Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = pressurized hot water extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1371 KB  
Article
Impact of Individual Process Parameters on Extraction of Polysaccharides from Saccharina latissima
by Elmira Khajavi Ahmadi, Said Al-Hamimi, Madeleine Jönsson and Roya R. R. Sardari
Mar. Drugs 2025, 23(11), 435; https://doi.org/10.3390/md23110435 - 13 Nov 2025
Viewed by 87
Abstract
While numerous extraction methods have been applied to the brown algae Saccharina latissima, a systematic evaluation of how individual extraction parameters influence the extraction of each target polysaccharide has not previously been reported. Accordingly, this study compared conventional and advanced techniques for [...] Read more.
While numerous extraction methods have been applied to the brown algae Saccharina latissima, a systematic evaluation of how individual extraction parameters influence the extraction of each target polysaccharide has not previously been reported. Accordingly, this study compared conventional and advanced techniques for extracting fucoidan, laminarin, and alginate from pre-treated biomass. Conventional methods employed diluted acid (0.01 M and 0.1 M HCl), diluted alkali (0.01 M and 0.1 M NaOH), and hot water (121 °C for 30/60 min) for extraction. Advanced techniques involved pressurized liquid extraction (PLE) using water and moderate electric field (MEF) extraction with conditions optimized by statistical experimental design. Pre-treatment with aqueous ethanol removed 30% ash and eliminated mannitol, improving extraction selectivity. The results demonstrated fucoidan yields of 31% with 0.01 M HCl and 46% with 0.1 M NaOH, while 0.01 M NaOH facilitated laminarin co-extraction (45%). Alginate, as a mannuronic acid polymer, was obtained at 9% yield with 0.1 M HCl, 42% yield with 0.1 M NaOH, and 27% with pressurized hot water for 30 min. High-temperature, short-duration PLE further improved alginate yield, while MEF showed limited gains due to high ionic content but demonstrated potential under optimized settings. The results support a cascading biorefinery approach in which different polysaccharide fractions can be sequentially obtained, contributing to more sustainable seaweed valorization. Full article
(This article belongs to the Special Issue Polysaccharides from Marine Environment)
Show Figures

