Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = re-gelation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 14001 KB  
Article
Single-Step Engineered Gelatin-Based Hydrogel for Integrated Prevention of Postoperative Adhesion and Promotion of Wound Healing
by Xinyu Wu, Lei Sun, Jianmei Chen, Meiling Su and Zongguang Liu
Gels 2025, 11(10), 797; https://doi.org/10.3390/gels11100797 - 2 Oct 2025
Viewed by 339
Abstract
Postoperative adhesion remains a major clinical challenge, often leading to chronic pain, functional disorders, and recurrent surgeries. Herein, we developed a multifunctional gelatin–polyphenol hydrogel (GPP20) featuring rapid gelation (within 5 min), strong tissue adhesion (lasting > 24 h under physiological conditions), and intrinsic [...] Read more.
Postoperative adhesion remains a major clinical challenge, often leading to chronic pain, functional disorders, and recurrent surgeries. Herein, we developed a multifunctional gelatin–polyphenol hydrogel (GPP20) featuring rapid gelation (within 5 min), strong tissue adhesion (lasting > 24 h under physiological conditions), and intrinsic wound healing capacity to achieve integrated prevention of postoperative adhesion. GPP20 was fabricated via dynamic crosslinking between gelatin and tea polyphenol, endowing it with injectability, self-healing, biodegradability, and excellent mechanical properties (shear stress of 14.2 N). In vitro studies demonstrated that GPP20 exhibited effective ROS scavenging (82% ABTS scavenging capability), which protects cells against oxidative stress, while possessing excellent hemocompatibility and in vivo safety. Notably, GPP20 significantly reduced postoperative cecum–abdominal wall adhesions through both physical barrier effects and modulation of inflammation and collagen deposition, demonstrating a comprehensive integrated prevention strategy. Furthermore, in full-thickness wound models, GPP20 accelerated tissue regeneration (85% wound closure rate on day 10) by promoting macrophage polarization toward the M2 phenotype and stimulating angiogenesis, thereby enhancing collagen deposition and re-epithelialization. Collectively, these findings demonstrate that GPP20 integrates anti-adhesion efficacy with regenerative support, offering a facile and clinically translatable strategy for postoperative care and wound healing. Full article
(This article belongs to the Special Issue Advances in Functional Gel (3rd Edition))
Show Figures

Figure 1

23 pages, 6694 KB  
Article
Assessment of Potential Crown Fire Danger in Major Forest Types of the Da Xing’anling (Inner Mongolia) Mountains, China
by Bole Yi, Tong Han, Ang Li, Shufeng Shi, Jing Li and Shuxiang Yang
Forests 2025, 16(9), 1449; https://doi.org/10.3390/f16091449 - 11 Sep 2025
Viewed by 456
Abstract
Crown fires are a major disturbance in boreal and cold–temperate forests worldwide, threatening both ecosystems and human activities. The Da Xing’anling Mountains of Northeast China exemplify these dangers due to their complex vegetation and high crown fire potential. Crown fire occurrence depends on [...] Read more.
Crown fires are a major disturbance in boreal and cold–temperate forests worldwide, threatening both ecosystems and human activities. The Da Xing’anling Mountains of Northeast China exemplify these dangers due to their complex vegetation and high crown fire potential. Crown fire occurrence depends on vertical fuel continuity, fuel load, heating value, surface fire spread rate, and critical fireline intensity. However, many assessments rely on single-factor metrics or low-adaptability simulations. This study developed a Potential Canopy Fire Danger Index (PCDI) that integrates five parameters—fuel vertical distribution continuity index, fuel loading, heating value, surface fire rate of spread, and critical fireline intensity—based on field surveys and combustion tests. Pinus pumila (Regel, 1861), with its dense shrub layer, showed the highest PCDI values (0.502, 0.583 and 0.527), whereas other forest types generally fell in the low to low–moderate range (0.350–0.450), with ≈75% of plots within these classes. Surface fire spread rate correlated most strongly with PCDI, followed by vertical fuel continuity, heating value, and fuel load; critical fireline intensity had minimal influence. The elevated hazard in P. pumila reflects its structural and fuel characteristics, while other forest types present comparatively lower dangers. Model checks indicated high stability and agreement with BehavePlus 6.0 scenarios, with the PCDI showing the lowest sample SD. The PCDI provides a quantitative framework for assessing crown fire danger in cold–temperate forests and supports targeted mitigation—prioritizing P. pumila while employing cost-effective maintenance in low-danger forest types. Full article
(This article belongs to the Special Issue Fire Ecology and Management in Forest—2nd Edition)
Show Figures

