Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (129)

Search Parameters:
Keywords = prevention regulatory focus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2626 KiB  
Review
Gut Microbiota and Colorectal Cancer: A Balance Between Risk and Protection
by Vlad Alexandru Ionescu, Camelia Cristina Diaconu, Gina Gheorghe, Mara-Madalina Mihai, Carmen Cristina Diaconu, Marinela Bostan and Coralia Bleotu
Int. J. Mol. Sci. 2025, 26(8), 3733; https://doi.org/10.3390/ijms26083733 - 15 Apr 2025
Viewed by 362
Abstract
The gut microbiome, a complex community of microorganisms residing in the intestinal tract, plays a dual role in colorectal cancer (CRC) development, acting both as a contributing risk factor and as a protective element. This review explores the mechanisms by which gut microbiota [...] Read more.
The gut microbiome, a complex community of microorganisms residing in the intestinal tract, plays a dual role in colorectal cancer (CRC) development, acting both as a contributing risk factor and as a protective element. This review explores the mechanisms by which gut microbiota contribute to CRC, emphasizing inflammation, oxidative stress, immune evasion, and the production of genotoxins and microbial metabolites. Fusobacterium nucleatum, Escherichia coli (pks+), and Bacteroides fragilis promote tumorigenesis by inducing chronic inflammation, generating reactive oxygen species, and producing virulence factors that damage host DNA. These microorganisms can also evade the antitumor immune response by suppressing cytotoxic T cell activity and increasing regulatory T cell populations. Additionally, microbial-derived metabolites such as secondary bile acids and trimethylamine-N-oxide (TMAO) have been linked to carcinogenic processes. Conversely, protective microbiota, including Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii, contribute to intestinal homeostasis by producing short-chain fatty acids (SCFAs) like butyrate, which exhibit anti-inflammatory and anti-carcinogenic properties. These beneficial microbes enhance gut barrier integrity, modulate immune responses, and inhibit tumor cell proliferation. Understanding the dynamic interplay between pathogenic and protective microbiota is essential for developing microbiome-based interventions, such as probiotics, prebiotics, and fecal microbiota transplantation, to prevent or treat CRC. Future research should focus on identifying microbial biomarkers for early CRC detection and exploring personalized microbiome-targeted therapies. A deeper understanding of host–microbiota interactions may lead to innovative strategies for CRC management and improved patient outcomes. Full article
(This article belongs to the Special Issue Gut Microbiota in Human Disease and Health)
Show Figures

Figure 1

28 pages, 2038 KiB  
Review
Lion’s Mane Mushroom (Hericium erinaceus): A Neuroprotective Fungus with Antioxidant, Anti-Inflammatory, and Antimicrobial Potential—A Narrative Review
by Alex Graça Contato and Carlos Adam Conte-Junior
Nutrients 2025, 17(8), 1307; https://doi.org/10.3390/nu17081307 - 9 Apr 2025
Viewed by 1869
Abstract
Hericium erinaceus, commonly known as lion’s mane mushroom, has gained increasing scientific interest due to its rich composition of bioactive compounds and diverse health-promoting properties. This narrative review provides a comprehensive overview of the nutritional and therapeutic potential of H. erinaceus, [...] Read more.
Hericium erinaceus, commonly known as lion’s mane mushroom, has gained increasing scientific interest due to its rich composition of bioactive compounds and diverse health-promoting properties. This narrative review provides a comprehensive overview of the nutritional and therapeutic potential of H. erinaceus, with a particular focus on its anti-inflammatory, antioxidant, and antimicrobial activities. A structured literature search was performed using databases such as PubMed, Scopus, Science Direct, Web of Science, Science Direct, and Google Scholar. Studies published in the last two decades focusing on H. erinaceus’ bioactive compounds were included. The chemical composition of H. erinaceus includes polysaccharides, terpenoids (hericenones and erinacines), and phenolic compounds, which exhibit potent antioxidant effects by scavenging reactive oxygen species (ROS) and inducing endogenous antioxidant enzymes. Additionally, H. erinaceus shows promising antimicrobial activity against bacterial and fungal pathogens, with potential applications in combating antibiotic-resistant infections. The mushroom’s capacity to stimulate nerve growth factor (NGF) synthesis has highlighted its potential in preventing and managing neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. Advances in biotechnological methods, including optimized cultivation techniques and novel extraction methods, may further enhance the bioavailability and pharmacological effects of H. erinaceus. Despite promising findings, clinical validation remains limited. Future research should prioritize large-scale clinical trials, the standardization of extraction methods, and the elucidation of pharmacokinetics to facilitate its integration into evidence-based medicine. The potential of H. erinaceus as a functional food, nutraceutical, and adjunct therapeutic agent highlights the need for interdisciplinary collaboration between researchers, clinicians, and regulatory bodies. Full article
Show Figures