Figure 1

16 pages, 12122 KB  
Article
A Comparison Study on Polysaccharides Extracted from Citrus reticulata Blanco cv. Tankan Peel Using Five Different Methods: Structural Characterization and Immunological Competence
by Jinming Peng, Guangwei Chen, Ziyuan Lin, Shaoxin Guo, Yue Zeng, Qin Wang, Wenhua Yang and Jun Li
Polymers 2025, 17(18), 2554; https://doi.org/10.3390/polym17182554 - 22 Sep 2025
Viewed by 551
Abstract
This is the first work to screen an optimal extraction method for Citrus reticulata Blanco cv. Tankan peel polysaccharides (CPP). The CPP was extracted using hot water extraction (HWE), acid extraction (AAE), enzyme extraction (EAE), high-pressure extraction (HPE), and ultrasound extraction (UAE), named [...] Read more.
This is the first work to screen an optimal extraction method for Citrus reticulata Blanco cv. Tankan peel polysaccharides (CPP). The CPP was extracted using hot water extraction (HWE), acid extraction (AAE), enzyme extraction (EAE), high-pressure extraction (HPE), and ultrasound extraction (UAE), named CPP-W, CPP-A, CPP-E, CPP-P, and CPP-U, respectively. Results showed that CPP-A and CPP-P had higher extraction yields than other CPPs. The five CPPs varied chemically in molecular weight, monosaccharide composition, and microstructure, but shared similar IR spectra and core glycosidic linkages, indicating differential degradation while preserving core structures during extraction. Among these CPPs, CPP-A, CPP-E, and CPP-U exhibited stronger immunological activities, attributed to high galacturonic acid and low molecular weight. Moreover, CPPs significantly promoted secretion of cytokines (nitric oxide, NO; prostaglandin E2, PGE2; interleukin-6, IL-6; tumor necrosis factor-α, TNF-α) by activating downstream inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)-related mitogen-activated protein kinases (MAPK) pathways. Overall, CPP-E possessed high extraction yield, low molecular weight, and strong immuno-stimulatory activity, suggesting that enzyme-assisted extraction was the optimal approach for extracting CPP. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 931 KB  
Review
Unlocking the Alkaloid Biological Potential of Chili Pepper (Capsicum spp.), Cacao (Theobroma cacao L.), and Coffee (Coffea spp.) Byproducts: Characterization, Non-Conventional Extraction, Applications, and Future Perspectives
by Anahí Cárdenas, Luis Mojica, Luis Coronado-Cáceres and Gustavo A. Castillo-Herrera
Molecules 2025, 30(18), 3795; https://doi.org/10.3390/molecules30183795 - 18 Sep 2025
Viewed by 784
Abstract
Chili peppers (Capsicum spp.), cacao (Theobroma cacao L.), and coffee (Coffea spp.) are important crops worldwide. Nearly 35%, 80%, and 45% of the respective fruits are underutilized or discarded, representing a considerable economic loss. This work reviews and analyzes the [...] Read more.
Chili peppers (Capsicum spp.), cacao (Theobroma cacao L.), and coffee (Coffea spp.) are important crops worldwide. Nearly 35%, 80%, and 45% of the respective fruits are underutilized or discarded, representing a considerable economic loss. This work reviews and analyzes the environmental factors that influence the concentration of the main alkaloids in these crops, including capsaicin, theobromine, and caffeine. Their reported anti-inflammatory, cardioprotective, neuroprotective, and cytotoxic properties are also reviewed. This work explores strategies for the revalorization of these crops, comparing alkaloid extraction methods that use non-conventional techniques, including supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), high-pressure and -temperature extraction (HPTE), pressurized liquid extraction (PLE), pressurized hot water extraction (PHWE), enzyme-assisted extraction (EAE), and pulsed electric field-assisted extraction (PEFAE), and their combination to enhance the recovery of capsaicin, theobromine, and caffeine, leading to sustainable and innovative uses of these crops’ byproducts. Capsaicin, theobromine, and caffeine alkaloids are promising ingredients for the development of functional foods, cosmeceuticals, and pharmaceuticals. Full article
Show Figures

