Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = presynaptic disorders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 845 KB  
Communication
Serotonergic and Cholinergic Imbalance in the Offspring of Rats Exposed to Bisphenol A and Bisphenol S During Pregnancy and Lactation: Short- and Long-Term Effects
by Keila A. Semeão, Ana Carolina Dutra-Tavares, Anderson Ribeiro-Carvalho, Jemima Isnardo-Fernandes, Letycia D. Lopes, Gabriel S. M. Souza, André L. Nunes-Freitas, Beatriz S. Silva, Claudio C. Filgueiras, Alex C. Manhães, Patricia C. Lisboa and Yael Abreu-Villaça
Int. J. Mol. Sci. 2025, 26(19), 9329; https://doi.org/10.3390/ijms26199329 - 24 Sep 2025
Viewed by 141
Abstract
Considering the increased risk of cognitive deficits and mood disorders programming associated with bisphenol exposure, we used a preclinical model to identify short- and long-term effects of early exposure to Bisphenol A (BPA) and its replacement, Bisphenol S (BPS), on the central cholinergic [...] Read more.
Considering the increased risk of cognitive deficits and mood disorders programming associated with bisphenol exposure, we used a preclinical model to identify short- and long-term effects of early exposure to Bisphenol A (BPA) and its replacement, Bisphenol S (BPS), on the central cholinergic and serotonergic systems. Wistar female and male rats born to dams exposed to BPA or BPS (both at 10 μg/kg/day or 50 μg/kg/day) during pregnancy and lactation were euthanized at weaning or adulthood. Cholinergic and serotonergic biomarkers were assessed in the frontal cortex and pons + medulla oblongata. BPA and BPS disrupted these systems, with outcomes depending on the specific bisphenol, biomarker, and time point. Effects also varied across brain regions and between sexes. The nicotinic cholinergic receptor showed more pronounced alterations than the presynaptic choline transporter. Both serotonergic receptors—5-HT1AR and 5-HT2R—were affected; however, the serotonergic transporter remained unchanged. Increased binding was the predominant effect for both systems. Maternal exposure to BPA, even at low doses, induces sex-dependent short- and long-term changes in the cholinergic and serotonergic systems of the progeny. BPS affects these same neurotransmitter systems, although leading to compound-specific outcomes. These results pose both BPA and BPS as neurotoxicants that compromise neurodevelopment and program disorders later in life. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

21 pages, 968 KB  
Review
Role of Phosphorylation of Serotonin and Norepinephrine Transporters in Animal Behavior: Relevance to Neuropsychiatric Disorders
by Lankupalle D. Jayanthi and Sammanda Ramamoorthy
Int. J. Mol. Sci. 2025, 26(16), 7713; https://doi.org/10.3390/ijms26167713 - 9 Aug 2025
Viewed by 633
Abstract
Serotonin and norepinephrine transporters (SERT and NET), located on the presynaptic terminals, regulate serotonergic (5-HT) and noradrenergic (NE) neurotransmission by rapid reuptake of released amines from the synapse. Clinically used antidepressants and highly abused psychostimulants have high affinity for these transporters. The function [...] Read more.
Serotonin and norepinephrine transporters (SERT and NET), located on the presynaptic terminals, regulate serotonergic (5-HT) and noradrenergic (NE) neurotransmission by rapid reuptake of released amines from the synapse. Clinically used antidepressants and highly abused psychostimulants have high affinity for these transporters. The function and expression of SERT and NET are altered in mood disorders and psychostimulant use. Therefore, appropriate functional regulation of SERT and NET is important in maintaining normal homeostasis of 5-HT and NE signaling. Both SERT and NET possess kinase-specific phospho-sites/motifs and exist in phosphorylated state. Several cellular protein kinases and phosphatases regulate the dynamics of phosphorylation of SERT and NET, which in turn determine the subcellular expression and trafficking, microdomain-specific protein–protein interactionsprotein-protein interactions, transporter protein degradation and ultimately transport capacity. Dysregulations in the dynamics of SERT and NET phosphorylation and their impact on functional regulation might contribute to neuropsychiatric disorders. However, the neurobiological consequences and behavioral outcome of SERT and NET phosphorylation in vivo are not fully understood. Studies using intact animal models that directly link the phosphorylation of SERT and NET to regulatory molecular mechanisms and animal behavior are just beginning to emerge. This review summarizes our understanding of the role of phosphorylation-dependent regulation of SERT and NET in animal behaviors relevant to mood and psychostimulant use disorders. Understanding of phosphorylation-dependent molecular mechanisms of SERT and NET regulation is pivotal to identifying potential candidate mechanisms as therapeutic targets in the treatment of neuropsychiatric disorders. Full article
Show Figures