Figure 1

30 pages, 2591 KiB  
Review
Peroxiredoxin 6 in Stress Orchestration and Disease Interplay
by Jiangfeng Liao, Yusi Zhang, Jianwei Yang, Longfei Chen, Jing Zhang and Xiaochun Chen
Antioxidants 2025, 14(4), 379; https://doi.org/10.3390/antiox14040379 - 23 Mar 2025
Viewed by 340
Abstract
As a moonlighting protein with multiple enzymatic activities, peroxiredoxin 6 (PRDX6) maintains redox homeostasis, regulates phospholipid metabolism, and mediates intra- and inter-cellular signaling transduction. Its expression and activity can be regulated by diverse stressors. However, the roles and relevant mechanisms of these regulators [...] Read more.
As a moonlighting protein with multiple enzymatic activities, peroxiredoxin 6 (PRDX6) maintains redox homeostasis, regulates phospholipid metabolism, and mediates intra- and inter-cellular signaling transduction. Its expression and activity can be regulated by diverse stressors. However, the roles and relevant mechanisms of these regulators in various conditions have yet to be comprehensively reviewed. In this study, these stressors were systematically reviewed both in vivo and in vitro and classified into chemical, physical, and biological categories. We found that the regulatory effects of these stressors on PRDX6 expression were primarily mediated via key transcriptional factors (e.g., NRF2, HIF-1α, SP1, and NF-κB), micro-RNAs, and receptor- or kinase-dependent signaling pathways. Additionally, certain stressors, including reactive oxygen species, pH fluctuations, and post-translational modifications, induced the structure-based functional switches in the PRDX6 enzyme. We further reviewed the altered expression of PRDX6 under various disease conditions, with a particular focus on neuropsychiatric disorders and cancers, and proposed the concept of PRDX6-related disorders (PRD), which refers to a spectrum of diseases mediated by or associated with dysregulated PRDX6 expression. Finally, we found that an exogenous supplementation of PRDX6 protein provided preventive and therapeutic potentials for oxidative stress-related injuries in both in vivo and in vitro models. Taken together, this review underscores the critical role of PRDX6 as a cellular orchestrator in response to various stressors, highlighting its clinical potential for disease monitoring and the development of therapeutic strategies. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

24 pages, 1111 KiB  
Review
A Comprehensive Exploration of the Biological Effects of Adipose-Derived Stem Cells in the Treatment of Systemic Sclerosis
by Gabriele Storti, Riccardo Foti, Roberta Foti, Marco Palmesano, Martina Patacchiola, Dalila Incognito, Giulio Cervelli, Benedetto Longo, Maria Giovanna Scioli, Elena Fiorelli, Sonia Terriaca, Andrea Lisa, Bong Sung Kim, Augusto Orlandi and Valerio Cervelli
Cells 2025, 14(6), 458; https://doi.org/10.3390/cells14060458 - 19 Mar 2025
Viewed by 401
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vasculopathy and tissue fibrosis affecting the skin and internal organs. Genetic and environmental factors influence susceptibility, severity, and onset. Current treatments are limited and not always effective, leading researchers to investigate new approaches, [...] Read more.
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vasculopathy and tissue fibrosis affecting the skin and internal organs. Genetic and environmental factors influence susceptibility, severity, and onset. Current treatments are limited and not always effective, leading researchers to investigate new approaches, such as the use of adipose-derived mesenchymal stem cells (ADSCs) through fat grafting. This review seeks to understand how ADSCs may impact the development and progression of SSc, with a particular focus on how these cells could alter immune responses and reduce fibrosis. ADSCs have been found to affect various immune cells, including T cells, B cells, macrophages, and dendritic cells, by releasing cytokines, chemokines, and growth factors. These interactions generally suppress inflammation and promote a regulatory immune environment. Additionally, ADSCs can influence the extracellular matrix, helping to prevent fibrosis through signaling molecules like exosomes. ADSCs show promise as a treatment for SSc due to their ability to modulate the immune system and reduce fibrosis. Early clinical studies are encouraging, but more research is needed to fully understand how they work and to develop effective treatment protocols. Full article
Show Figures