Figure 1

21 pages, 4033 KB  
Article
Allium mongolicum Regel Enhances Serum Immunity, Antioxidant, and Biochemical Indicators of Meat Sheep Achieved by Rumen Microbiota Regulation
by Xiaoyuan Wang, Chen Bai, Khas Erdene, Yankai Zheng, Qina Cao, Guoli Han and Changjin Ao
Animals 2025, 15(17), 2491; https://doi.org/10.3390/ani15172491 - 25 Aug 2025
Viewed by 720
Abstract
Feeding Allium mongolicum Regel (AMR) could improve lamb growth, immunity, and antioxidant capacity. These effects were supposed to be mediated by the rumen microbiota, as reported in our previous studies, but further verification is required. The purpose of this study was [...] Read more.
Feeding Allium mongolicum Regel (AMR) could improve lamb growth, immunity, and antioxidant capacity. These effects were supposed to be mediated by the rumen microbiota, as reported in our previous studies, but further verification is required. The purpose of this study was to verify whether changes in serum immunity, antioxidant, and biochemical indicators of meat sheep mediated by AMR are achieved via rumen microbiota regulation. The experiment included two phases. In phase I, twelve 90-day-old male lambs (25 ± 1 kg) were used as rumen fluid donors and consumed a basal diet with 15 g/day AMR for 135 days to induce changes in their rumen microbiota. In phase II, thirty 90-day-old male lambs (23 ± 2 kg) were split into three groups (n = 10 each): the control group (CON) fed the basal diet; the AMR-supplemented group (AMG) fed the basal diet supplemented with 15 g/day of AMR; and the rumen fluid recipient group (RTG) fed the basal diet and received rumen fluid transplantation. The CON and AMG groups received four oral infusions of 250 mL saline, while the RTG group received four oral infusions of 250 mL donor rumen fluid. Phase II lasted for 75 days, and the blood samples were collected on the last day. Rumen fluid transplantation was performed every 15 days, with a total of four infusions of 250 mL each. The results showed that the final body weight and average daily gain (ADG) of the AMG and RTG groups were higher than those of the CON group (p < 0.05), while there were no significant differences between the AMG and RTG groups (p > 0.05). On day 30, the levels of interleukin-10 (IL-10), immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin G (IgG) in the AMG and RTG groups were increased (p < 0.05), and malondialdehyde (MDA) was significantly decreased (p < 0.05), with no significant differences between the AMG and RTG groups. On day 60, total antioxidant capacity (T-AOC), IgM, IgG, and catalase (CAT) were increased in the AMG and RTG groups, while tumor necrosis factor alpha (TNF-α), low-density lipoprotein cholesterol (LDL-C), and blood urea nitrogen (BUN) were decreased (p < 0.05), and there were no significant differences between the AMG and RTG groups (p > 0.05). High-density lipoprotein cholesterol (HDL-C) in the RTG group was significantly lower than in the CON and AMG groups, while the AMG group had significantly higher HDL-C than the CON group (p < 0.05). Microbial analysis indicated that Mitsuokella, VUNI01, and Caecibacter were positively correlated with IgM; Mitsuokella, CAG 791, Desulfovibrio R, Porcincola, VUNI01, and UBA 7741 were negatively correlated with TNF-α; CAG 791 was positively correlated with T-AOC; VUNI01 was positively correlated with CAT; MDA was negatively correlated with Mitsuokella; Allisonella and UBA 7741 were negatively correlated with HDL-C; and Porcincola, VUNI01, Allisonella, and UBA 7741 were negatively correlated with LDL-C. Therefore, the study indicates that both supplementation with AMR and transplantation of rumen fluid from sheep fed with AMR can enhance the immunity and antioxidant capacity of lambs by increasing the abundance of the aforementioned bacteria. It also verified that the improvement in immunity and antioxidant capacity mediated by Allium mongolicum Regel is driven by the rumen microbiota. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

