Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = push–pull power converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9574 KiB  
Review
Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review
by Yan Tong, Issam Salhi, Qin Wang, Gang Lu and Shengyu Wu
Energies 2025, 18(9), 2312; https://doi.org/10.3390/en18092312 - 1 May 2025
Viewed by 671
Abstract
Electric Vehicles (EV) significantly contribute to reducing carbon emissions and promoting sustainable transportation. Among EV technologies, hybrid energy storage systems (HESS), which combine fuel cells, power batteries, and supercapacitors, have been widely adopted to enhance energy density, power density, and system efficiency. Bidirectional [...] Read more.
Electric Vehicles (EV) significantly contribute to reducing carbon emissions and promoting sustainable transportation. Among EV technologies, hybrid energy storage systems (HESS), which combine fuel cells, power batteries, and supercapacitors, have been widely adopted to enhance energy density, power density, and system efficiency. Bidirectional DC-DC converters are pivotal in HESS, enabling efficient energy management, voltage matching, and bidirectional energy flow between storage devices and vehicle systems. This paper provides a comprehensive review of bidirectional DC-DC converter topologies for EV applications, which focuses on both non-isolated and isolated designs. Non-isolated topologies, such as Buck-Boost, Ćuk, and interleaved converters, are featured for their simplicity, efficiency, and compactness. Isolated topologies, such as dual active bridge (DAB) and push-pull converters, are featured for their high voltage gain and electrical isolation. An evaluation framework is proposed, incorporating key performance metrics such as voltage stress, current stress, power density, and switching frequency. The results highlight the strengths and limitations of various converter topologies, offering insights into their optimization for EV applications. Future research directions include integrating wide-bandgap devices, advanced control strategies, and novel topologies to address challenges such as wide voltage gain, high efficiency, and compact design. This work underscores the critical role of bidirectional DC-DC converters in advancing energy-efficient and sustainable EV technologies. Full article
Show Figures

Figure 1

29 pages, 9137 KiB  
Article
Non-Ideal Push–Pull Converter Model: Trade-Off between Complexity and Practical Feasibility in Terms of Topology, Power and Operating Frequency
by Francisco José Vivas, José Manuel Andújar and Francisca Segura
Appl. Sci. 2024, 14(14), 6224; https://doi.org/10.3390/app14146224 - 17 Jul 2024
Viewed by 1577
Abstract
Power converters are the basic elements of any power electronics system in many areas and applications. Among them, the push–pull converter topology is one of the most widespread due to its high efficiency, versatility, galvanic isolation, reduced number of switching devices and the [...] Read more.
Power converters are the basic elements of any power electronics system in many areas and applications. Among them, the push–pull converter topology is one of the most widespread due to its high efficiency, versatility, galvanic isolation, reduced number of switching devices and the possibility of implementing high conversion ratios with respect to non-isolated topologies. Optimal design and control requires very accurate models that consider all the non-idealities associated with the actual converter. However, this leads to the use of high-order models, which are impractical for the design of model-based controllers in real-time applications. To obtain a trade-off model that combines the criteria of simplicity and accuracy, it is appropriate to assess whether it is necessary to consider all non-idealities to accurately model the dynamic response of the converter. For this purpose, this paper proposes a methodology based on a sensitivity analysis that allows quantifying the impact of each non-ideality on the converter behaviour response as a function of the converter topology, power and frequency. As a result of the study, practical models that combine the trade-off between precision and simplicity are obtained. The behaviour of the simplified models for each topology was evaluated and validated by simulation against the most complete and accurate non-ideal model found in the literature. The results have been excellent, with an error rate of less than 5% in all cases. Full article
Show Figures