Figure 1

19 pages, 1651 KiB  
Review
Nanotechnology-Based Therapies for Preventing Post-Surgical Adhesions
by Zi Yi Teo, Samyuktha Dhanalakshmi Senthilkumar and Dinesh Kumar Srinivasan
Pharmaceutics 2025, 17(3), 389; https://doi.org/10.3390/pharmaceutics17030389 - 19 Mar 2025
Viewed by 409
Abstract
Adhesions are the body’s natural response to various inflammatory causes, with surgery being the most common cause. However, the formation of postoperative adhesions can lead to significant complications, including intestinal obstruction and chronic pain. To prevent such postoperative complications associated with adhesions, developing [...] Read more.
Adhesions are the body’s natural response to various inflammatory causes, with surgery being the most common cause. However, the formation of postoperative adhesions can lead to significant complications, including intestinal obstruction and chronic pain. To prevent such postoperative complications associated with adhesions, developing effective strategies for adhesion prevention has been a major focus of research. Currently, several therapeutic models have been developed to achieve this objective. These include pharmaceuticals, inert polymers, functional biomaterials, and nanotherapeutics. Among the various strategies developed, nanotherapeutics, though still in its early stages, has shown promise as a potential approach. Other therapeutic models are associated with adverse side effects and complications related to their application. On the other hand, nanotherapeutic models are able to overcome the limitations of the other strategies and provide their own set of unique advantages. Hence, nanotherapeutics represents a promising area for further research. Further efforts should be made to refine existing nanotherapeutics for clinical application while also addressing associated safety and ethical concerns related to their use in medical practice. Therefore, this article aims to review the various nanotherapeutic approaches developed for the prevention of postoperative adhesions, explore their regulatory pathways, and discuss associated safety and ethical concerns. Full article
(This article belongs to the Special Issue Recent Advances in Nanotechnology Therapeutics)
Show Figures