Figure 1

15 pages, 2532 KB  
Article
The Utilization and Impact of Dopamine Transporter Imaging in Diagnosing Movement Disorders at a Tertiary Care Hospital in Greece
by Georgia Xiromerisiou, Iro Boura, Eleni Barmpounaki, Panagiotis Georgoulias, Efthimios Dardiotis, Cleanthe Spanaki and Varvara Valotassiou
Biomedicines 2025, 13(4), 970; https://doi.org/10.3390/biomedicines13040970 - 16 Apr 2025
Cited by 1 | Viewed by 1644
Abstract
Background/Objectives: The introduction of dopamine transporter scan (DaTscan) in clinical diagnostics has revolutionized the way clinicians approach movement disorders, offering valuable insights into presynaptic striatal dopaminergic deficits and revealing subjacent neurodegeneration. The aim of our study was to evaluate the impact of [...] Read more.
Background/Objectives: The introduction of dopamine transporter scan (DaTscan) in clinical diagnostics has revolutionized the way clinicians approach movement disorders, offering valuable insights into presynaptic striatal dopaminergic deficits and revealing subjacent neurodegeneration. The aim of our study was to evaluate the impact of DaTscan on diagnostic decisions regarding movement disorders, particularly Parkinson’s disease (PD) and atypical parkinsonian syndromes, under real-world circumstances in Greece. Methods: We retrospectively analyzed data from 360 patients who underwent a DaTscan examination between 2018 and 2023 at a tertiary hospital in Greece, including referrals from both movement disorder specialists and general neurologists, either hospital-based or in private practice. Demographics, primary referral symptoms, and both pre-scan and post-scan diagnoses were collected and analyzed. Results: The mean age in our cohort was 60 ± 13.5 years, and tremor was the leading referral symptom (40.8%). The initial diagnosis changed in nearly half of the cases (48.3%) following DaTscan. Significant shifts included transitions from an “Unclear” or “Dystonia” diagnosis to “Parkinson’s disease” in 78.1% and 72.7% of patients, respectively. However, the particularly high concordance rates between pre-scan and post-scan diagnosis for “Vascular parkinsonism” (100%), “Parkinson’s disease” (89.3%), and “Essential/Dystonic Tremor” (86%) suggest that the test may have been over-utilized or ordered beyond its intended indications. Conclusions: DaTscan markedly enhances diagnostic accuracy for movement disorders, particularly for general neurologists, addressing the complexities of overlapping clinical presentations. Continuous medical training is essential to ensure the cost-effective utilization of DaTscan in routine clinical practice; ongoing technological advancements will further refine and expand their applications, benefiting both patients and the broader medical community. Full article
(This article belongs to the Special Issue Challenges in the Diagnosis and Treatment of Parkinson’s Disease)
Show Figures