Graphical abstract

32 pages, 1721 KB  
Review
Optimizing Extraction Methods for Bioactive Polysaccharides from Rosa rugosa and Rosa damascena
by Sawaira Ashraf, Muhammad Zahid Ashraf, Baohe Miao and Xinxin Zhao
Foods 2025, 14(18), 3211; https://doi.org/10.3390/foods14183211 - 15 Sep 2025
Cited by 2 | Viewed by 1147
Abstract
Rosa damascena and Rosa rugosa, which are the two most commercial species in the Rosa genus, are used to make rose oil, cosmetics, and functional foods. The majority of polysaccharide constituents of both species is structurally diverse and demonstrates promising biological activities, [...] Read more.
Rosa damascena and Rosa rugosa, which are the two most commercial species in the Rosa genus, are used to make rose oil, cosmetics, and functional foods. The majority of polysaccharide constituents of both species is structurally diverse and demonstrates promising biological activities, such as moisturizing, immunomodulation, and antioxidant activity. The extraction technique has a significant impact on the yield, purity, and bioactivity of polysaccharides. Traditional extraction methods (hot water, ethanol) are simple and economical, yet they typically produce low yields and degrade sensitive compounds. Novel extraction methods (pressurized liquid extraction, enzyme-assisted extraction, ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction) offer higher efficiency, selectivity, and sustainability, while better preserving polysaccharide structure and bioactivity. This review serves as a comparative summary of conventional versus novel extraction methodologies of polysaccharides from R. damascena and R. rugosa, with particular consideration towards the yield, polysaccharide structural integrity, sustainability, and industrial conduct of each methodology. In addition, it summarizes the distribution and functional role of selected polysaccharides in the various organs of the plants, while also providing an overview of their antioxidant mechanisms and potential bioactive applications in health. Challenges and critical factors that surround specific species, standards for processes, and extraction methods, and that therefore appeal to time and economic considerations, are identified. In efforts to optimize the extraction methodology, the high economic and functional potential of the Rosa species can be maximized in the interest of healthy, functional consumables for the pharmaceutical, nutraceutical, and cosmetic industries. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 1591 KB  
Article
Sequential Extraction of Bioactive Saponins from Cucumaria frondosa Viscera: Supercritical CO2–Ethanol Synergy for Enhanced Yields and Antioxidant Performance
by Jianan Lin, Guangling Jiao and Azadeh Kermanshahi-pour
Mar. Drugs 2025, 23(7), 272; https://doi.org/10.3390/md23070272 - 28 Jun 2025
Cited by 1 | Viewed by 1397
Abstract
This study investigates the sequential extraction of lipids and saponins from C. frondosa viscera. Lipids were extracted using supercritical carbon dioxide (scCO2) in the presence of ethanol (EtOH) as a co-solvent. Subsequently, the lipid-extracted viscera underwent three saponin extraction approaches, scCO [...] Read more.
This study investigates the sequential extraction of lipids and saponins from C. frondosa viscera. Lipids were extracted using supercritical carbon dioxide (scCO2) in the presence of ethanol (EtOH) as a co-solvent. Subsequently, the lipid-extracted viscera underwent three saponin extraction approaches, scCO2-scCO2, scCO2-EtOH, and scCO2-hot water, resulting in saponin-rich extracts. Process parameter investigation for saponin extraction from scCO2-defatted viscera revealed minimal effects of temperature, pressure, extraction time, static extraction, and EtOH concentration on saponin yields, allowing for milder operational conditions (35 °C, 20 MPa, 30 min dynamic extraction, 75% EtOH at 0.5 mL/min) to achieve energy-efficient recovery. Continuous EtOH feeding predominates the scCO2 extraction of saponins. The sequential scCO2 extraction of lipid and saponins yielded saponins at 9.13 mg OAE/g, while scCO2 extraction of lipid followed by a 24 h 70% EtOH extraction of saponins achieved 16.26 mg OAE/g, closely matching the optimized ultrasonic-assisted extraction of saponins (17.31 mg OAE/g) from hexane-defatted samples. Antioxidant activities of saponin-rich extracts obtained in the sequential scCO2-EtOH extraction (17.12 ± 4.20% DPPH scavenging) and the sequential scCO2-scCO2 extraction (16.14 ± 1.98%) were comparable to BHT (20.39 ± 0.68%), surpassing that of hexane-defatted ultrasonic extracts (8.11 ± 1.16%). The optimized scCO2-EtOH method offers a sustainable alternative, eliminating toxic solvents while maintaining high saponin yields and bioactivity. Full article
(This article belongs to the Special Issue Marine Biorefinery for Bioactive Compounds Production)
Show Figures

Figure 1

22 pages, 8310 KB  
Review
Pore-Scale Gas–Water Two-Phase Flow Mechanisms for Underground Hydrogen Storage: A Mini Review of Theory, Experiment, and Simulation
by Xiao He, Yao Wang, Yuanshu Zheng, Wenjie Zhang, Yonglin Dai and Hao Zou
Appl. Sci. 2025, 15(10), 5657; https://doi.org/10.3390/app15105657 - 19 May 2025
Viewed by 1771
Abstract
In recent years, underground hydrogen storage (UHS) has become a hot topic in the field of deep energy storage. Green hydrogen, produced using surplus electricity during peak production, can be injected and stored in underground reservoirs and extracted during periods of high demand. [...] Read more.
In recent years, underground hydrogen storage (UHS) has become a hot topic in the field of deep energy storage. Green hydrogen, produced using surplus electricity during peak production, can be injected and stored in underground reservoirs and extracted during periods of high demand. A profound understanding of the mechanisms of the gas–water two-phase flow at the pore scale is of great significance for evaluating the sealing integrity of UHS reservoirs and optimizing injection, as well as the storage space. The pore structure of rocks, as the storage space and flow channels for fluids, has a significant impact on fluid injection, production, and storage processes. This paper systematically summarizes the methods for characterizing the micro-pore structure of reservoir rocks. The applicability of different techniques was evaluated and compared. A detailed comparative analysis was made of the advantages and disadvantages of various numerical simulation methods in tracking two-phase flow interfaces, along with an assessment of their suitability. Subsequently, the microscopic visualization seepage experimental techniques, including microfluidics, NMR-based, and CT scanning-based methods, were reviewed and discussed in terms of the microscopic dynamic mechanisms of complex fluid transport behaviors. Due to the high resolution, non-contact, and non-destructive, as well as the scalable in situ high-temperature and high-pressure experimental conditions, CT scanning-based visualization technology has received increasing attention. The research presented in this paper can provide theoretical guidance for further understanding the characterization of the micro-pore structure of reservoir rocks and the mechanisms of two-phase flow at the pore scale. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