22 pages, 7937 KB  
Article
Insights into Biological and Ecological Features of Four Rare and Endemic Plants from the Northern Tian Shan (Kazakhstan)
by Gulbanu Sadyrova, Aisha Taskuzhina, Alexandr Pozharskiy, Kuralai Orazbekova, Kirill Yanin, Nazym Kerimbek, Saule Zhamilova, Gulzhanat Kamiyeva, Ainur Tanybaeva and Dilyara Gritsenko
Plants 2025, 14(15), 2305; https://doi.org/10.3390/plants14152305 - 26 Jul 2025
Cited by 1 | Viewed by 887
Abstract
This study presents an integrative investigation of four rare and threatened plant species—Taraxacum kok-saghyz L.E. Rodin, Astragalus rubtzovii Boriss., Schmalhausenia nidulans (Regel) Petr., and Rheum wittrockii Lundstr.—native to the Ile Alatau and Ketmen ridges of the Northern Tian Shan in Kazakhstan. Combining [...] Read more.
This study presents an integrative investigation of four rare and threatened plant species—Taraxacum kok-saghyz L.E. Rodin, Astragalus rubtzovii Boriss., Schmalhausenia nidulans (Regel) Petr., and Rheum wittrockii Lundstr.—native to the Ile Alatau and Ketmen ridges of the Northern Tian Shan in Kazakhstan. Combining chloroplast genome sequencing, geobotanical surveys, and anatomical and population structure analyses, we aimed to assess the ecological adaptation, genetic distinctiveness, and conservation status of these species. Field surveys revealed that population structures varied across species, with T. kok-saghyz and S. nidulans dominated by mature vegetative and generative individuals, while A. rubtzovii and R. wittrockii exhibited stable age spectra marked by reproductive maturity and ongoing recruitment. Chloroplast genome assemblies revealed characteristic patterns of plastid evolution, including structural conservation in S. nidulans and R. wittrockii, and a reduced inverted repeat region in A. rubtzovii, consistent with its placement in the IR-lacking clade of Fabaceae. Morphological and anatomical traits reflected habitat-specific adaptations such as tomentose surfaces, thickened epidermis, and efficient vascular systems. Despite these adaptations, anthropogenic pressures including overgrazing and habitat degradation pose significant risks to population viability. Our findings underscore the need for targeted conservation measures, continuous monitoring, and habitat management to ensure the long-term survival of these ecologically and genetically valuable endemic species. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

15 pages, 3301 KB  
Article
Exogenous GA3 Promotes Germination by Reducing Endogenous Inhibitors in Sainfoin (Onobrychis viciifolia) Seeds
by Yanyan Luo, Kun Wang, Yuheng Yao and Lili Nan
Plants 2025, 14(10), 1464; https://doi.org/10.3390/plants14101464 - 14 May 2025
Viewed by 806
Abstract
Endogenous inhibitors can inhibit seed germination, and GA3 can promote seed germination. Whether GA3 can affect the changes in endogenous inhibitors has not been clarified. In order to study the effect of GA3 on the endogenous inhibitors in sainfoin ( [...] Read more.
Endogenous inhibitors can inhibit seed germination, and GA3 can promote seed germination. Whether GA3 can affect the changes in endogenous inhibitors has not been clarified. In order to study the effect of GA3 on the endogenous inhibitors in sainfoin (Onobrychis viciifolia) seeds, the systematic separation method and gas chromatography–mass pectrometry (GC-MS) method were used to determine the endogenous inhibitors using cabbage (Brassica rapa var. glabra Regel) as a bioassay model to validate the inhibitory activity in sainfoin seeds, and then the optimal concentration of GA3 was determined to promote seed germination. The results showed that endogenous inhibitors existed in the pod coat, seed coat, and seed embryo of sainfoin seeds, with the methanol and ethyl acetate phases showing the highest degree of inhibition. The organic compounds were mainly organic acids, phenols, lipids, and alkanes. The levels of changes in germination indicators, storage substances, and antioxidant enzymes determined that 600 mg/L GA3 was the optimum concentration to promote germination of sainfoin seed. It was also found that 600 mg/L GA3 reduced the relative content of endogenous inhibitors and changed the content of endogenous hormones. In summary, the presence of endogenous inhibitors may be one of the reasons for the low germination rate of sainfoin seeds, with 3-methoxycatechol and 4-nitrosodiphenylamine playing a major role. GA3 can reduce the relative content and types of endogenous inhibitors to promote the germination of sainfoin seeds. Our experimental results provide the basis for subsequent exploration of the mechanism of specific endogenous inhibitors and the identification of deeper molecular mechanisms. Full article
Show Figures