Figure 1

43 pages, 5385 KB  
Article
Hypothermia Shifts Neurodegeneration Phenotype in Neonatal Human Hypoxic–Ischemic Encephalopathy but Not in Related Piglet Models: Possible Relationship to Toxic Conformer and Intrinsically Disordered Prion-like Protein Accumulation
by Lee J. Martin, Jennifer K. Lee, Mark V. Niedzwiecki, Adriana Amrein Almira, Cameron Javdan, May W. Chen, Valerie Olberding, Stephen M. Brown, Dongseok Park, Sophie Yohannan, Hasitha Putcha, Becky Zheng, Annalise Garrido, Jordan Benderoth, Chloe Kisner, Javid Ghaemmaghami, Frances J. Northington and Panagiotis Kratimenos
Cells 2025, 14(8), 586; https://doi.org/10.3390/cells14080586 - 12 Apr 2025
Cited by 2 | Viewed by 2293
Abstract
Hypothermia (HT) is used clinically for neonatal hypoxic–ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We [...] Read more.
Hypothermia (HT) is used clinically for neonatal hypoxic–ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We tested two hypotheses: (1) HT modifies neurodegeneration type, and (2) intrinsically disordered proteins (IDPs) and encephalopathy cause toxic conformer protein (TCP) proteinopathy neonatally. We studied postmortem human neonatal HIE cases with or without therapeutic HT, neonatal piglets subjected to global hypoxia-ischemia (HI) with and without HT or combinations of HI and quinolinic acid (QA) excitotoxicity surviving for 29–96 h to 14 days, and human oligodendrocytes and neurons exposed to QA for cell models. In human and piglet encephalopathies with normothermia, the neuropathology by hematoxylin and eosin staining was similar; necrotic cell degeneration predominated. With HT, neurodegeneration morphology shifted to apoptosis-necrosis hybrid and apoptotic forms in human HIE, while neurons in HI piglets were unshifting and protected robustly. Oligomers and putative TCPs of α-synuclein (αSyn), nitrated-Syn and aggregated αSyn, misfolded/oxidized superoxide dismutase-1 (SOD1), and prion protein (PrP) were detected with highly specific antibodies by immunohistochemistry, immunofluorescence, and immunoblotting. αSyn and SOD1 TCPs were seen in human HIE brains regardless of HT treatment. αSyn and SOD1 TCPs were detected as early as 29 h after injury in piglets and QA-injured human oligodendrocytes and neurons in culture. Cell immunophenotyping by immunofluorescence showed αSyn detected with antibodies to aggregated/oligomerized protein; nitrated-Syn accumulated in neurons, sometimes appearing as focal dendritic aggregations. Co-localization also showed aberrant αSyn accumulating in presynaptic terminals. Proteinase K-resistant PrP accumulated in ischemic Purkinje cells, and their target regions had PrP-positive neuritic plaque-like pathology. Immunofluorescence revealed misfolded/oxidized SOD1 in neurons, axons, astrocytes, and oligodendrocytes. HT attenuated TCP formation in piglets. We conclude that HT differentially affects brain damage in humans and piglets. HT shifts neuronal cell death to other forms in human while blocking ischemic necrosis in piglet for sustained protection. HI and excitotoxicity also acutely induce formation of TCPs and prion-like proteins from IDPs globally throughout the brain in gray matter and white matter. HT attenuates proteinopathy in piglets but seemingly not in humans. Shifting of cell death type and aberrant toxic protein formation could explain the selective system vulnerability, connectome spreading, and persistent damage seen in neonatal HIE leading to lifelong consequences even after HT treatment. Full article
(This article belongs to the Special Issue Perinatal Brain Injury—from Pathophysiology to Therapy)
Show Figures

Figure 1

18 pages, 10158 KB  
Article
Prenatal Hyperhomocysteinemia Leads to Synaptic Dysfunction and Structural Alterations in the CA1 Hippocampus of Rats
by Tatyana Y. Postnikova, Alexandra V. Griflyuk, Natalia L. Tumanova, Nadezhda M. Dubrovskaya, Anastasia V. Mikhel, Dmitriy S. Vasilev and Aleksey V. Zaitsev
Biomolecules 2025, 15(2), 305; https://doi.org/10.3390/biom15020305 - 19 Feb 2025
Cited by 2 | Viewed by 833
Abstract
Prenatal hyperhomocysteinemia (HCY) is associated with neurodevelopmental deficits, yet its long-term impact on hippocampal synaptic function remains poorly understood. This study examines the effects of moderate maternal HCY on excitatory synaptic transmission in the CA1 region of the dorsal hippocampus in rat offspring [...] Read more.
Prenatal hyperhomocysteinemia (HCY) is associated with neurodevelopmental deficits, yet its long-term impact on hippocampal synaptic function remains poorly understood. This study examines the effects of moderate maternal HCY on excitatory synaptic transmission in the CA1 region of the dorsal hippocampus in rat offspring at juvenile (P21) and adult (P90) stages. Using field postsynaptic potential (fPSP) recordings, electron microscopy, and Western blot analysis, we observed a significant age-dependent decline in the efficiency of excitatory synaptic transmission in HCY-exposed rats. Electron microscopy revealed structural alterations, including synaptic vesicle agglutination in the stratum radiatum, suggesting impaired neurotransmitter release. Additionally, a significant reduction in pyramidal neuron density was observed in the CA1 region, although seizure susceptibility remained unchanged. Western blot analysis showed altered expression of Synapsin I, indicating presynaptic dysfunction. These findings suggest that moderate prenatal HCY leads to persistent deficits in synaptic transmission and structural integrity, potentially contributing to cognitive impairments in adulthood. Our results highlight the importance of maternal homocysteine levels in shaping hippocampal function and could offer insights into neurodevelopmental disorders associated with metabolic disturbances. Full article
(This article belongs to the Special Issue Homocysteine and H2S in Health and Disease)
Show Figures