Figure 1

12 pages, 3769 KiB  
Article
A Fast Transient Response Capacitor-Less LDO with Transient Enhancement Technology
by Chufan Chen, Mengyuan Sun, Leiyi Wang, Teng Huang and Min Xu
Micromachines 2024, 15(3), 299; https://doi.org/10.3390/mi15030299 - 22 Feb 2024
Cited by 7 | Viewed by 4177
Abstract
This paper proposes a fast transient load response capacitor-less low-dropout regulator (CL-LDO) for digital analog hybrid circuits in the 180 nm process, capable of converting input voltages from 1.2 V to 1.8 V into an output voltage of 1 V. The design incorporates [...] Read more.
This paper proposes a fast transient load response capacitor-less low-dropout regulator (CL-LDO) for digital analog hybrid circuits in the 180 nm process, capable of converting input voltages from 1.2 V to 1.8 V into an output voltage of 1 V. The design incorporates a rail-to-rail input and push–pull output (RIPO) amplifier to enhance the gain while satisfying the requirement for low power consumption. A super source follower buffer (SSFB) with internal stability is introduced to ensure loop stability. The proposed structure ensures the steady-state performance of the LDO without an on-chip capacitor. The auxiliary circuit, or transient enhancement circuit, does not compromise the steady-state stability and effectively enhances the transient performance during sudden load current steps. The proposed LDO consumes a quiescent current of 47 µA and achieves 25 µV/mA load regulation with a load current ranging from 0 to 20 mA. The simulation results demonstrate that a settling time of 0.2 µs is achieved for load steps ranging from 0 mA to 20 mA, while a settling time of 0.5 µs is attained for load steps ranging from 20 mA to 0 mA, with an edge time of 0.1 µs. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies)
Show Figures

Figure 1

21 pages, 2500 KiB  
Article
Generalized, Complete and Accurate Modeling of Non-Ideal Push–Pull Converters for Power System Analysis and Control
by Francisco José Vivas, Francisca Segura and José Manuel Andújar
Appl. Sci. 2023, 13(19), 10982; https://doi.org/10.3390/app131910982 - 5 Oct 2023
Cited by 1 | Viewed by 1515
Abstract
Power converters are a basic element for the control and design of any power electronic system. Among the many available topologies, the push–pull converter is widely used due to its versatility, safety and efficiency. For its correct analysis, sizing, simulation and control, models [...] Read more.
Power converters are a basic element for the control and design of any power electronic system. Among the many available topologies, the push–pull converter is widely used due to its versatility, safety and efficiency. For its correct analysis, sizing, simulation and control, models that meet the characteristics of generality, accuracy and simplicity are required, especially if its control is to be optimized by means of some analytical technique. This requires models that consider the practical non-idealities intrinsic to the converter, as well as being intuitive and easy to handle analytically in a control loop. In general, the models reviewed in the scientific literature adopt simplifications in their definition that are detrimental to their accuracy. In response to the posed problem, this work presents a generalized, complete, accurate and versatile model of real (non-ideal) push–pull converters, ideal for the analysis, simulation, and control of power systems. Following the premise of general and complete converters, the proposed model includes all the practical non-idealities of the converter elements, and it is accurate because it faithfully reflects its dynamics. Furthermore, the model is versatile, as its state space formulation allows for its easy adaptability to the converter operating conditions (voltage, current and temperature) for each sampling time. Also, the model is excellent for use in model-based control techniques, as well as for making very accurate simulators. The behavior of the developed model has been contrasted with a real push–pull converter, as well as with reference models present in the scientific literature for both dynamic and steady-state response tests. The results show excellent performance in all the studied cases, with behavior faithful to the real converter and with relative errors that are much lower than those obtained for the reference models. It follows that the model behaves like a digital twin of a real push–pull converter. Full article
(This article belongs to the Special Issue Power Converters and Control Techniques)
Show Figures

Figure 1

42 pages, 958 KiB  
Review
Topologies and Design Characteristics of Isolated High Step-Up DC–DC Converters for Photovoltaic Systems
by Hazem Meshael, Ahmad Elkhateb and Robert Best
Electronics 2023, 12(18), 3913; https://doi.org/10.3390/electronics12183913 - 16 Sep 2023
Cited by 14 | Viewed by 7184
Abstract
This paper aims to investigate the state-of-the-art isolated high-step-up DC–DC topologies developed for photovoltaic (PV) systems. This study categorises the topologies into transformer-based and coupled inductor-based converters, as well as compares them in terms of various parameters such as component count, cost, voltage [...] Read more.
This paper aims to investigate the state-of-the-art isolated high-step-up DC–DC topologies developed for photovoltaic (PV) systems. This study categorises the topologies into transformer-based and coupled inductor-based converters, as well as compares them in terms of various parameters such as component count, cost, voltage conversion ratio, efficiency, voltage stress, input current ripple, switching mode, and power rating. The majority of the topologies examined exhibit peak efficiencies of 90% to 97%, with voltage conversions in excess of eight, as well as power ratings ranging from 100 W to 2 kW. The existing literature has found that most isolated DC–DC converters increase their turn ratios in order to achieve high step-up ratios. As a result, voltage spikes have increased significantly in switches, resulting in a decrease in overall system efficiency. In this research, the use of passive and active snubbers to provide soft switching in isolated step-up DC–DC converters is investigated. Moreover, a comprehensive analysis of the three most widely used boost techniques is provided. A reduction in turn ratio and a decrease in voltage stress were the results of this process. The main purpose of this study is to provide a comprehensive overview of the most used high-boost isolated DC–DC topologies in PV systems, including flyback, isolated SEPIC, forward, push-pull, half- and full-bridge, and resonant converter, with a focus on the recent research in the field and the recent advancements in these topologies. This study aims to guide further research and analysis in selecting appropriately isolated topologies for PV systems. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