Graphical abstract

22 pages, 259 KiB  
Article
Do Regulatory Pressures and Stakeholder Expectations Drive CSR Adherence in the Chemical Industry?
by Khalid Mujahid Alharbi, Amina Elshamly and Ibrahim G. Mahgoub
Sustainability 2025, 17(5), 2128; https://doi.org/10.3390/su17052128 - 1 Mar 2025
Cited by 1 | Viewed by 712
Abstract
The chemical industry plays a pivotal role in the health of the world’s economies despite facing significant criticism for its contribution to environmental degradation, particularly in pollution management and sustainable development. This paper investigates the key factors motivating executives in chemical companies to [...] Read more.
The chemical industry plays a pivotal role in the health of the world’s economies despite facing significant criticism for its contribution to environmental degradation, particularly in pollution management and sustainable development. This paper investigates the key factors motivating executives in chemical companies to engage in corporate social responsibility (CSR), including regulatory pressure, profit maximization, stakeholder demands, and environmental concerns. Data were collected through a cross-sectional survey of over 400 executives worldwide, and structural equation modelling (SEM) was employed to test four hypotheses examining the relationships among various variables. The findings indicate that regulatory pressure positively influences CSR adoption, although a profit-maximization orientation negatively moderates this relationship. This suggests that companies with an excessive focus on profits are less likely to engage in meaningful CSR activities beyond mere compliance. Additionally, unmet stakeholder needs drive environmental commitment, highlighting that managers and executives are responsive to the environmental expectations of consumers, society, and investors. In turn, environmental commitment strongly correlates with implementing pollution-prevention mechanisms, emphasizing the role of intrinsic motivations in promoting authentic CSR practices. This research expands on prior studies of CSR in high-impact industries by proposing a more integrated theoretical framework, drawing from Institutional Theory, Stakeholder Theory, and the Theory of Planned Behavior. Practical implications underscore the value of incentives that encourage firms to make substantial CSR commitments without jeopardizing profitability. Limitations of the study include its cross-sectional design, which calls for longitudinal research to understand causation better. Future studies could also explore additional industries to produce findings applicable across various sectors. Full article
29 pages, 15345 KiB  
Article
An Explanation of the Differences in Grassland NDVI Change in the Eastern Route of the China–Mongolia–Russia Economic Corridor
by Zhengfei Wang, Jiayue Wang, Wenlong Wang, Chao Zhang, Urtnasan Mandakh, Danzanchadav Ganbat and Nyamkhuu Myanganbuu
Remote Sens. 2025, 17(5), 867; https://doi.org/10.3390/rs17050867 - 28 Feb 2025
Cited by 1 | Viewed by 456
Abstract
This study analyzed the spatiotemporal changes in grassland NDVI from 2000 to 2020 in the eastern route of the China–Mongolia–Russia Economic Corridor, a region with frequent ecological–economic interactions, and explained the main driving factors, influencing patterns, and degrees of grassland NDVI changes in [...] Read more.
This study analyzed the spatiotemporal changes in grassland NDVI from 2000 to 2020 in the eastern route of the China–Mongolia–Russia Economic Corridor, a region with frequent ecological–economic interactions, and explained the main driving factors, influencing patterns, and degrees of grassland NDVI changes in different regions. Based on MODIS NDVI data, the study employs emerging spatiotemporal hotspot analysis, Maximum Relevance Minimum Redundancy (mRMR) feature selection, and Gaussian Process Regression (GPR) to reveal the spatiotemporal variation characteristics of grassland NDVI, while identifying long-term stable trends, and to select the most relevant and non-redundant factors to analyze the main driving factors of grassland NDVI change. Partial dependence plots were used to visualize the response and sensitivity of grassland NDVI to various factors. The results show the following: (1) From 2000 to 2020, the NDVI of grassland in the study area showed an overall upward trend, from 0.61 to 0.65, with significant improvement observed in northeastern China and northeastern Russia. (2) Spatiotemporal hotspot analysis indicates that 51% of the area is classified as persistent hotspots for grassland NDVI, mainly distributed in Russia, whereas 12% of the area is identified as persistent cold spots, predominantly located in Mongolia. (3) The analysis of key drivers reveals that precipitation and land surface temperature are the dominant climatic factors shaping grassland NDVI trends, while the effects of soil conditions and human activity vary regionally. In China, NDVI is primarily driven by land surface temperature (LST), GDP, and population density; in Mongolia, precipitation, LST, and GDP exert the strongest influence; whereas in Russia, livestock density and soil organic carbon play the most significant roles. (4) For the whole study area, in persistent cold spot areas of grassland NDVI, the negative effects of rising land surface temperature were most pronounced, reducing NDVI by 36% in the 25–40 °C range. The positive effects of precipitation on NDVI were most evident under low to moderate precipitation conditions, with the effects diminishing as precipitation increased. Soil moisture and soil pH have stronger effects in persistent hotspot areas. Regarding human activity factors, the livestock factor in Mongolia shows an inverted U-shaped relationship with NDVI, and increasing population density contributed to grassland degradation in persistent cold spots. Proper grazing intensity regulation strategy is crucial in these areas with inappropriate grazing intensity, while social and economic activities promoted vegetation cover improvement in persistent hotspots in China and Russia. These findings provide practical insights to guide grassland ecosystem restoration and ensure sustainable development along the eastern route of the China–Mongolia–Russia Economic Corridor. China should prioritize ecological compensation policies. Mongolia needs to integrate traditional nomadic grazing with modern practices. Russia should focus on strengthening regulatory frameworks to prevent the over-exploitation of grasslands. Especially for persistent cold spot areas of grassland NDVI in Mongolia and Russia that are prone to grassland degradation, attention should be paid to the significant negative impact of livestock on grassland. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

24 pages, 5737 KiB  
Article
Systematic Cause Analysis of an Explosion Accident During the Packaging of Dangerous Goods
by Juwon Park, Keunwon Lee, Mimi Min, Chuntak Phark and Seungho Jung
Processes 2025, 13(3), 687; https://doi.org/10.3390/pr13030687 - 27 Feb 2025
Viewed by 510
Abstract
Chemical plants inherently handle and operate with a wide range of hazardous materials, making them more prone to accidents compared to other industrial sectors. Consequently, safety management in chemical plants tends to be systematically organized based on elements of process safety management (PSM) [...] Read more.
Chemical plants inherently handle and operate with a wide range of hazardous materials, making them more prone to accidents compared to other industrial sectors. Consequently, safety management in chemical plants tends to be systematically organized based on elements of process safety management (PSM) systems. In June 2023, South Korea’s Ministry of Employment and Labor released the Serious Injury and Fatality (SIF) report, which summarized 4432 major accident cases that occurred over six years (2016–2021), including 1834 cases in manufacturing and related industries and 2574 cases in construction. The report provided an overview of these accidents, their causes, and measures to prevent their recurrence, with a focus on fatalities and severe injuries associated with critical losses across different industries. This study examined 16 accident cases that occurred at PSM-regulated facilities, which are managed on the basis of a systematic safety framework established by regulatory requirements. Among these, particular attention was paid to an explosion accident in the organic catalyst packaging process at a facility with no prior accident history and exhibiting unique accident characteristics. A systemic root cause analysis was conducted using the barrier-based systemic cause analysis technique (BSCAT) and the system theoretic accident model and process (STAMP-CAST) methodologies. The systemic analysis highlighted the critical importance of clearly identifying materials or factors that may inadvertently mix during the process design or mass production phases and evaluating whether such interactions could lead to accidents during the hazard assessment stage. Beyond incorporating the risk mitigation measures identified in the process design and procedural development phases without omissions, it is essential to periodically conduct “worker-centered risk assessments”. These assessments help evaluate the potential for accidents resulting from human errors, such as workers’ non-compliance with established procedures, which is a key aspect of preventing chemical accidents. Although this study did not include an evaluation of the impacts of high pressures or high temperatures on workers near chemical accident sites—hence, no specific recommendations regarding safe working distances are made—the findings are expected to contribute to the development of preventive measures for chemical accidents in smaller-scale plants where workers directly manage and operate processes. Full article
(This article belongs to the Special Issue Technological Processes for Chemical and Related Industries)
Show Figures