Figure 1

20 pages, 2522 KB  
Article
Non-Invasive Assessment of Neurogenesis Dysfunction in Fetuses with Early-Onset Growth Restriction Using Fetal Neuronal Exosomes Isolating from Maternal Blood: A Pilot Study
by Vladislava Gusar, Natalia Kan, Anastasia Leonova, Vitaliy Chagovets, Victor Tyutyunnik, Zarine Khachatryan, Ekaterina Yarotskaya and Gennadiy Sukhikh
Int. J. Mol. Sci. 2025, 26(4), 1497; https://doi.org/10.3390/ijms26041497 - 11 Feb 2025
Cited by 3 | Viewed by 1224
Abstract
The vector of modern obstetrics is aimed at finding ways to predict various placenta-associated complications, including those associated with neuronal dysfunction on in fetal growth restriction (FGR). The technology of fetal neuronal exosome (FNE) isolation from the maternal bloodstream opens up unique opportunities [...] Read more.
The vector of modern obstetrics is aimed at finding ways to predict various placenta-associated complications, including those associated with neuronal dysfunction on in fetal growth restriction (FGR). The technology of fetal neuronal exosome (FNE) isolation from the maternal bloodstream opens up unique opportunities for detecting early signs of fetal brain damage. Using this method, FNEs were isolated from the blood of pregnant women with and without early-onset FGR, and the expression of a number of proteins in their composition was assessed (Western blotting). Significant changes in the level of proteins involved in neurogenesis (pro-BDNF (brain-derived neurotrophic factor), pro-NGF (nerve growth factor), TAG1/Contactin2) and presynaptic transmission (Synapsin 1, Synaptophysin) were revealed. The preliminary data on the expression of FNE proteins that perform post-translational modifications—sumoylation (SUMO 1, UBC9) and neddylation (NEDD8, UBC12)—were obtained. A relationship was established between altered protein expression and neonatal outcomes in newborns with growth restriction. Our study opens up new possibilities for non-invasive prenatal monitoring of fetal neurodevelopment disorders and possibilities of their correction in placenta-associated diseases. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

16 pages, 4740 KB  
Article
Molecular Dynamics of Apolipoprotein Genotypes APOE4 and SNARE Family Proteins and Their Impact on Alzheimer’s Disease
by Yuqing Wang, Xuefeng Liu, Pengtao Zheng, Qing Xie, Chenxiang Wang and Chaoyang Pang
Life 2025, 15(2), 223; https://doi.org/10.3390/life15020223 - 2 Feb 2025
Cited by 1 | Viewed by 1372
Abstract
Alzheimer’s disease is a chronic neurodegenerative disorder characterized by progressive memory loss and a significant impact on quality of life. The APOE ε4 allele is a major genetic contributor to AD pathogenesis, with synaptic dysfunction being a central hallmark in its pathophysiology. While [...] Read more.
Alzheimer’s disease is a chronic neurodegenerative disorder characterized by progressive memory loss and a significant impact on quality of life. The APOE ε4 allele is a major genetic contributor to AD pathogenesis, with synaptic dysfunction being a central hallmark in its pathophysiology. While the role of APOE4 in reducing SNARE protein levels has been established, the underlying molecular mechanisms of this interaction remain obscure. Our research employs molecular dynamics simulations to analyze interactions between APOE4 and APOE3 isoforms and the synaptic proteins VAMP2, SNAP25, and SYNTAXIN1, which play crucial roles in the presynaptic membrane. Our findings reveal that APOE4 significantly destabilizes the SNARE complex, suppresses its structural dynamics, and reduces hydrogen bonding, consequently partially hindering neurotransmitter release—a very likely discovery for elucidating synaptic dysfunction in Alzheimer’s disease. We identified that APOE4 exhibits a diminished affinity for the SNARE complex in comparison to APOE3. This observation suggests that APOE4 may play a role in modulating the stability of the SNARE complex, potentially impacting the progression and occurrence of Alzheimer’s disease through free energy analysis. This work highlights the perturbations in synaptic function mediated by APOE4, which may offer novel insights into the molecular underpinnings of AD. By elucidating the molecular interplay between APOE4 and the SNARE complex, our study not only enhances our comprehension of AD’s synaptic pathology but also paves the way for devising innovative therapeutic interventions, such as targeting the APOE4–SNARE complex interaction or to restore neurotransmitter release. Full article
Show Figures

