction in the warm-up time FCEHC (g/s) was several-fold higher for the real driving routes compared with the WHVC. Overall, while a multi-EHC setup accelerated the ATS warm-up, a single EHC integrated at the SCR inlet showed minimized EHC heating power, leading to a minimized fueling penalty. Finally, for the India and China routes, being highly transient, the P1 hybridization proved inadequate for GHG reduction due to the limited energy recuperation. A stronger hybridization was desirable for such driving cycles. Full article
(This article belongs to the Special Issue Advances in Hybrid Electric Powertrain and Vehicle)
Show Figures

Figure 1

25 pages, 4683 KB  
Article
Concept Evaluation of Radical Short–Medium-Range Aircraft with Turbo-Electric Propulsion
by W. J. Vankan, W. F. Lammen, E. Scheers, P. J. Dewitte and Sebastien Defoort
Aerospace 2024, 11(6), 477; https://doi.org/10.3390/aerospace11060477 - 17 Jun 2024
Cited by 6 | Viewed by 2006
Abstract
Ambitious targets for the coming decades have been set for further reductions in aviation greenhouse gas emissions. Hybrid electric propulsion (HEP) concepts offer potential for the mitigation of these aviation emissions. To investigate this potential in an adequate level of detail, the European [...] Read more.
Ambitious targets for the coming decades have been set for further reductions in aviation greenhouse gas emissions. Hybrid electric propulsion (HEP) concepts offer potential for the mitigation of these aviation emissions. To investigate this potential in an adequate level of detail, the European research project IMOTHEP (Investigation and Maturation of Technologies for Hybrid Electric Propulsion) explores key technologies for HEP in close relation with developments of aircraft missions and configuration. This paper presents conceptual-level design investigations on radical HEP aircraft configurations for short–medium-range (SMR) missions. In particular, a blended-wing-body (BWB) configuration with a turbo-electric powertrain and distributed electric propulsion is investigated using NLR’s aircraft evaluation tool MASS. For the aircraft and powertrain design, representative top-level aircraft requirements have been defined in IMOTHEP, and the reference aircraft for the assessment of potential benefits is based on the Airbus A320neo aircraft. The models and data developed in IMOTHEP and presented in this paper show that the turbo-electric BWB configuration has potential for reduced fuel consumption in comparison to the reference aircraft. But in comparison to advanced turbofan-powered BWB configurations, which have the same benefits of the BWB airframe and advanced technology assumptions, this potential is limited. Full article
Show Figures

Figure 1

19 pages, 9439 KB  
Article
Combining Gasoline Compression Ignition and Powertrain Hybridization for Long-Haul Applications
by Rafael Lago Sari, Yu Zhang, Brock Merritt, Praveen Kumar and Ashish Shah
Energies 2024, 17(5), 1099; https://doi.org/10.3390/en17051099 - 25 Feb 2024
Cited by 1 | Viewed by 1190
Abstract
Gasoline compression ignition (GCI) combustion was demonstrated to be an effective combustion concept to achieve high brake thermal efficiency with low-reactivity fuels while offering improved NOx–soot trade-off. Nevertheless, future greenhouse gas regulations still challenge the heavy-duty transportation sector on both engine and vehicle [...] Read more.
Gasoline compression ignition (GCI) combustion was demonstrated to be an effective combustion concept to achieve high brake thermal efficiency with low-reactivity fuels while offering improved NOx–soot trade-off. Nevertheless, future greenhouse gas regulations still challenge the heavy-duty transportation sector on both engine and vehicle basis. Hybridization is a possible solution in this scenario, allowing the avoidance of low-efficiency conditions and energy recovery during regenerative braking, improving overall vehicle efficiency. In this sense, this investigation proposes a detailed analysis to understand the optimum hybridization strategy to be used together with GCI to simultaneously harness low pollutant and CO2 emissions. For that, different hybrid architectures were defined in GT Drive (Mild hybrid 48 V P0 and P2 and full Hybrid P2 500 V) and submitted to 15 different use cases, constituted by five normative and real-driving conditions from the US, China, India, and Europe and three different payloads. Results showed that all hybridization strategies could provide fuel savings benefits to some extent. Nonetheless, usage profile is a dominant factor to be accounted for, benefiting specific hybrid powertrains. For instance, P0 and P2 48 V could provide similar savings as P2 500 V, where regenerative braking is limited. Nonetheless, P2 500 V is a superior powertrain if more demanding cycles are considered, allowing it to drive and recuperate energy without exceeding the Crate limitations of the battery. Full article
(This article belongs to the Special Issue Advances in Hybrid Electric Powertrain and Vehicle)
Show Figures