15 pages, 2246 KB  
Article
Immunostimulating and Anticancer Activities of the Pectic Polysaccharide from Panax ginseng Leaves Treated with High Pressure/Enzyme Process
by Seung-U Son, Ki Rim Hong and Kwang-Soon Shin
Curr. Issues Mol. Biol. 2025, 47(4), 257; https://doi.org/10.3390/cimb47040257 - 7 Apr 2025
Cited by 1 | Viewed by 1158
Abstract
This study was designed to investigate the immunostimulatory and anticancer efficacies of pectic polysaccharides from ginseng leaves treated using the high-pressure extraction method (HPEM). The isolation of polysaccharides using HPEM resulted in 1.35-fold higher polysaccharide yields than those obtained using the commonly used [...] Read more.
This study was designed to investigate the immunostimulatory and anticancer efficacies of pectic polysaccharides from ginseng leaves treated using the high-pressure extraction method (HPEM). The isolation of polysaccharides using HPEM resulted in 1.35-fold higher polysaccharide yields than those obtained using the commonly used hot water extraction method. In addition, component sugar analysis of ginseng-leaf-derived polysaccharides (GLHP) showed the presence of nine different types of monosaccharides, including galacturonic acid, galactose, rhamnose, and arabinose, which are characteristic of pectic polysaccharides. In addition, GLHP effectively induced activation of the complement system, and macrophages stimulated with GLHP showed enhanced production of cytokines such as IL-6, IL-12, and TNF-α. Intravenous (i.v.) and oral administration (p.o.) of GLHP significantly increased the cancer-cell-killing ability of spleen-derived NK cells. In a lung-cancer-bearing mouse model using Colon26-M3.1 carcinoma, prophylactic i.v. and p.o. GLHP potently inhibited 95.2% and 33.5% of lung cancer, respectively. Furthermore, GLHP showed significant anticancer effects, even in mice with NK cell dysfunction, via the anti-asialo GM1 antibody. These effects may be related to the cancer-cell-killing effects of cytotoxic T lymphocytes (CTL). Therefore, GLHP, a polysaccharide isolated from ginseng leaves using HPEM, has a potent anticancer effect, and these effects are closely related to the stimulation of various immune factors. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 2nd Edition)
Show Figures

Figure 1

23 pages, 5349 KB  
Article
Green Tea Pressurized Hot Water Extract in Atherosclerosis: A Multi-Approach Study on Cellular, Animal, and Molecular Mechanisms
by Rahni Hossain, Anawat Kongchain, Moragot Chatatikun, Wiyada Kwanhian Klangbud, Chutha Takahashi Yupanqui, Hideyuki J. Majima, Hiroko P. Indo, Pradoldej Sompol, Nazim Sekeroglu, Atthaphong Phongphithakchai and Jitbanjong Tangpong
Antioxidants 2025, 14(4), 404; https://doi.org/10.3390/antiox14040404 - 28 Mar 2025
Cited by 1 | Viewed by 1771
Abstract
Atherosclerosis is a persistent inflammatory disorder influenced by oxidative stress and lipid imbalances, and it continues to be a major contributor to cardiovascular diseases. Rich in catechins and flavonoids, green tea pressurized hot water extract (GPHWE) demonstrated potent antioxidant activity through DPPH, ABTS, [...] Read more.
Atherosclerosis is a persistent inflammatory disorder influenced by oxidative stress and lipid imbalances, and it continues to be a major contributor to cardiovascular diseases. Rich in catechins and flavonoids, green tea pressurized hot water extract (GPHWE) demonstrated potent antioxidant activity through DPPH, ABTS, hydroxyl, and nitric oxide scavenging assays. In vitro, GPHWE protected RAW264.7 macrophages from oxidized LDL (Ox-LDL)-induced cytotoxicity and apoptosis by mitigating oxidative stress and enhancing cell survival. Animal studies using mice fed a high-fat diet (HFD) revealed notable improvements in lipid profiles, including decreases in total cholesterol, LDL, the atherosclerosis index (AI), the coronary risk index (CRI), and triglycerides, as well as lower levels of malondialdehyde (MDA), an indicator of oxidative stress. These results were comparable to those achieved with Simvastatin. Molecular docking studies indicated strong binding affinities of catechins to essential targets such as LOX-1, HMG-CoA reductase, caspase-3, and Nrf2, implying that the mechanisms of GPHWE involve antioxidant properties, regulation of lipids, and stabilization of plaques. The catechins of GPHWE, including epigallocatechin gallate (EGCG), epicatechin gallate (ECG), and epigallocatechin (EGC), were tentatively identified through qualitative analysis performed by UHPLC-QTOF-MS. This comprehensive approach positions GPHWE as a promising natural remedy for preventing atherosclerosis and reducing cardiovascular risk. Full article
(This article belongs to the Special Issue Oxidative Stress in Metabolic Syndrome and Cardiovascular Diseases)
Show Figures