Figure 1

23 pages, 1102 KB  
Review
Botulinum Toxin: A Comprehensive Review of Its Molecular Architecture and Mechanistic Action
by Raj Kumar and Bal Ram Singh
Int. J. Mol. Sci. 2025, 26(2), 777; https://doi.org/10.3390/ijms26020777 - 17 Jan 2025
Cited by 8 | Viewed by 8498
Abstract
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its [...] Read more.
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin’s structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research. BoNT’s potency stems from its unique structural features, which include domains responsible for receptor recognition, membrane binding, internalization, and enzymatic cleavage. This division of labor within the toxin’s structure allows it to specifically recognize and interact with synaptic proteins, leading to precise cleavage at targeted sites within neurons. The toxin’s mechanism of action involves a multi-step process: recognition, binding, and catalysis, ultimately blocking neurotransmitter release by cleaving proteins like SNAP-25, VAMP, and syntaxin. This disruption in synaptic vesicle fusion causes paralysis, typically in peripheral neurons. However, emerging evidence suggests that BoNT also affects the central nervous system (CNS), influencing presynaptic functions and distant neuronal systems. The evolutionary history of BoNT reveals that its neurotoxic properties likely provided a selective advantage in certain ecological contexts. Interestingly, the very features that make BoNT a potent toxin also enable its therapeutic applications, offering precision in treating neurological disorders like dystonia, spasticity, and chronic pain. In this review, we highlight the toxin’s structural, functional, and evolutionary aspects, explore its clinical uses, and identify key research gaps, such as BoNT’s central effects and its long-term cellular impact. A clear understanding of these aspects could facilitate the representation of BoNT as a unique scientific paradigm for studying neuronal processes and developing targeted therapeutic strategies. Full article
(This article belongs to the Collection Feature Papers in Molecular Toxicology)
Show Figures

Figure 1

20 pages, 4066 KB  
Article
Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex
by Jason S. Hauptman, Joseph Antonios, Gary W. Mathern, Michael S. Levine and Carlos Cepeda
Cells 2025, 14(2), 79; https://doi.org/10.3390/cells14020079 - 8 Jan 2025
Viewed by 1503
Abstract
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR [...] Read more.
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten-/-, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs). Whole-cell patch clamp recordings in ex vivo slices examined the intrinsic and synaptic membrane properties of layer II/III CPNs in normal mice treated with rapamycin for four weeks, and Pten-/- mice with and without chronic treatment with rapamycin. Compared with control mice, CPNs from Pten-/- mice demonstrated increased membrane capacitance and time constant in association with increased neuronal somatic size, reduced neuronal firing, and decreased frequency of spontaneous and miniature inhibitory postsynaptic currents, consistent with decreased pre-synaptic GABA release. Rapamycin treatment for four weeks prevented these changes in Pten-/- mice. CPNs from normal mice chronically treated with rapamycin, compared with CPNs from naïve mice, showed reduced capacitance and time constant, increased input resistance, and changes in inhibitory synaptic inputs, consistent with increased pre-synaptic GABA release. These results support the concept that Pten deletion results in significant changes in inhibitory inputs onto CPNs, and these alterations can be prevented with chronic rapamycin treatment. In addition, normal mice treated with rapamycin also display altered membrane and synaptic properties. These findings have potential implications for the treatment of neurological disorders associated with mTOR pathway dysfunction, such as epilepsy and autism. Full article
(This article belongs to the Special Issue PI3K/AKT/mTOR Signaling Network in Human Health and Diseases 2.0)
Show Figures