16 pages, 18338 KiB  
Article
Low-Cost Real-Time Control Platform with Embedded Isolated Electrical Sensors for Power Electronics
by Luis Ramon Merchan-Villalba, Jose Merced Lozano-Garcia, Francisco Gonzalez-Longatt, Juan Manuel Ramirez-Arredondo, Alejandro Pizano-Martinez and Juan Gabriel Avina-Cervantes
Electronics 2023, 12(15), 3320; https://doi.org/10.3390/electronics12153320 - 3 Aug 2023
Cited by 1 | Viewed by 2116
Abstract
This paper presents a versatile, low-cost real-time control platform with embedded isolated inputs and outputs for direct usage in electrical applications. The inputs correspond to voltage and current measurements, while the outputs are digital signals with isolated power supply. The validation for the [...] Read more.
This paper presents a versatile, low-cost real-time control platform with embedded isolated inputs and outputs for direct usage in electrical applications. The inputs correspond to voltage and current measurements, while the outputs are digital signals with isolated power supply. The validation for the platform considers the implementation of the power electronics topologies where the control algorithms are implemented in Simulink. The topologies are the interleaved three-phase buck converter, push–pull converter, H-bridge, and thyristor-based AC load controller. The control for them involves voltage feedback, current feedback, linear control algorithms, and the implementation of a discrete PLL algorithm for the last topology. Hence, the platform demonstrates the effectiveness of performing real-time control for some power electronics topologies. Full article
(This article belongs to the Special Issue Digital Control of Power Electronics)
Show Figures

Figure 1

15 pages, 1919 KiB  
Article
Energy Harvesting on AB-Class Power Amplifier Applying Thermoelectric Generators in Push–Pull Mode
by Ivan Škalic, Ivan Marinović and Tonći Modrić
Machines 2023, 11(6), 622; https://doi.org/10.3390/machines11060622 - 4 Jun 2023
Cited by 3 | Viewed by 1428
Abstract
Amplifiers are among the most commonly used circuits in electronics, performing a variety of functions in a wide range of electronic systems. Depending on the application and design, each amplifier generates waste heat. For power amplifiers that operate at low efficiency and high [...] Read more.
Amplifiers are among the most commonly used circuits in electronics, performing a variety of functions in a wide range of electronic systems. Depending on the application and design, each amplifier generates waste heat. For power amplifiers that operate at low efficiency and high output power, the amount of wasted energy can be significant. This paper presents an energy harvesting system based on the application of thermoelectric generators on the output transistors of the AB-Class power amplifier. The converted electrical energy can be used in several ways, feeding the energy back into the power supply (increasing the “efficiency”) or powering surrounding sensors and sub-circuits. In this work, a comparative analysis of the successfully converted energy obtained from different generator models in various thermal configurations was carried out. All measurements are performed on an experimentally established setup. Due to the low thermoelectric efficiency of the generators as well as the realized low temperature gradient, only 0.84% of the waste heat can be converted into electrical energy in the best case scenario. Finally, a new thermal push–pull concept was presented, the main purpose of which is to generate additional energy and protect semiconductor components from overheating. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