Figure 1

28 pages, 782 KB  
Review
New Strategies for the Extraction of Antioxidants from Fruits and Their By-Products: A Systematic Review
by Kaio Vinicius Lira da Silva Bastos, Adriana Bezerra de Souza, Alessandra Cristina Tomé and Felipe de Moura Souza
Plants 2025, 14(5), 755; https://doi.org/10.3390/plants14050755 - 1 Mar 2025
Cited by 16 | Viewed by 3760
Abstract
This review highlights the recent advancements in extraction techniques for bioactive compounds from natural sources, focusing on methodologies that enhance both efficiency and sustainability. Techniques such as pressurized hot water extraction (PHWE), solid-state fermentation (SSF), ionic liquids (ILs), and electrohydrodynamic (EHD) methods have [...] Read more.
This review highlights the recent advancements in extraction techniques for bioactive compounds from natural sources, focusing on methodologies that enhance both efficiency and sustainability. Techniques such as pressurized hot water extraction (PHWE), solid-state fermentation (SSF), ionic liquids (ILs), and electrohydrodynamic (EHD) methods have shown significant potential in improving extraction yields while preserving the bioactivity of target compounds. These innovative approaches offer significant advantages over traditional methods, including reduced energy consumption, minimal environmental impact, and the ability to extract thermosensitive compounds. PHWE and EHD are particularly effective for extracting antioxidants and thermosensitive compounds, whereas SSF provides an environmentally friendly alternative by valorizing agro-industrial waste. Ionic liquids, although promising for extracting complex phytochemicals, face challenges related to scalability and economic feasibility. The adoption of these advanced techniques represents a shift toward more sustainable and cost-effective extraction processes, promoting the discovery and utilization of high-value compounds. These methods also contribute to the development of eco-friendly, cost-effective strategies that align with green chemistry principles and regulatory standards. However, further research and technological advancements are required to address existing limitations and ensure the widespread application of these methods in industrial and pharmaceutical sectors. Full article
Show Figures