Figure 1

15 pages, 6972 KB  
Article
Preparation of Mechanically Strong Aramid Nanofiber Gel Film with Surprising Entanglements and Orientation Structure Through Aprotic Donor Solvent Exchange
by Zeyu Chen, Chuying Yu and Wenbin Zhong
Materials 2025, 18(5), 1142; https://doi.org/10.3390/ma18051142 - 4 Mar 2025
Viewed by 1197
Abstract
Aramid nanofiber (ANF), a nanoscale building block with a prominently complex structure, can be prepared by splitting poly(p-phenylene terephthalamide) (PPTA) fibers into negatively charged ANFs in a deprotonating manner in a DMSO/KOH solvent system, followed by a subsequent re-protonation process using a proton-donor [...] Read more.
Aramid nanofiber (ANF), a nanoscale building block with a prominently complex structure, can be prepared by splitting poly(p-phenylene terephthalamide) (PPTA) fibers into negatively charged ANFs in a deprotonating manner in a DMSO/KOH solvent system, followed by a subsequent re-protonation process using a proton-donor reagent. There are rare reports regarding the utilization of an aprotic donor reagent to convert deprotonated ANF dispersion into film or gel with a controllable structure and high mechanical properties. In this work, dichloromethane, as an anhydrous aprotic donor solvent, has been introduced into the deprotonated ANF dispersion to replace DMSO, containing PPTA molecules and hydroxyl ions, leading to the gelation of deprotonated ANF dispersions, forming a film (ANFDCM) possessing a surprisingly highly entangled and oriented structure, as proven by SEM results. Due to the attenuation of electrostatic repulsion in the dispersion, partially deprotonated ANFs intertwined and cross-linked through π–π conjugation among a large number of benzene rings in PPTA molecules. After treating ANFDCM with water for re-protonation, the as-prepared film (ANFDCM-W) exhibited high tensile strength (307.7 MPa) and toughness (74.7 MJ m−3). Full article
Show Figures

Figure 1

20 pages, 5646 KB  
Article
Assessment of Ecological Recovery Potential of Various Plants in Soil Contaminated by Multiple Metal(loid)s at Various Sites near XiKuangShan Mine
by Yanming Zhu, Jigang Yang, Jiajia Zhang, Yiran Tong, Hailan Su, Christopher Rensing, Renwei Feng and Shunan Zheng
Land 2025, 14(2), 223; https://doi.org/10.3390/land14020223 - 22 Jan 2025
Cited by 1 | Viewed by 936
Abstract
Soil metal(loid) pollution is a threat to ecological and environmental safety. The vegetation recovery in mining areas is of great significance for protecting soil resources. In this study, (1) we first gathered four types of soils to analyse their contamination degree, including tailings [...] Read more.
Soil metal(loid) pollution is a threat to ecological and environmental safety. The vegetation recovery in mining areas is of great significance for protecting soil resources. In this study, (1) we first gathered four types of soils to analyse their contamination degree, including tailings mud (TM), wasteland soil (TS) very near TM, as well as non-rhizosphere soils of pepper (PF) and maize (MF) in a farmland downstream from the TM (about 5 km). Geo-accumulation and potential ecological risk indices indicated that the soil samples were mainly polluted by antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), and copper (Cu) to different degrees. Leachates of TM resulted in increased Sb, As, and Cd accumulation in TS. (2) Then, we sampled six local plants growing in the TS to assess the possibilities of using these plants as recovery vegetation in TS, of which Persicaria maackiana (Regel) Nakai ex T. Mori absorbed relatively high Sb concentrations in the leaves and roots. (3) After that, we collected rhizosphere soil and tissue samples from eight crops on the above farmland to assess their capacities as recovering vegetation of contaminated farmland soil, of which the fruits of maize accumulated the lowest concentrations of most monitored metal(loid)s (except for Pb). Further, we compared the differences in the bacterial community structure of MF, PF, TM, and TS to assess capacities of cultivating pepper and maize to improve soil microbial community structure. The MF displayed the best characteristics regarding the following attributes: (1) the highest concentrations of OMs and total P; (2) the highest OTU numbers and diversity of bacteria; and (3) the lowest abundance of bacteria with potentially pathogenic and stress-tolerant phenotypes. Full article
Show Figures