Figure 1

13 pages, 446 KB  
Review
Exploring the Pharmacological and Clinical Features of Lumateperone: A Promising Novel Antipsychotic
by Magdalena Sowa-Kućma, Patrycja Pańczyszyn-Trzewik and Rafał R. Jaeschke
Int. J. Mol. Sci. 2024, 25(24), 13289; https://doi.org/10.3390/ijms252413289 - 11 Dec 2024
Cited by 2 | Viewed by 5154
Abstract
Lumateperone is a novel antipsychotic recently approved for the treatment of schizophrenia. Its unique pharmacological profile includes modulation of serotonergic, dopaminergic, and glutamatergic neurotransmission, differentiating it from other second-generation antipsychotics. This paper explores the pharmacological features and clinical potential of lumateperone across neuropsychiatric [...] Read more.
Lumateperone is a novel antipsychotic recently approved for the treatment of schizophrenia. Its unique pharmacological profile includes modulation of serotonergic, dopaminergic, and glutamatergic neurotransmission, differentiating it from other second-generation antipsychotics. This paper explores the pharmacological features and clinical potential of lumateperone across neuropsychiatric conditions. A review of current literature, including pharmacokinetic and pharmacodynamic studies, was conducted. It focused on lumateperone’s mechanism of action and receptor-binding profile, and clinical trials assessing its efficacy and safety in schizophrenia and other psychiatric disorders. Lumateperone demonstrates high affinity for 5-HT2A receptors, moderate affinity for D2 receptors, and low affinity for H1 and 5-HT2C receptors. It acts as a presynaptic D2 agonist and a postsynaptic antagonist, contributing to a favorable side-effect profile with reduced extrapyramidal symptoms. Clinical trials suggest that lumateperone is effective in reducing both positive and negative symptoms of schizophrenia, with minimal metabolic and cardiovascular risks. It is also being explored as an adjunctive therapy for major depressive disorder and bipolar depression. Lumateperone presents a promising therapeutic option for schizophrenia with a novel mechanism of action and a favorable safety profile. Its potential application in other psychiatric conditions warrants further investigation, particularly in treatment-resistant populations. Full article
(This article belongs to the Special Issue Schizophrenia: From Molecular Mechanism to Therapy)
Show Figures

Figure 1

11 pages, 8256 KB  
Article
Haloperidol-Induced Catalepsy and Its Correlations with Acetylcholinesterase Activity in Different Brain Structures of Mice
by Brenda Rufino da Silva, Joyce Maria Ferreira Alexandre Lima, Marcela Bermudez Echeverry and Carlos Alberto-Silva
Neurol. Int. 2024, 16(6), 1731-1741; https://doi.org/10.3390/neurolint16060125 - 5 Dec 2024
Cited by 2 | Viewed by 2038
Abstract
Background/Objectives: Antipsychotic medicines are used to treat several psychological disorders and some symptoms caused by dementia and schizophrenia. Haloperidol (Hal) is a typical antipsychotic usually used to treat psychosis; however, its use causes motor or extrapyramidal symptoms (EPS) such as catalepsy. Hal blocks [...] Read more.
Background/Objectives: Antipsychotic medicines are used to treat several psychological disorders and some symptoms caused by dementia and schizophrenia. Haloperidol (Hal) is a typical antipsychotic usually used to treat psychosis; however, its use causes motor or extrapyramidal symptoms (EPS) such as catalepsy. Hal blocks the function of presynaptic D2 receptors on cholinergic interneurons, leading to the release of acetylcholine (ACh), which is hydrolyzed by the enzyme acetylcholinesterase (AChE). Methods: This study was designed to investigate the Hal-inhibitory effects on AChE activity in regions representative of the cholinergic system of mice and potential associations between cataleptic effects generated by Hal using therapeutic doses and their inhibitory effects on AChE. Results: The distribution of the AChE activity in the different regions of the brain followed the order striatum > hippocampus > (prefrontal cortex/hypothalamus/ cerebellum) > brainstem > septo-hippocampal system. In ex vivo assays, Hal inhibited AChE activity obtained from homogenate tissue of the striatum, hippocampus, and septo-hippocampal system in a concentration-dependent manner. The inhibitory concentration of 50% of enzyme activity (IC50) indicated that the septo-hippocampal system required a higher concentration of Hal (IC50 = 202.5 µmol·L−1) to inhibit AChE activity compared to the striatum (IC50 = 162.5 µmol·L−1) and hippocampus (IC50 = 145 µmol·L−1). In in vivo assays, male Swiss mice treated with concentrations of Hal higher than 0.1 mg·kg−1 induced cataleptic effects. Positive correlations with Spearman’s correlation were observed only between the lack of cataleptic effect and the decreased AChE activity of the hippocampus in the mice treated with 0.01 mg·kg−1 of Hal but not in the striatum and septo-hippocampal system. Conclusions: Our results suggest that Hal could increase cholinergic effects via AChE inhibition, in addition to its dopamine antagonist effect, as an alternative approach to the treatment of behavioral disturbances associated with dementia. Full article
Show Figures