13 pages, 9959 KiB  
Article
A Comprehensive Control Strategy for a Push–Pull Microinverter Connected to the Grid
by Manuel Díaz, Javier Muñoz, Marco Rivera and Jaime Rohten
Energies 2023, 16(7), 3196; https://doi.org/10.3390/en16073196 - 1 Apr 2023
Cited by 8 | Viewed by 2217
Abstract
The effects of partial shading or dust accumulation on the panels of photovoltaic systems connected to the grid can generate a considerable reduction in energy performance, being necessary to provide the appropriate voltage to the grid regardless of the irradiance level. This paper [...] Read more.
The effects of partial shading or dust accumulation on the panels of photovoltaic systems connected to the grid can generate a considerable reduction in energy performance, being necessary to provide the appropriate voltage to the grid regardless of the irradiance level. This paper addresses this problem and presents a comprehensive control strategy and its implementation for a grid-connected microinverter composed of a push–pull converter followed by an H-bridge inverter. In the push–pull converter, a hybrid MPPT algorithm and a PI control enable work in the MPP of the PV panel. In the H-bridge inverter, a cascade control consisting of a PI control and a predictive control allows the connection to the grid. A proof-of-concept prototype is implemented in order to validate the proposal. Experimental tests were performed by connecting the microinverter to a PV panel and a programmable photovoltaic panel emulator to check the MPPT performance. Furthermore, partial shading conditions were simulated on the dc source to check if the global maximum power point is reached. Experimental results demonstrate the feasibility of the topology and the control approach, obtaining MPPT performance in the topology above 99% at different power and voltage levels on the MPPT, even in the presence of partial shading conditions. Full article
Show Figures

Figure 1

21 pages, 6537 KiB  
Article
A Novel ZVS/ZCS Push-Pull LC Resonant DC-DC Converter for Energy Sources
by You-Kun Tai and Kuo-Ing Hwu
Energies 2023, 16(6), 2892; https://doi.org/10.3390/en16062892 - 21 Mar 2023
Cited by 4 | Viewed by 5970
Abstract
In this paper, a novel soft switching push-pull LC resonant DC-DC converter for energy sources is presented. In a high step-up converter, the input of primary side possesses low voltage and high current, so the losses caused by the current account for most [...] Read more.
In this paper, a novel soft switching push-pull LC resonant DC-DC converter for energy sources is presented. In a high step-up converter, the input of primary side possesses low voltage and high current, so the losses caused by the current account for most of the total power loss. At the same time, the high-voltage stress of the high-voltage output components on the secondary side is also a major problem. Therefore, a high-gain isolated push-pull converter with a secondary-side resonant circuit is proposed, so that the primary-side switches have zero voltage switching (ZVS) and the secondary-side diodes have zero current switching (ZCS). The push-pull structure can reduce the number of active switches, so that the total power loss on the primary side can be reduced. The converter has a resonant tank circuit arranged between the secondary side of isolation transformer and the high-voltage output rectification module. The high-voltage output rectifier module adopts a full-bridge architecture suitable for high-voltage coupling connection. The low-side power switching module adopts a push-pull architecture suitable for low-voltage and high-current applications. The resonant tank circuit uses an inductor–capacitor (LC) structure to improve the resonant tank circuit, which achieves soft switching during power transfer, increasing the efficiency of the converter and improving the electromagnetic compatibility. The main advantage of this technology is that the secondary-side leakage inductance of transformer and the resonant capacitance are connected in series to achieve ZVS for switches and ZCS for diodes. Finally, a prototype of a high-gain push-pull resonant converter was established. The converter was operated at a fixed switching frequency of 135 kHz and a duty cycle of approximately 0.5. The efficiency of the converter can reach 97.1% under experimental tests at an output voltage of 400 V and a rated output power of 500 W. Full article
Show Figures

Figure 1

12 pages, 4187 KiB  
Article
Design for a Four-Stage DC/DC High-Voltage Converter with High Precision and a Small Ripple
by Wei Zheng, Cong Hu, Bin Zhao, Xiaobao Su, Gang Wang and Xiaowan Hou
Energies 2023, 16(1), 389; https://doi.org/10.3390/en16010389 - 29 Dec 2022
Cited by 2 | Viewed by 2248
Abstract
This paper presents a four-stage DC/DC converter with high precision and a small ripple utilized in an electronic power conditioner (EPC). The galvanically isolated four-stage topology contains four cascade connections: a buck circuit, a push–pull circuit, a power converter, and a voltage regulator. [...] Read more.
This paper presents a four-stage DC/DC converter with high precision and a small ripple utilized in an electronic power conditioner (EPC). The galvanically isolated four-stage topology contains four cascade connections: a buck circuit, a push–pull circuit, a power converter, and a voltage regulator. The push–pull switches, as well as the diodes in the output-side rectifier, operate in zero-voltage switching (ZVS) and zero-current switching (ZCS) modes at both switch off and switch on, which helps increase the efficiency. The maximum efficiency of the converter can reach 94.5%. The buck circuit and voltage regulator operate in a two-stage closed-loop condition and, thus, the precision is greater than 0.02%. Due to the voltage regulator, the ripple is less than 1 V when the output voltage reaches 7000 V. Full article
(This article belongs to the Special Issue Modeling, Control and Design of Power Electronics Converters)
Show Figures