Figure 1

9 pages, 1266 KB  
Communication
Investigation of Atraphaxis virgata, an Unexplored Medicinal Plant Rich in Flavonoids, as a Functional Material
by Soeun Shin, Seunghee Kim, Jeongho Lee, Hyerim Son, Jin-Hyub Paik, Nadezhda Gennadievna Gemejiyeva, Zhanat Zhumabekovna Karzhaubekova, Taek Lee and Hah Young Yoo
Horticulturae 2025, 11(1), 70; https://doi.org/10.3390/horticulturae11010070 - 10 Jan 2025
Viewed by 970
Abstract
Plants of the genus Atraphaxis have been widely used as traditional herbal medicines and are just beginning to be recognized for their pharmacological activities by scientific validation. In particular, Atraphaxis virgata (Regel) Krasn. has not reported even fundamental data, such as antioxidant activity [...] Read more.
Plants of the genus Atraphaxis have been widely used as traditional herbal medicines and are just beginning to be recognized for their pharmacological activities by scientific validation. In particular, Atraphaxis virgata (Regel) Krasn. has not reported even fundamental data, such as antioxidant activity and phytochemical properties, which requires investigation for its medical application. In this study, phytochemical compounds of A. virgata extracts were identified using high-performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC-MS) and their antioxidant activity was evaluated. As a result, A. virgata extracts were analyzed using HPLC and found to contain hesperidin 13.18 mg/g-extract, rutin 4.49 mg/g-extract, catechin 3.23 mg/g-extract, gallic acid 2.93 mg/g-extract, epicatechin-3-gallate 1.28 mg/g-extract, kaempferol 0.26 mg/g-extract, and luteolin 0.09 mg/g-extract. Furthermore, GC-MS analysis detected nine compounds (e.g., lup-20(29)-en-3-one and decane) in the extracts, which were reported to have various biological activities. The ABTS IC50, DPPH IC50, and FRAP values of A. virgata extracts were determined to be 126.57 ± 0.24 μg/mL, 42.17 ± 1.14 μg/mL, and 122.59 ± 8.79 mmol/L, respectively. This study is the first to report the antioxidant activity of A. virgata, suggesting its potential as a functional food or medicinal material. Full article
(This article belongs to the Special Issue Bioactive Compounds in Horticultural Plants—2nd Edition)
Show Figures

Figure 1

12 pages, 1499 KB  
Article
Histochemical Localization and Cytotoxic Potential of Alkaloids in Phaedranassa lehmannii
by Lina M. Trujillo Chacón, Hawer Leiva, José M. Rojas, Isabel C. Zapata Vahos, Dagoberto Castro, María Domínguez and Edison Osorio
Plants 2024, 13(22), 3251; https://doi.org/10.3390/plants13223251 - 20 Nov 2024
Cited by 1 | Viewed by 1226
Abstract
Plants of the subfamily Amaryllidoideae are a source of unique and bioactive alkaloids called Amaryllidaceae alkaloids. The study of their anticancer potential has intensified in recent years. This work aims to locate and characterize the profile of cytotoxic alkaloids biosynthesized and stored in [...] Read more.
Plants of the subfamily Amaryllidoideae are a source of unique and bioactive alkaloids called Amaryllidaceae alkaloids. The study of their anticancer potential has intensified in recent years. This work aims to locate and characterize the profile of cytotoxic alkaloids biosynthesized and stored in different tissues of Phaedranassa lehmannii Regel using different histochemical methods and chromatographic analysis. The histochemical analysis in the bulbs revealed the presence of alkaloids at the basal edge of the scale-like leaves and bud apical zone. The GC-MS analysis indicated that the bulbs biosynthesize crinane- (9.80 µg/g DW), galanthamine- (8.04 µg/g DW), lycorine- (7.38 µg/g DW), and narciclasine-type (3.75 µg/g DW) alkaloids. The root biosynthesizes alkaloids that are mainly distributed mostly in lycorine- (225.29 µg/g DW) and galanthamine-type (72.35 µg/g DW) alkaloids. The total alkaloids biosynthesized by the root (324.93 µg/g DW) exceeded eleven times the abundance of the alkaloids identified in the bulbs (28.97 µg/g DW). In addition, the total alkaloid fractions exhibited a dose-dependent cytotoxic effect in the evaluated concentrations, with IC50 values of 11.76 ± 0.99 µg/mL and 2.59 ± 0.56 µg/mL against human lung (A549) cancer cells and 8.00 ± 1.35 µg/mL and 18.74 ± 1.99 µg/mL against gastric (AGS) cancer cells. The present study provided evidence to locate and characterize the alkaloids of P. lehmannii grown under nursery conditions as a species producing potential antiproliferative alkaloids. Full article
(This article belongs to the Special Issue Alkaloids: Chemical Structures with Pharmaceutical Potential)
Show Figures