Figure 1

14 pages, 4195 KB  
Article
Effects of Liquid Nitrogen on Mechanical Deterioration and Fracturing Efficiency in Hot Dry Rock
by Hu Wang, Yong Hu, Na Luo, Chunbo Zhou and Chengzheng Cai
Processes 2025, 13(3), 696; https://doi.org/10.3390/pr13030696 - 28 Feb 2025
Viewed by 1011
Abstract
Geothermal energy can be obtained from hot dry rock (HDR). The target temperatures for heat extraction from HDR range from 100 to 400 °C. Artificial fracturing is employed to stimulate HDR and create a network of fractures for geothermal resource extraction. Liquid nitrogen [...] Read more.
Geothermal energy can be obtained from hot dry rock (HDR). The target temperatures for heat extraction from HDR range from 100 to 400 °C. Artificial fracturing is employed to stimulate HDR and create a network of fractures for geothermal resource extraction. Liquid nitrogen (LN2) is environmentally friendly and shows better performance in reservoir stimulation than does conventional fracturing. In this study, triaxial compression experiments and acoustic emission location techniques were used to evaluate the impacts of temperatures and confining pressures on the mechanical property deterioration caused by LN2 cooling. The numerical simulation of LN2 fracturing was performed, and the results were compared with those for water and nitrogen fracturing. The results demonstrate that the confining pressure mitigated the deterioration effect of LN2 on the crack initiation stress, crack damage stress, and peak stress. From 20 to 60 MPa, LN2-induced reductions in these three stress parameters ranged between 7.73–18.51%, 3.46–12.15%, and 2.51–8.50%, respectively. Cryogenic LN2 increased the number and complexity of cracks generated during rock failure, further enhancing the fracture performance. Compared with those for water and nitrogen fracturing, the initiation pressures of LN2 fracturing decreased by 61.54% and 68.75%, and the instability pressures of LN2 fracturing decreased by 20.00% and 29.41%, respectively. These results contribute to the theoretical foundation for LN2 fracturing in HDR. Full article
Show Figures

Figure 1

23 pages, 6814 KB  
Article
Heat Enhancement of Ethylene Glycol/Water Mixture in the Presence of Gyroid TPMS Structure: Experimental and Numerical Comparison
by Mohamad Ziad Saghir, Mohamad Yahya, Pedro D. Ortiz, Stefania Impellizzeri and Oraib Al-Ketan
Processes 2025, 13(1), 228; https://doi.org/10.3390/pr13010228 - 15 Jan 2025
Cited by 3 | Viewed by 2704
Abstract
Cooling small components is becoming an attractive topic for researchers. In this paper, an attempt is made to use an ethylene glycol/water mixture as a cooling liquid. This liquid is a helpful application for when the fluid is in a harsh environment and [...] Read more.
Cooling small components is becoming an attractive topic for researchers. In this paper, an attempt is made to use an ethylene glycol/water mixture as a cooling liquid. This liquid is a helpful application for when the fluid is in a harsh environment and should not freeze. The experiment uses an ethylene glycol/water mixture circulating through a triply periodic minimal surface structure (TPMS) made of aluminum and silver. A constant heat flux equal to 38,000 W/m2 is applied, and three different flow rates, 11.8 cm3/s, 15.5 cm3/s, and 19.6 cm3/s, are studied. The experimental setup is complemented with numerical modelling by solving the Navier–Stokes equation and the energy equation using the finite element technique. The flow is Newtonian, and a laminar regime is implemented. Results reveal that the performance of the ethylene glycol/water mixture did not enhance heat removal when compared to water. The average Nusselt number is similar regardless of the concentration of ethylene glycol in the mixture. This average Nusselt number, Nuaverage, in the presence of aluminum TPMS ranges between 60 and 80 (60 < Nuaverage < 80) and between 65 and 85 (65 < Nuaverage < 85) using silver TPMS. The increase in the mixture’s viscosity due to ethylene glycol increased the pressure drop. The performance evaluation criteria reach the maximum value of 90 when the mixture is composed of 5%vol ethylene glycol in water with aluminum TPMS. In the presence of silver TPMS, the maximum performance evaluation criterion is around 95 with a 5% ethylene glycol/water mixture. Finally, it is proven experimentally and confirmed numerically that the TPMS structure secures uniform heat extraction from the hot surface. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 2977 KB  
Article
Jeju Citrus (Citrus unshiu) Leaf Extract and Hesperidin Inhibit Small Intestinal α-Glucosidase Activities In Vitro and Postprandial Hyperglycemia in Animal Model
by Gi-Jung Kim, Yelim Jang, Kyoung-Tae Kwon, Jae-Won Kim, Seong-IL Kang, Hee-Chul Ko, Jung-Yun Lee, Emmanouil Apostolidis and Young-In Kwon
Int. J. Mol. Sci. 2024, 25(24), 13721; https://doi.org/10.3390/ijms252413721 - 23 Dec 2024
Cited by 5 | Viewed by 2056
Abstract
Citrus fruits are widely distributed in East Asia, and tea made from citrus peels has demonstrated health benefits, such as a reduction in fever, inflammation, and high blood pressure. However, citrus leaves have not been evaluated extensively for their possible health benefits. In [...] Read more.
Citrus fruits are widely distributed in East Asia, and tea made from citrus peels has demonstrated health benefits, such as a reduction in fever, inflammation, and high blood pressure. However, citrus leaves have not been evaluated extensively for their possible health benefits. In this study, the α-glucosidase-inhibitory activity of Jeju citrus hot-water (CW) and ethyl alcohol (CE) extracts, along with hesperidin (HP) (a bioactive compound in citrus leaf extracts), was investigated, and furthermore, their effect on postprandial blood glucose reduction in an animal model was determined. The hesperidin contents of CW and CE were 15.80 ± 0.18 and 39.17 ± 0.07 mg/g-extract, respectively. Hesperidin inhibited α-glucosidase (IC50, 4.39), sucrase (0.50), and CE (2.62) and demonstrated higher α-glucosidase inhibitory activity when compared to CW (4.99 mg/mL). When using an SD rat model, during sucrose and starch loading tests with CE (p < 0.01) and HP (p < 0.01), a significant postprandial blood glucose reduction effect was observed when compared to the control. The maximum blood glucose levels (Cmax) of the CE administration group decreased by about 15% (from 229.3 ± 14.5 to 194.0 ± 7.4, p < 0.01) and 11% (from 225.1 ± 13.8 to 201.1 ± 7.2 hr·mg/dL, p < 0.05) in the sucrose and starch loading tests, respectively. Our findings suggest that citrus leaf extracts standardized to hesperidin may reduce postprandial blood glucose levels through the observed inhibitory effect against sucrase, which results in delayed carbohydrate absorption. Our findings provide a biochemical rationale for further evaluating the benefits of citrus leaves. Full article
(This article belongs to the Special Issue Bioactive Phenolics and Polyphenols 2024)
Show Figures