Figure 1

15 pages, 8666 KiB  
Article
A Two-Stage DC/DC Isolated High-Voltage Converter with Zero-Voltage Switching and Zero-Current Switching Applied in Electronic Power Conditioners
by Wei Zheng, Cong Hu, Bin Zhao, Xiao-Bao Su, Gang Wang, Xiao-Wan Hou and Bruce Gu
Energies 2022, 15(17), 6378; https://doi.org/10.3390/en15176378 - 1 Sep 2022
Cited by 5 | Viewed by 2080
Abstract
This paper presents a two-stage DC/DC converter with high efficiency utilized in an electronic power conditioner (EPC), which is widely applicable in satellite communications, etc. The galvanically isolated converter contains two cascaded converters: a buck converter, which is a pre-regulator operating under a [...] Read more.
This paper presents a two-stage DC/DC converter with high efficiency utilized in an electronic power conditioner (EPC), which is widely applicable in satellite communications, etc. The galvanically isolated converter contains two cascaded converters: a buck converter, which is a pre-regulator operating under a closed-loop condition, and a push–pull converter, which is intended to boost the input voltage, operating under an open-loop condition. In the push–pull converter, the power switches, including the main switches and the rectifier diodes, operate under zero-voltage switching (ZVS) and zero-current switching (ZCS) at both switch off and switch on, which minimizes the switching loss. Furthermore, all of the parasitic parameters, such as the parasitic capacitance, leakage inductance, and magnetizing inductance of the main transformer, are fully utilized. Therefore, the presented topology benefits from fewer semiconductors but higher efficiency. The proposed topology produces less EMI noise because of ZVS and ZCS processes whose fundamental switching frequency interference is relatively low. The presented converter achieves a wide bus voltage regulation range in a satellite because of the pre-regulation of the buck cell. The theoretical analysis is validated by a prototype and its experimental results. The maximum efficiency of the converter can be up to 94.5%, and the high-voltage output is 7000 V. Full article
Show Figures

Figure 1

17 pages, 3812 KiB  
Review
Modeling Push–Pull Converter for Efficiency Improvement
by Zeljko Ivanovic and Mladen Knezic
Electronics 2022, 11(17), 2713; https://doi.org/10.3390/electronics11172713 - 29 Aug 2022
Cited by 8 | Viewed by 8783
Abstract
In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses [...] Read more.
In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreover, the model includes the diode recovery time losses. We derived the equations for both continuous and discontinuous current operating modes. All model parameters can be obtained either from the datasheets of the used components or by simple measurement techniques. The model is verified experimentally by measuring the efficiency of the 500 W push–pull converter prototype. Simulations and experimental validation are conducted using the assumption that the converter is used in a permanent magnet (PM) wind turbine generator. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

14 pages, 4923 KiB  
Article
Real Time Power Control in a High Voltage Power Supply for Dielectric Barrier Discharge Reactors: Implementation Strategy and Load Thermal Analysis
by Gabriele Neretti, Arturo Popoli, Silvia Giuditta Scaltriti and Andrea Cristofolini
Electronics 2022, 11(10), 1536; https://doi.org/10.3390/electronics11101536 - 11 May 2022
Cited by 9 | Viewed by 2745
Abstract
Atmospheric-pressure plasma treatments for industrial and biomedical applications are often performed using Dielectric Barrier Discharge reactors. Dedicated power supplies are needed to provide the high voltage frequency waveforms to operate these nonlinear and time-dependent loads. Moreover, there is a growing technical need for [...] Read more.
Atmospheric-pressure plasma treatments for industrial and biomedical applications are often performed using Dielectric Barrier Discharge reactors. Dedicated power supplies are needed to provide the high voltage frequency waveforms to operate these nonlinear and time-dependent loads. Moreover, there is a growing technical need for reliable and reproducible treatments, which require the discharge parameters to be actively controlled. In this work, we illustrate a low-cost power supply topology based on a push–pull converter. We perform experimental measurements on two different reactor topologies (surface and volumetric), showing that open loop operation of the power supply leads to a temperature and average power increase over time. The temperature increases by ΔTvol~120 °C and ΔTsup~70 °C, while the power increases by ΔPvol~78% and ΔPsup~60% for the volumetric (40 s) and superficial reactors (120 s), respectively. We discuss how these changes are often unwanted in practical applications. A simplified circuital model of the power supply–reactor system is used to infer the physical relation between the observed reactor thermal behavior and its electrical characteristics. We then show a control strategy for the power supply voltage to ensure constant average power operation of the device based on real-time power measurements on the high voltage side of the power supply and an empirical expression relating the delivered power to the power supply output voltage. These are performed with an Arduino Due microcontroller unit, also used to control the power supply. In a controlled operation the measured power stays within 5% of the reference value for both configurations, reducing the temperature increments to ΔTvol~80 °C and ΔTsup~44 °C, respectively. The obtained results show that the proposed novel control strategy is capable of following the transient temperature behavior, achieving a constant average power operation and subsequently limiting the reactor thermal stress. Full article
(This article belongs to the Special Issue Innovative Technologies in Power Converters)
Show Figures