Figure 1

15 pages, 2902 KB  
Article
Assessment of Complete Plastid Genome Sequences of Tulipa alberti Regel and Tulipa greigii Regel Species from Kazakhstan
by Shyryn Almerekova, Moldir Yermagambetova, Anna Ivashchenko, Saule Abugalieva and Yerlan Turuspekov
Genes 2024, 15(11), 1447; https://doi.org/10.3390/genes15111447 - 9 Nov 2024
Cited by 2 | Viewed by 1073
Abstract
Background. Tulipa species are economically, culturally, scientifically, and ecologically important. Tulips present taxonomic complexities that cannot be adequately resolved by examining their morphological characteristics alone or by relying on a limited selection of genetic markers. Methods. In the present study, we assessed the [...] Read more.
Background. Tulipa species are economically, culturally, scientifically, and ecologically important. Tulips present taxonomic complexities that cannot be adequately resolved by examining their morphological characteristics alone or by relying on a limited selection of genetic markers. Methods. In the present study, we assessed the complete plastid sequences of Tulipa alberti Regel and Tulipa greigii Regel collected from Kazakhstan. Additionally, 14 previously published plastomes were obtained from GenBank for comparison and phylogenetic analysis. Results. The plastid genome sizes of T. alberti and T. greigii were 152,359 bp and 152,242 bp, respectively. In the plastid genomes of T. alberti and T. greigii, 136 genes were annotated, 114 of which were unique. These unique genes comprised eighty protein-coding, thirty transfer RNA, and four ribosomal RNA genes. Additionally, 415 simple sequence repeats were identified, comprising 107 tandem, 40 forward, 49 palindromic, 8 reverse, and 1 complementary repeat. Notably, the region containing ycf1 exhibited high variability and may serve as an informative DNA barcode for this genus. Conclusion. Phylogenetic analysis showed strong support for the relationships among Tulipa species, indicating the utility of plastid genome data for further taxonomic studies within the genus. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 4093 KB  
Article
Genetic Diversity of Tulipa alberti and T. greigii Populations from Kazakhstan Based on Application of Expressed Sequence Tag Simple Sequence Repeat Markers
by Moldir Yermagambetova, Shyryn Almerekova, Anna Ivashchenko, Yerlan Turuspekov and Saule Abugalieva
Plants 2024, 13(18), 2667; https://doi.org/10.3390/plants13182667 - 23 Sep 2024
Cited by 1 | Viewed by 1701
Abstract
The genus Tulipa L., renowned for its ornamental and ecological significance, encompasses a diversity of species primarily concentrated in the Tian Shan and Pamir-Alay Mountain ranges. With its varied landscapes, Kazakhstan harbors 42 Tulipa species, including the endangered Tulipa alberti Regel and Tulipa [...] Read more.
The genus Tulipa L., renowned for its ornamental and ecological significance, encompasses a diversity of species primarily concentrated in the Tian Shan and Pamir-Alay Mountain ranges. With its varied landscapes, Kazakhstan harbors 42 Tulipa species, including the endangered Tulipa alberti Regel and Tulipa greigii Regel, which are critical for biodiversity yet face significant threats from human activities. This study aimed to assess these two species’ genetic diversity and population structure using 15 expressed sequence tag simple sequence repeat (EST-SSR) markers. Leaf samples from 423 individuals across 23 natural populations, including 11 populations of T. alberti and 12 populations of T. greigii, were collected and genetically characterized using EST-SSR markers. The results revealed relatively high levels of genetic variation in T. greigii compared to T. alberti. The average number of alleles per locus was 1.9 for T. alberti and 2.8 for T. greigii. AMOVA indicated substantial genetic variation within populations (75% for T. alberti and 77% for T. greigii). The Bayesian analysis of the population structure of the two species indicated an optimal value of K = 3 for both species, splitting all sampled populations into three distinct genetic clusters. Populations with the highest level of genetic diversity were identified in both species. The results underscore the importance of conserving the genetic diversity of Tulipa populations, which can help develop strategies for their preservation in stressed ecological conditions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 2140 KB  
Article
Construction of Additive Allometric Biomass Models for Young Trees of Two Dominate Species in Beijing, China
by Shan Wang, Zhongke Feng, Zhichao Wang, Lili Hu, Tiantian Ma, Xuanhan Yang, Hening Fu and Jinshan Li
Forests 2024, 15(6), 991; https://doi.org/10.3390/f15060991 - 5 Jun 2024
Cited by 1 | Viewed by 1416
Abstract
The traditional volume-derived biomass method is limited because it does not fully consider the carbon sink of young trees, which leads to the underestimation of the carbon sink capacity of a forest ecosystem. Therefore, there is an urgent need to establish an allometric [...] Read more.
The traditional volume-derived biomass method is limited because it does not fully consider the carbon sink of young trees, which leads to the underestimation of the carbon sink capacity of a forest ecosystem. Therefore, there is an urgent need to establish an allometric biomass model of young trees to provide a quantitative basis for accurately estimating the carbon storage and carbon sink of young trees. The destructive data that were used in this study included the biomass of the young trees of the two dominant species (Betula pendula subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière) in China, which was composed of the aboveground biomass (Ba), belowground biomass (Bb), and total biomass (Bt). Univariate and bivariate dimensions were selected and five candidate biomass models were independently tested. Two additive allometric biomass model systems of young trees were established using the proportional function control method and algebraic sum control method, respectively. We found that the logistic function was the most suitable for explaining the allometric growth relationship between the Ba, Bt, and diameter at breast height (D) of young trees; the power function was the most suitable for explaining the allometric growth relationship between the Bb and D of young trees. When compared with the independent fitting model, the two additive allometric biomass model systems provide additive biomass prediction which reflects the conditions in reality. The accuracy of the Bt models and Ba models was higher, while the accuracy of the Bb models was lower. In terms of the two dimensions—univariate and bivariate, we found that the bivariate additive allometric biomass model system was more accurate. In the univariate dimension, the proportional function control method was superior to the algebraic sum control method. In the bivariate dimension, the algebraic sum control method was superior to the proportional function control method. The additive allometric biomass models provide a reliable basis for estimating the biomass of young trees and realizing the additivity of the biomass components, which has broad application prospects, such as the monitoring of carbon stocks and carbon sink evaluation. Full article
(This article belongs to the Special Issue Modeling Aboveground Forest Biomass: New Developments)
Show Figures