Figure 1

17 pages, 6946 KB  
Review
Utilization and Separation of Flavonoids in the Food and Medicine Industry: Current Status and Perspectives
by Jianan Wang, Bin Wang, Chunli Chen, Jingzhou Dong and Huafeng Zhang
Separations 2024, 11(12), 349; https://doi.org/10.3390/separations11120349 - 11 Dec 2024
Cited by 1 | Viewed by 3341
Abstract
Flavonoids are the most abundant functional compounds distributed in higher plants, and are used as important dietary components for human health protection. The development of natural flavonoids, such as functional food or medicinal food, has received extensive attention in recent years. The extraction, [...] Read more.
Flavonoids are the most abundant functional compounds distributed in higher plants, and are used as important dietary components for human health protection. The development of natural flavonoids, such as functional food or medicinal food, has received extensive attention in recent years. The extraction, separation, and quantitation of flavonoids are the key techniques in the utilization of flavonoid resources. The traditional methods for flavonoid extraction and separation always used toxic solvents, which produce toxic residues and pollute the environment. Based on an analysis of the literature on flavonoid resources, the utilization, separation, quantitation, and green separation techniques of flavonoids were summarized. First, extraction by hot water or hot ethanol, assisted by pressurization and microwave-ultrasonication, then concentration and precipitation of flavonoids by cool water or cool ethanol or ethanol/water in specific ratios. This method could obtain over 85% purity in the first cycle and over 95% purity after three precipitation cycles in the separation of the most commonly used flavonoids, such as dihydromyricetin, rutin, and quercetin. In conclusion, flavonoids showed great prospects in human health protection and disease treatment. Chemical structure-based separation using the water–ethanol methods and assisted with microwave-ultrasonication, pressurization, and temperature regulation proved to be efficient and environmentally friendly, showing great potential for the flavonoid industry. These “green” processing techniques and mechanisms deserve further research. Full article
(This article belongs to the Special Issue Green Separation and Purification Technology)
Show Figures