Figure 1

15 pages, 450 KiB  
Article
The Trickle-Down Effects of Supervisor Regulatory Foci on Newcomer Task Performance
by Junzhe Zhao, Wenfan Chao, Hang Zhang, Guoxiang Zhao and Minghui Wang
Behav. Sci. 2025, 15(2), 188; https://doi.org/10.3390/bs15020188 - 11 Feb 2025
Viewed by 540
Abstract
Supervisors’ chronic regulatory foci significantly influence their leadership styles and behaviors, with prevention focus and promotion focus exerting distinct impacts on their actions and outcomes. Drawing on regulatory focus theory, we propose a conceptual model that links supervisor promotion focus and supervisor prevention [...] Read more.
Supervisors’ chronic regulatory foci significantly influence their leadership styles and behaviors, with prevention focus and promotion focus exerting distinct impacts on their actions and outcomes. Drawing on regulatory focus theory, we propose a conceptual model that links supervisor promotion focus and supervisor prevention focus to new employee task performance through the mediating role of supervisor developmental feedback. We conducted a matched questionnaire survey involving 253 supervisor–new employee pairs at two time points. The findings indicated that supervisor promotion focus was positively associated with supervisor developmental feedback, whereas supervisor prevention focus was negatively associated with supervisor developmental feedback. Furthermore, supervisor developmental feedback enhanced new employees’ task performance. This study elucidates the trickle-down effects of supervisor promotion focus and supervisor prevention focus and offers practical implications for organizations on effectively managing supervisors with varying regulatory foci. Full article
Show Figures

Figure 1

12 pages, 1169 KiB  
Perspective
Exercising4Cognition: Can Short Bouts of Aerobic Exercise Improve Cognitive Performance in Healthy Adults for Primary Health Prevention? Previous Findings and Suggestions for the Future
by Cornelia Herbert
Healthcare 2025, 13(4), 368; https://doi.org/10.3390/healthcare13040368 - 10 Feb 2025
Viewed by 1114
Abstract
Background: Regular physical activity (PA) and regular exercise (RE) are essential for an active and healthy lifestyle. Additionally, the short-term effects have been investigated to understand how an acute bout of exercise impacts cognitive processing, an important aspect of mental health and well-being. [...] Read more.
Background: Regular physical activity (PA) and regular exercise (RE) are essential for an active and healthy lifestyle. Additionally, the short-term effects have been investigated to understand how an acute bout of exercise impacts cognitive processing, an important aspect of mental health and well-being. Previous studies have confirmed positive effects. However, several exercise factors and human factors can influence this relationship. Aim/Methods/Results: This perspective paper has three main objectives: firstly, discussing the exercise and human factors that influence exercise-cognition effects significantly across studies according to previous reviews and meta-analytic studies and how this influence could be explained theoretically; secondly, highlighting important knowledge gaps and research questions for future research; and thirdly, discussing what conclusion can be drawn for cognitive health promotion. A particular focus is given to the effects of acute bouts of aerobic exercise and healthy adults as an important target group for primary health prevention. Conclusions: The summary of previous findings shows that the effects of an acute bout of aerobic exercise on cognitive performance in healthy adults depend on (a) exercise factors such as the duration and intensity of the acute bout of exercise, (b) cognitive factors such as the type of cognitive task and domain of cognitive functions, and (c) individual factors such as the physical activity of the individuals. Still, open questions concern the ideal duration, intensity and timing of the acute bout of exercise. In particular, more research is needed to determine whether and how aerobic exercises of short duration and an intensity above and especially below moderate intensity improve cognitive functions in healthy adults. Methodologically, these factors should be addressed by multimethod designs that consider intra- and interindividual comparisons and different response levels (self-report, behavioral, psychophysiological). In conclusion, answering these questions could pave the way for recommendations on how healthcare professionals should prescribe brief aerobic exercise as a cognitive health booster in healthy young adults. To this end, concepts of extended arousal and neurovisceral integration are useful framework models to include individual factors, like self-regulatory abilities of the individual and how these influence exercise-cognition interactions and exercise motivation during, pre-to-post and across testing sessions. Full article
Show Figures