Graphical abstract

16 pages, 3707 KB  
Review
Progress of Research into Preformed Particle Gels for Profile Control and Water Shutoff Techniques
by Wei Ma, Yikun Li, Pingde Liu, Zhichang Liu and Tao Song
Gels 2024, 10(6), 372; https://doi.org/10.3390/gels10060372 - 28 May 2024
Cited by 9 | Viewed by 2724
Abstract
Gel treatment is an economical and efficient method of controlling excessive water production. The gelation of in situ gels is prone to being affected by the dilution of formation water, chromatographic during the transportation process, and thus controlling the gelation time and penetration [...] Read more.
Gel treatment is an economical and efficient method of controlling excessive water production. The gelation of in situ gels is prone to being affected by the dilution of formation water, chromatographic during the transportation process, and thus controlling the gelation time and penetration depth is a challenging task. Therefore, a novel gel system termed preformed particle gels (PPGs) has been developed to overcome the drawbacks of in situ gels. PPGs are superabsorbent polymer gels which can swell but not dissolve in brines. Typically, PPGs are a granular gels formed based on the crosslinking of polyacrylamide, characterized by controllable particle size and strength. This work summarizes the application scenarios of PPGs and elucidates their plugging mechanisms. Additionally, several newly developed PPG systems such as high-temperature-resistant PPGs, re-crosslinkable PPGs, and delayed-swelling PPGs are also covered. This research indicates that PPGs can selectively block the formation of fractures or high-permeability channels. The performance of the novel modified PPGs was superior to in situ gels in harsh environments. Lastly, we outlined recommended improvements for the novel PPGs and suggested future research directions. Full article
(This article belongs to the Special Issue Applications of Gels for Enhanced Oil Recovery)
Show Figures