Figure 1

12 pages, 1135 KB  
Article
Comparative Assessment for Holistic Evaluation of Drive Systems
by Raphael Mieth and Frank Gauterin
Vehicles 2024, 6(1), 403-414; https://doi.org/10.3390/vehicles6010017 - 13 Feb 2024
Cited by 1 | Viewed by 1626
Abstract
The development of vehicle drive systems targets different goals, which are partly contradictory. While the focus is often on increasing efficiency and—depending on the type of drive system—performance, the aim is to simultaneously reduce costs, weight, and volume as much as possible. This [...] Read more.
The development of vehicle drive systems targets different goals, which are partly contradictory. While the focus is often on increasing efficiency and—depending on the type of drive system—performance, the aim is to simultaneously reduce costs, weight, and volume as much as possible. This goal generally presents a conflict of objectives; for example, a gain in efficiency usually correlates with higher costs, or an increase in performance reduces the maximum achievable efficiency. Therefore, each drive system represents a compromise among these goals, and depending on the main focus, the development can be influenced. The methods presented in this work serve as a methodological framework for the evaluation of vehicle drive systems. The procedure involves evaluating different drive concepts based on defined criteria and comparing these evaluations with one another. These criteria can be selected freely and weighted differently, depending on the individual focus. In the sense of a holistic assessment, a system evaluation factor ultimately serves as an indicator, which is composed of the rating values of the individual criteria, taking into account their specific weightings. With the help of the novel method presented in this paper, the complexity of comparing differently designed powertrains is reduced, and a holistic assessment covering relevant viewpoints is possible. Such an all-encompassing view is helpful in the early development phase and is required as an evaluation basis for further, groundbreaking decisions in concept development. Full article
(This article belongs to the Special Issue Vehicle Design Processes, 2nd Edition)
Show Figures

Figure 1

30 pages, 14867 KB  
Article
Architecture and Potential of Connected and Autonomous Vehicles
by Michele Pipicelli, Alfredo Gimelli, Bernardo Sessa, Francesco De Nola, Gianluca Toscano and Gabriele Di Blasio
Vehicles 2024, 6(1), 275-304; https://doi.org/10.3390/vehicles6010012 - 29 Jan 2024
Cited by 11 | Viewed by 4551
Abstract
The transport sector is under an intensive renovation process. Innovative concepts such as shared and intermodal mobility, mobility as a service, and connected and autonomous vehicles (CAVs) will contribute to the transition toward carbon neutrality and are foreseen as crucial parts of future [...] Read more.
The transport sector is under an intensive renovation process. Innovative concepts such as shared and intermodal mobility, mobility as a service, and connected and autonomous vehicles (CAVs) will contribute to the transition toward carbon neutrality and are foreseen as crucial parts of future mobility systems, as demonstrated by worldwide efforts in research and industry communities. The main driver of CAVs development is road safety, but other benefits, such as comfort and energy saving, are not to be neglected. CAVs analysis and development usually focus on Information and Communication Technology (ICT) research themes and less on the entire vehicle system. Many studies on specific aspects of CAVs are available in the literature, including advanced powertrain control strategies and their effects on vehicle efficiency. However, most studies neglect the additional power consumption due to the autonomous driving system. This work aims to assess uncertain CAVs’ efficiency improvements and offers an overview of their architecture. In particular, a combination of the literature survey and proper statistical methods are proposed to provide a comprehensive overview of CAVs. The CAV layout, data processing, and management to be used in energy management strategies are discussed. The data gathered are used to define statistical distribution relative to the efficiency improvement, number of sensors, computing units and their power requirements. Those distributions have been employed within a Monte Carlo method simulation to evaluate the effect on vehicle energy consumption and energy saving, using optimal driving behaviour, and considering the power consumption from additional CAV hardware. The results show that the assumption that CAV technologies will reduce energy consumption compared to the reference vehicle, should not be taken for granted. In 75% of scenarios, simulated light-duty CAVs worsen energy efficiency, while the results are more promising for heavy-duty vehicles. Full article
Show Figures

Figure 1

27 pages, 1409 KB  
Article
Rapid Decision-Making Tool for Electric Powertrain Sizing for Motorcycles during New Product Development
by Mehmet Cagin Kirca, Andrew McGordon and Truong Quang Dinh
Energies 2024, 17(2), 330; https://doi.org/10.3390/en17020330 - 9 Jan 2024
Cited by 2 | Viewed by 1779
Abstract
As part of the intergovernmental and public interventions to reduce carbon dioxide emissions, there are no existing regulations to ban the sale of petrol motorcycles (PM), but it is expected that motorcycle regulations will follow car regulations with several years of delay. There [...] Read more.
As part of the intergovernmental and public interventions to reduce carbon dioxide emissions, there are no existing regulations to ban the sale of petrol motorcycles (PM), but it is expected that motorcycle regulations will follow car regulations with several years of delay. There is an emerging trend in motorcycle uptake, which will lead to new development projects with existing brands, and new brands, and will clearly increase the need for development tools that satisfies design challenges specific to electric motorcycles (EM) and electric powertrains. There is significant importance in motorcycle design to quantify the vehicle-level performance indicators and specifications, which are not limited to total vehicle mass, range, acceleration performance, and top speed. Those performance indicators should be quantified for different powertrain configurations and component selections to identify the most suitable configuration for the specific motorcycle development. In this paper, an innovative powertrain sizing approach is proposed to provide solutions for EMs against the design challenges specific to electric motorcycles. The innovative approach is to apply the practice of design space exploration (DSE) in resilient system design (RSD) to EM development. As a proof of concept, a case study of battery sizing is presented, in which a powertrain sizing tool is used to identify battery pack sizing requirements using requirement-based design (RBD), sensitivity analysis and DSE. The case study shows that the RBD approach allows EM product developers to identify a single solution, while DSE clearly demonstrates the trade-off between different configurations, taking multiple design variables into account. The tool prioritises high accessibility and high confidence with limited information at the early phases of electric motorcycle powertrain component sizing and selection. Full article
(This article belongs to the Special Issue Mechatronic Technologies for Future Energy Systems)
Show Figures

Figure 1

Back to TopTop