Figure 1

28 pages, 5414 KB  
Article
Autism-Linked Mutations in α2δ-1 and α2δ-3 Reduce Protein Membrane Expression but Affect Neither Calcium Channels nor Trans-Synaptic Signaling
by Sabrin Haddad, Manuel Hessenberger, Cornelia Ablinger, Clarissa Eibl, Ruslan Stanika, Marta Campiglio and Gerald J. Obermair
Pharmaceuticals 2024, 17(12), 1608; https://doi.org/10.3390/ph17121608 - 28 Nov 2024
Cited by 1 | Viewed by 1663
Abstract
Background: α2δ proteins regulate membrane trafficking and biophysical properties of voltage-gated calcium channels. Moreover, they modulate axonal wiring, synapse formation, and trans-synaptic signaling. Several rare missense variants in CACNA2D1 (coding for α2δ-1) and CACNA2D3 (coding for α2δ-3) [...] Read more.
Background: α2δ proteins regulate membrane trafficking and biophysical properties of voltage-gated calcium channels. Moreover, they modulate axonal wiring, synapse formation, and trans-synaptic signaling. Several rare missense variants in CACNA2D1 (coding for α2δ-1) and CACNA2D3 (coding for α2δ-3) genes were identified in patients with autism spectrum disorder (ASD). However, the pathogenicity of these variants is not known, and the molecular mechanism by which α2δ proteins may contribute to the pathophysiology of autism is, as of today, not understood. Therefore, in this study we functionally characterized two heterozygous missense variants in α2δ-1 (p.R351T) and α2δ-3 (p.A275T), previously identified in patients with ASD. Methods: Electrophysiological recordings in transfected tsA201 cells were used to study specific channel-dependent functions of mutated α2δ proteins. Membrane expression, presynaptic targeting, and trans-synaptic signaling of mutated α2δ proteins were studied upon expression in murine cultured hippocampal neurons. Results: Homologous expression of both mutated α2δ proteins revealed a strongly reduced membrane expression and synaptic localization compared to the corresponding wild type α2δ proteins. Moreover, the A275T mutation in α2δ-3 resulted in an altered glycosylation pattern upon heterologous expression. However, neither of the mutations compromised the biophysical properties of postsynaptic L-type (CaV1.2 and CaV1.3) and presynaptic P/Q-type (CaV2.1) channels when co-expressed in tsA201 cells. Furthermore, presynaptic expression of p.R351T in the α2δ-1 splice variant lacking exon 23 did not affect trans-synaptic signaling to postsynaptic GABAA receptors. Conclusions: Our data provide evidence that the pathophysiological mechanisms of ASD-causing mutations of α2δ proteins may not involve their classical channel-dependent and trans-synaptic functions. Alternatively, these mutations may induce subtle changes in synapse formation or neuronal network function, highlighting the need for future α2δ protein-linked disease models. Full article
(This article belongs to the Special Issue Calcium Channels as Therapeutic Targets)
Show Figures

Figure 1

25 pages, 5679 KB  
Article
Malvidin-3-O-Glucoside Mitigates α-Syn and MPTP Co-Induced Oxidative Stress and Apoptosis in Human Microglial HMC3 Cells
by Rachit Sood, Sanjay, Sung-Ung Kang, Na Young Yoon and Hae-Jeung Lee
Int. J. Mol. Sci. 2024, 25(23), 12733; https://doi.org/10.3390/ijms252312733 - 27 Nov 2024
Viewed by 1783
Abstract
Parkinson’s disease (PD) is a widespread age-related neurodegenerative disorder characterized by the presence of an aggregated protein, α-synuclein (α-syn), which is encoded by the SNCA gene and localized to presynaptic terminals in a normal human brain. The α-syn aggregation is induced by the [...] Read more.
Parkinson’s disease (PD) is a widespread age-related neurodegenerative disorder characterized by the presence of an aggregated protein, α-synuclein (α-syn), which is encoded by the SNCA gene and localized to presynaptic terminals in a normal human brain. The α-syn aggregation is induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mitochondrial neurotoxin and is therefore used to mimic PD-like pathology in various in vitro and in vivo models. However, in vitro PD-like pathology using α-syn and MPTP in human microglial cells has not yet been reported. Malvidin-3-O-glucoside (M3G) is a major anthocyanin primarily responsible for pigmentation in various fruits and beverages and has been reported to possess various bioactivities. However, the neuroprotective effects of M3G in humanized in vitro PD-like pathologies have not been reported. Therefore, individual and co-treatments of α-syn and MPTP in a human microglial (HMC3) cell line were used to establish a humanized PD-like pathology model in vitro. The individual treatments were significantly less cytotoxic when compared to the α-syn and MPTP co-treatment. This study examined the neuroprotective effects of M3G by treating HMC3 cells with α-syn (8 μg/mL) and MPTP (2 mM) individually or in a co-treatment in the presence or absence of M3G (50 μM). M3G demonstrated anti-apoptotic, anti-inflammatory, and antioxidative properties against the α-syn- and MPTP-generated humanized in vitro PD-like pathology. This study determined that the cytoprotective effects of M3G are mediated by nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling. Full article
(This article belongs to the Special Issue Programmed Cell Death and Oxidative Stress: 3rd Edition)
Show Figures