Graphical abstract

13 pages, 6327 KB  
Article
Antibacterial Silver Nanoparticle Containing Polydopamine Hydrogels That Enhance Re-Epithelization
by Naphtali A. O’Connor, Abdulhaq Syed, Ertan Kastrat and Hai-Ping Cheng
Gels 2024, 10(6), 363; https://doi.org/10.3390/gels10060363 - 24 May 2024
Cited by 3 | Viewed by 2097
Abstract
A polydopamine polyelectrolyte hydrogel was developed by ionic crosslinking dextran sulfate with a copolymer of polyethyleneimine and polydopamine. Gelation was promoted by the slow hydrolysis of glucono-δ-lactone. Within this hydrogel, silver nanoparticles were generated in situ, ranging from 25 nm to 200 nm [...] Read more.
A polydopamine polyelectrolyte hydrogel was developed by ionic crosslinking dextran sulfate with a copolymer of polyethyleneimine and polydopamine. Gelation was promoted by the slow hydrolysis of glucono-δ-lactone. Within this hydrogel, silver nanoparticles were generated in situ, ranging from 25 nm to 200 nm in size. The antibacterial activity of the hydrogel was proportional to the quantity of silver nanoparticles produced, increasing as the nanoparticle count rose. The hydrogels demonstrated broad-spectrum antibacterial efficacy at concentrations up to 108 cells/mL for P. aeruginosa, K. pneumoniae, E. coli and S. aureus, the four most prevalent bacterial pathogens in chronic septic wounds. In ex vivo studies on human skin, biocompatibility was enhanced by the presence of polydopamine. Dextran sulfate is a known irritant, but formulations with polydopamine showed improved cell viability and reduced levels of the inflammatory biomarkers IL-8 and IL-1α. Silver nanoparticles can inhibit cell migration, but an ex vivo human skin study showed significant re-epithelialization in wounds treated with hydrogels containing silver nanoparticles. Full article
(This article belongs to the Special Issue Biopolymer-Based Gels for Drug Delivery and Tissue Engineering)
Show Figures

Graphical abstract

34 pages, 4192 KB  
Review
Ecdysterone and Turkesterone—Compounds with Prominent Potential in Sport and Healthy Nutrition
by Velislava Todorova, Stanislava Ivanova, Dzhevdet Chakarov, Krasimir Kraev and Kalin Ivanov
Nutrients 2024, 16(9), 1382; https://doi.org/10.3390/nu16091382 - 2 May 2024
Cited by 16 | Viewed by 27918
Abstract
The naturally occurring compounds ecdysterone and turkesterone, which are present in plants, including Rhaponticum carthamoides Willd. (Iljin), Spinacia oleracea L., Chenopodium quinoa Willd., and Ajuga turkestanica (Regel) Briq, are widely recognized due to their possible advantages for both general health and athletic performance. [...] Read more.
The naturally occurring compounds ecdysterone and turkesterone, which are present in plants, including Rhaponticum carthamoides Willd. (Iljin), Spinacia oleracea L., Chenopodium quinoa Willd., and Ajuga turkestanica (Regel) Briq, are widely recognized due to their possible advantages for both general health and athletic performance. The current review investigates the beneficial biological effects of ecdysterone and turkesterone in nutrition, highlighting their roles not only in enhancing athletic performance but also in the management of various health problems. Plant-based diets, associated with various health benefits and environmental sustainability, often include sources rich in phytoecdysteroids. However, the therapeutic potential of phytoecdysteroid-rich extracts extends beyond sports nutrition, with promising applications in treating chronic fatigue, cardiovascular diseases, and neurodegenerative disorders. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

Back to TopTop