Figure 1

31 pages, 1453 KiB  
Review
Innovative Drugs First Implemented in Type 2 Diabetes Mellitus and Obesity and Their Effects on Metabolic Dysfunction-Associated Steatohepatitis (MASH)-Related Fibrosis and Cirrhosis
by Georgiana-Diana Cazac-Panaite, Cristina-Mihaela Lăcătușu, Elena-Daniela Grigorescu, Adina-Bianca Foșălău, Alina Onofriescu and Bogdan-Mircea Mihai
J. Clin. Med. 2025, 14(4), 1042; https://doi.org/10.3390/jcm14041042 - 7 Feb 2025
Viewed by 1526
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a progressive liver disease frequently associated with metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity, has the potential to progress symptomatically to liver cirrhosis and, in some cases, hepatocellular carcinoma. Hence, an urgent need [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD), a progressive liver disease frequently associated with metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity, has the potential to progress symptomatically to liver cirrhosis and, in some cases, hepatocellular carcinoma. Hence, an urgent need arises to identify and approve new therapeutic options to improve patient outcomes. Research efforts have focused on either developing dedicated molecules or repurposing drugs already approved for other conditions, such as metabolic diseases. Among the latter, antidiabetic and anti-obesity agents have received the most extensive attention, with pivotal trial results anticipated shortly. However, the primary focus underlying successful regulatory approvals is demonstrating a substantial efficacy in improving liver fibrosis and preventing or ameliorating cirrhosis, the key advanced outcomes within MASLD progression. Besides liver steatosis, the ideal therapeutic candidate should reduce inflammation and fibrosis effectively. Although some agents have shown promise in lowering MASLD-related parameters, evidence of their impact on fibrosis and cirrhosis remains limited. This review aims to evaluate whether antidiabetic and anti-obesity drugs can be safely and effectively used in MASLD-related advanced fibrosis or cirrhosis in patients with T2DM. Our paper discusses the molecules closest to regulatory approval and the expectation that they can address the unmet needs of this increasingly prevalent disease. Full article
(This article belongs to the Special Issue Updates in Liver Cirrhosis)
Show Figures