Figure 1

32 pages, 2349 KB  
Review
SARS-CoV-2 Infection and Alpha-Synucleinopathies: Potential Links and Underlying Mechanisms
by Joanna Agata Motyl, Grażyna Gromadzka, Grzegorz Arkadiusz Czapski and Agata Adamczyk
Int. J. Mol. Sci. 2024, 25(22), 12079; https://doi.org/10.3390/ijms252212079 - 10 Nov 2024
Cited by 1 | Viewed by 4352
Abstract
Alpha-synuclein (α-syn) is a 140-amino-acid, intrinsically disordered, soluble protein that is abundantly present in the brain. It plays a crucial role in maintaining cellular structures and organelle functions, particularly in supporting synaptic plasticity and regulating neurotransmitter turnover. However, for reasons not yet fully [...] Read more.
Alpha-synuclein (α-syn) is a 140-amino-acid, intrinsically disordered, soluble protein that is abundantly present in the brain. It plays a crucial role in maintaining cellular structures and organelle functions, particularly in supporting synaptic plasticity and regulating neurotransmitter turnover. However, for reasons not yet fully understood, α-syn can lose its physiological role and begin to aggregate. This altered α-syn disrupts dopaminergic transmission and causes both presynaptic and postsynaptic dysfunction, ultimately leading to cell death. A group of neurodegenerative diseases known as α-synucleinopathies is characterized by the intracellular accumulation of α-syn deposits in specific neuronal and glial cells within certain brain regions. In addition to Parkinson’s disease (PD), these conditions include dementia with Lewy bodies (DLBs), multiple system atrophy (MSA), pure autonomic failure (PAF), and REM sleep behavior disorder (RBD). Given that these disorders are associated with α-syn-related neuroinflammation—and considering that SARS-CoV-2 infection has been shown to affect the nervous system, with COVID-19 patients experiencing neurological symptoms—it has been proposed that COVID-19 may contribute to neurodegeneration in PD and other α-synucleinopathies by promoting α-syn misfolding and aggregation. In this review, we focus on whether SARS-CoV-2 could act as an environmental trigger that facilitates the onset or progression of α-synucleinopathies. Specifically, we present new evidence on the potential role of SARS-CoV-2 in modulating α-syn function and discuss the causal relationship between SARS-CoV-2 infection and the development of parkinsonism-like symptoms. Full article
Show Figures

Figure 1

25 pages, 1200 KB  
Review
Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved
by Giovanna Scorrano, Ludovica Di Francesco, Armando Di Ludovico, Francesco Chiarelli and Sara Matricardi
Int. J. Mol. Sci. 2024, 25(22), 11982; https://doi.org/10.3390/ijms252211982 - 7 Nov 2024
Cited by 1 | Viewed by 5702
Abstract
Neurodevelopmental disorders (NDDs) are a group of conditions affecting brain development, with variable degrees of severity and heterogeneous clinical features. They include intellectual disability (ID), autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), often coexisting with epilepsy, extra-neurological comorbidities, and multisystemic involvement. In recent [...] Read more.
Neurodevelopmental disorders (NDDs) are a group of conditions affecting brain development, with variable degrees of severity and heterogeneous clinical features. They include intellectual disability (ID), autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), often coexisting with epilepsy, extra-neurological comorbidities, and multisystemic involvement. In recent years, next-generation sequencing (NGS) technologies allowed the identification of several gene pathogenic variants etiologically related to these disorders in a large cohort of affected children. These genes encode proteins involved in synaptic homeostasis, such as SNARE proteins, implicated in calcium-triggered pre-synaptic release of neurotransmitters, or channel subunit proteins, such as post-synaptic ionotropic glutamate receptors involved in the brain’s fast excitatory neurotransmission. In this narrative review, we dissected emerged molecular mechanisms related to NDDs and epilepsy due to defects in pre- and post-synaptic transmission. We focused on the most recently discovered SNAREopathies and AMPA-related synaptopathies. Full article
(This article belongs to the Special Issue Molecular Advances in Epilepsy and Seizures)
Show Figures

Figure 1

Back to TopTop