Figure 1

19 pages, 5585 KiB  
Article
Analyzing the Effect of Parasitic Capacitance in a Full-Bridge Class-D Current Source Rectifier on a High Step-Up Push–Pull Multiresonant Converter
by Anusak Bilsalam, Chainarin Ekkaravarodome, Viboon Chunkag and Phatiphat Thounthong
Sustainability 2021, 13(10), 5477; https://doi.org/10.3390/su13105477 - 13 May 2021
Cited by 3 | Viewed by 3273
Abstract
This paper presents an analysis on the effect of a parasitic capacitance full-bridge class-D current source rectifier (FB-CDCSR) on a high step-up push–pull multiresonant converter (HSPPMRC). The proposed converter can provide high voltage for a 12 VDC battery using an isolated transformer [...] Read more.
This paper presents an analysis on the effect of a parasitic capacitance full-bridge class-D current source rectifier (FB-CDCSR) on a high step-up push–pull multiresonant converter (HSPPMRC). The proposed converter can provide high voltage for a 12 VDC battery using an isolated transformer and an FB-CDCSR. The main switches of the push–pull and diode full-bridge rectifier can be operated under a zero-current switching condition (ZCS). The advantages of this technique are that it uses a leakage inductance to achieve the ZCS for the power switch, and the leakage inductance and parasitic junction capacitance are used to design the secondary side of the resonant circuit. A prototype HSPPMRC was built and operated at 200 kHz fixed switching frequency, 340 VDC output voltage, and 250 W output power. In addition, the efficiency is equal to 96% at maximum load. Analysis of the effect of the parasitic junction capacitance on the full-bridge rectifier indicates that it has a significant impact on the operating point of the resonant tank and voltage. The proposed circuit design was verified via experimental results, which were found to be in agreement with the theoretical analysis. Full article
(This article belongs to the Special Issue Advances in Sustainable Electrical Engineering)
Show Figures

Figure 1

26 pages, 8134 KiB  
Article
New Multifunctional Isolated Microinverter with Integrated Energy Storage System for PV Applications
by Luis A. M. Barros, Mohamed Tanta, Tiago J. C. Sousa, Joao L. Afonso and J. G. Pinto
Energies 2020, 13(15), 4016; https://doi.org/10.3390/en13154016 - 4 Aug 2020
Cited by 8 | Viewed by 3519
Abstract
This paper proposes a novel multifunctional isolated microinverter which is able to extract the maximum available power from a solar photovoltaic module and inject it into the power grid, while simultaneously charging a battery energy storage system (BESS). The proposed microinverter integrates a [...] Read more.
This paper proposes a novel multifunctional isolated microinverter which is able to extract the maximum available power from a solar photovoltaic module and inject it into the power grid, while simultaneously charging a battery energy storage system (BESS). The proposed microinverter integrates a novel DC–DC power converter and a conventional DC–AC power converter. The DC–DC power converter is able to send electrical energy to the secondary side of a high-frequency transformer and to the BESS, using only two power switches. Throughout this paper, the converter topology, the operation modes, the control algorithms, and the development of a laboratory prototype of the proposed microinverter are described in detail. Moreover, simulation and experimental results are presented to demonstrate the feasibility of the proposed solution. Full article
(This article belongs to the Special Issue Assessment of Photovoltaic-Battery Systems)
Show Figures

Figure 1

Back to TopTop