Figure 1

25 pages, 2214 KiB  
Review
The mTOR Signaling Pathway: Key Regulator and Therapeutic Target for Heart Disease
by Jieyu Wang, Yuxuan Huang, Zhaoxia Wang, Jing Liu, Zhijian Liu, Jinfeng Yang and Zuping He
Biomedicines 2025, 13(2), 397; https://doi.org/10.3390/biomedicines13020397 - 7 Feb 2025
Viewed by 1477
Abstract
Heart disease, including myocardial infarction, heart failure, cardiac hypertrophy, and cardiomyopathy, remains a leading cause of mortality worldwide. The mammalian target of rapamycin (mTOR) is a centrally regulated kinase that governs key cellular processes, including growth, proliferation, metabolism, and survival. Notably, mTOR plays [...] Read more.
Heart disease, including myocardial infarction, heart failure, cardiac hypertrophy, and cardiomyopathy, remains a leading cause of mortality worldwide. The mammalian target of rapamycin (mTOR) is a centrally regulated kinase that governs key cellular processes, including growth, proliferation, metabolism, and survival. Notably, mTOR plays a pivotal role in cardiovascular health and disease, particularly in the onset and progression of cardiac conditions. In this review, we discuss mTOR’s structure and function as well as the regulatory mechanisms of its associated signaling pathways. We focus on the molecular mechanisms by which mTOR signaling regulates cardiac diseases and the potential of mTOR inhibitors and related regulatory drugs in preventing these conditions. We conclude that the mTOR signaling pathway is a promising therapeutic target for heart disease. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 2136 KiB  
Review
Exploring the Therapeutic Potential of Mitragynine and Corynoxeine: Kratom-Derived Indole and Oxindole Alkaloids for Pain Management
by Ahmed S. Alford, Hope L. Moreno, Menny M. Benjamin, Cody F. Dickinson and Mark T. Hamann
Pharmaceuticals 2025, 18(2), 222; https://doi.org/10.3390/ph18020222 - 6 Feb 2025
Cited by 1 | Viewed by 1793
Abstract
The search for effective pain management solutions remains a critical challenge, especially amidst growing concerns over the use of conventional opioids. In the US, opioid-related mortality rates have surged to as many as 80 deaths per 100,000 people in some states, with an [...] Read more.
The search for effective pain management solutions remains a critical challenge, especially amidst growing concerns over the use of conventional opioids. In the US, opioid-related mortality rates have surged to as many as 80 deaths per 100,000 people in some states, with an estimated economic burden of USD 1.5 trillion annually—exceeding the gross domestic product (GDP) of most US industrial sectors. A remarkable breakthrough lies in the discovery that indole and oxindole alkaloids, produced by several genera within the plant Tribe Naucleeae, act on opioid receptors without activating the beta-arrestin-2 pathway, the primary driver of respiratory depression and overdose deaths. This systematic review explores the pharmacological properties, mechanisms of action, dosing considerations, interactions, and long-term effects of mitragynine and corynoxeine, alkaloids from the Southeast Asian plant Mitragyna speciosa (kratom) and others in the Tribe Naucleeae. Mitragynine, a partial opioid receptor agonist, and corynoxeine, known for its anti-inflammatory and neuroprotective effects, demonstrate significant therapeutic potential for managing diverse pain types—including neuropathic, inflammatory, nociceptive, visceral, and central pain syndromes—with a focus on cancer pain. Unlike traditional opioids, these compounds do not recruit beta-arrestin-2, avoiding key adverse effects such as respiratory depression, severe constipation, and rapid tolerance development. Their distinct pharmacological profiles make them innovative candidates for safer, non-lethal pain relief. However, challenges persist, including the unregulated nature of kratom products, inconsistencies in potency due to crude extract variability, potential for misuse, and adverse drug interactions. Addressing these issues requires establishing standardized quality control protocols, such as Good Manufacturing Practices (GMP), to ensure consistent potency and purity. Clear labeling requirements with dosage guidelines and warnings should be mandated to ensure safe use and prevent misuse. Furthermore, the implementation of regulatory oversight to monitor product quality and enforce compliance is essential. This review emphasizes the urgency of focused research to optimize dosing regimens, characterize the pharmacodynamic profiles of these alkaloids, and evaluate long-term safety. By addressing these gaps, the mitragynine- and corynoxeine-related drug classes can transition from promising plant-derived molecules to validated pharmacotherapeutic agents, potentially revolutionizing the field of pain management. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

18 pages, 1070 KiB  
Review
Edible Coatings for Ready-to-Eat Products: Critical Review of Recent Studies, Sustainable Packaging Perspectives, Challenges and Emerging Trends
by Ina Bremenkamp and Maria José Sousa Gallagher
Polymers 2025, 17(3), 376; https://doi.org/10.3390/polym17030376 - 30 Jan 2025
Cited by 2 | Viewed by 1287
Abstract
If edible coatings are proven to control deterioration reactions by preventing chemical reactions, why aren’t they more widely used in industry applications, especially in the ready-to-eat food sector? This sector is a growing and emerging market and is interesting to diverse consumer groups. [...] Read more.
If edible coatings are proven to control deterioration reactions by preventing chemical reactions, why aren’t they more widely used in industry applications, especially in the ready-to-eat food sector? This sector is a growing and emerging market and is interesting to diverse consumer groups. The potential of edible coatings as an innovative approach for more eco-friendly packaging systems should be further investigated. This article reviews the state-of-the-art developments of edible coatings for chilled RTE (ready-to-eat) food products as an area of growing interest and innovation, with a focus on sustainability, functionality, and costs. It discusses challenges associated with the use of edible coatings as eco-friendly packaging system in RTE food sector, including compatibility with food products, processing, shelf-life, storage conditions, cost, and regulatory requirements, and emerging trends, including biodegradable and eco-friendly coatings, shelf-life extension, active and intelligent coatings, and customization and personalization opportunities. Overall, while edible coatings offer many potential benefits in the RTE food sector, there are several challenges that must be addressed to ensure their successful implementation. Research and development efforts are needed to optimize the performance and stability of coatings while ensuring compliance with regulatory requirements and addressing cost concerns. The potential of edible coatings as eco-friendly packaging system should be further studied to highlight the full potential of edible coatings. Full article
Show Figures