Figure 1

36 pages, 15053 KB  
Article
Network Pharmacology, Molecular Docking, and In Vitro Insights into the Potential of Mitragyna speciosa for Alzheimer’s Disease
by Rahni Hossain, Kunwadee Noonong, Manit Nuinoon, Hideyuki J. Majima, Komgrit Eawsakul, Pradoldej Sompol, Md. Atiar Rahman and Jitbanjong Tangpong
Int. J. Mol. Sci. 2024, 25(23), 13201; https://doi.org/10.3390/ijms252313201 - 8 Dec 2024
Cited by 1 | Viewed by 3873
Abstract
Mitragyna speciosa Korth. Havil (MS) has a traditional use in relieving pain, managing hypertension, treating cough, and diarrhea, and as a morphine substitute in addiction recovery. Its potential in addressing Alzheimer’s disease (AD), a neurodegenerative condition with no effective treatments, is under investigation. [...] Read more.
Mitragyna speciosa Korth. Havil (MS) has a traditional use in relieving pain, managing hypertension, treating cough, and diarrhea, and as a morphine substitute in addiction recovery. Its potential in addressing Alzheimer’s disease (AD), a neurodegenerative condition with no effective treatments, is under investigation. This study aims to explore MS mechanisms in treating AD through network pharmacology, molecular docking, and in vitro studies. Using network pharmacology, we identified 19 MS components that may affect 60 AD-related targets. The compound–target network highlighted significant interactions among 60 nodes and 470 edges, with an average node degree of 15.7. The KEGG enrichment analysis revealed Alzheimer’s disease (hsa05010) as a relevant pathway. We connected 20 targets to tau and β-amyloid proteins through gene expression data from the AlzData database. Docking studies demonstrated high binding affinities of MS compounds like acetylursolic acid, beta-sitosterol, isomitraphylline, and speciophylline to AD-related proteins, such as AKT1, GSK3B, NFκB1, and BACE1. In vitro studies showed that ethanolic (EE), distilled water (DWE), and pressurized hot water (PHWE) extracts of MS-treated 100 μM H2O2-induced SH-SY5Y cells significantly reduced oxidative damage. This research underscores the multi-component, multi-target, and multi-pathway effects of MS on AD, providing insights for future research and potential clinical applications. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Herbal Compounds in Neuroprotection)
Show Figures

Figure 1

15 pages, 2830 KB  
Article
Characterizations of Pectin from Choerospondias axillaris Fruit Pulp: Comparison of Different Extraction Methods
by Zian Luyang, Zhibin Bu, Jijun Wu, Yuanshan Yu, Lina Cheng, Jian Peng and Yujuan Xu
Foods 2024, 13(23), 3920; https://doi.org/10.3390/foods13233920 - 4 Dec 2024
Viewed by 1094
Abstract
Generally, the extraction method has a great influence on the quality of pectin. However, there is little study on the effect of extraction method on the properties of Choerospondias axillaris fruit pulp pectin (CAPP). Accordingly, the physicochemical, structural, and functional properties of CAPP [...] Read more.
Generally, the extraction method has a great influence on the quality of pectin. However, there is little study on the effect of extraction method on the properties of Choerospondias axillaris fruit pulp pectin (CAPP). Accordingly, the physicochemical, structural, and functional properties of CAPP extracted by hot water (HWE), hydrochloric acid (HAE), ultrasound (UAE), and ultrahigh pressure (UPE) were investigated. Among these four CAPPs, UPE had the highest yield (15.79%) and GalA content (60.44%). UAE showed the most abundant side chains and RG-I region (55.12%). The lowest molecular weight (233.13 kDa) and yield (8.64%) were found in HAE. Though HWE exhibited better yield than HAE, its Mw was the highest. Different from physicochemical characteristics, the extraction method had a small effect on the structure of CAPP. The crystalline structure and functional group composition of different CAPPs were similar, while the surface structure of UAE and UPE had irregular circular holes in comparison with HWE and HAE. Furthermore, the extraction method also showed a great impact on the function. Compared with HWE and HAE, UAE and UPE presented better thermal stability and emulsifying properties. Meanwhile, HAE and UAE showed better antioxidant ability and prebiotic properties among these four CAPPs. The above results indicated that UAE showed better yield and functional properties. Hence, ultrasound extraction could be used as an effective method to extract CAPP. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

Back to TopTop