Graphical abstract

23 pages, 1137 KiB  
Review
Exploring Future Pandemic Preparedness Through the Development of Preventive Vaccine Platforms and the Key Roles of International Organizations in a Global Health Crisis
by Jihee Jeon and Eunyoung Kim
Vaccines 2025, 13(1), 56; https://doi.org/10.3390/vaccines13010056 - 10 Jan 2025
Cited by 1 | Viewed by 2076
Abstract
Background: The emergence of more than 40 new infectious diseases since the 1980s has emerged as a serious global health concern, many of which are zoonotic. In response, many international organizations, including the US Centers for Disease Control and Prevention (CDC), the World [...] Read more.
Background: The emergence of more than 40 new infectious diseases since the 1980s has emerged as a serious global health concern, many of which are zoonotic. In response, many international organizations, including the US Centers for Disease Control and Prevention (CDC), the World Health Organization (WHO), and the European Center for Disease Prevention and Control (ECDC), have developed strategies to combat these health threats. The need for rapid vaccine development has been highlighted by Coronavirus disease 2019 (COVID-19), and mRNA technology has shown promise as a platform. While the acceleration of vaccine development has been successful, concerns have been raised about the technical limits, safety, supply, and distribution of vaccines. Objective: This study analyzes the status of vaccine platform development in global pandemics and explores ways to respond to future pandemic crises through an overview of the roles of international organizations and their support programs. It examines the key roles and partnerships of international organizations such as the World Health Organization (WHO), vaccine research and development expertise of the Coalition for Epidemic Preparedness Innovations (CEPI), control of the vaccine supply chain and distribution by the Global Alliance for Vaccines and Immunization (GAVI), and technology transfer capabilities of the International Vaccine Institute (IVI) in supporting the development, production, and supply of vaccine platform technologies for pandemic priority diseases announced by WHO and CEPI and analyzes their vaccine support programs and policies to identify effective ways to rapidly respond to future pandemics caused by emerging infectious diseases. Methods: This study focused on vaccine platform technology and the key roles of international organizations in the pandemic crisis. Literature data on vaccine platform development was collected, compared, and analyzed through national and international literature data search sites, referring to articles, journals, research reports, publications, books, guidelines, clinical trial data, and related reports. In addition, the websites of international vaccine support organizations, such as WHO, CEPI, GAVI, and IVI, were used to examine vaccine support projects, initiatives, and collaborations through literature reviews and case study methods. Results: The COVID-19 pandemic brought focus on the necessity for developing innovative vaccine platforms. Despite initial concerns, the swift integration of cutting-edge development technologies, mass production capabilities, and global collaboration have made messenger RNA (mRNA) vaccines a game-changing technology. As a result of the successful application of novel vaccine platforms, it is important to address the remaining challenges, including technical limits, safety concerns, and equitable global distribution. To achieve this, it is essential to review the regulatory, policy, and support initiatives that have been implemented in response to the COVID-19 pandemic, with particular emphasis on the key stages of vaccine development, production, and distribution, to prepare for future pandemics. An analysis of the status of vaccine development for priority pandemic diseases implies the need for balanced vaccine platform development. Also, international organizations such as WHO, CEPI, GAVI, and IVI play key roles in pandemic preparedness and the development and distribution of preventive vaccines. These organizations collaborated to improve accessibility to vaccines, strengthen the global response to infectious diseases, and address global health issues. The COVID-19 pandemic response demonstrates how the synergistic collaboration of WHO’s standardized guidelines, CEPI’s vaccine research and development expertise, GAVI’s control of the vaccine supply chain and distribution, and IVI’s technology transfer capabilities can be united to create a successful process for vaccine development and distribution. Conclusions: In preparation for future pandemics, a balanced vaccine platform development is essential. It should include a balanced investment in both novel technologies such as mRNA and viral vector-based vaccines and traditional platforms. The goal is to develop vaccine platform technologies that can be applied to emerging infectious diseases efficiently and increase manufacturing and distribution capabilities for future pandemics. Moreover, international vaccine support organizations should play key roles in setting the direction of global networking and preparing for international vaccine support programs to address the limitations of previous pandemic responses. As a result, by transforming future pandemic threats from unpredictable crises to surmountable challenges, it is expected to strengthen global health systems and reduce the social and economic burden of emerging infectious diseases in the long term. Full article
Show Figures

Figure 1

Back to TopTop