Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = saccharification efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 221 KB  
Article
The Influence of Malt Properties on Efficiency and Quality in a Large-Scale Beer Wort Production Process
by Krzysztof Kucharczyk, Miriam Solgajová, Jarosław Żyrek, Tomáš Krajčovič and Štefan Dráb
Processes 2025, 13(9), 2805; https://doi.org/10.3390/pr13092805 - 2 Sep 2025
Viewed by 385
Abstract
The aim of this study, as part of a collaboration between a malt house, a brewery, and a university, was to optimize the beer production process while simultaneously maintaining or even improving the quality of the beer and creating conditions for the optimization [...] Read more.
The aim of this study, as part of a collaboration between a malt house, a brewery, and a university, was to optimize the beer production process while simultaneously maintaining or even improving the quality of the beer and creating conditions for the optimization of the malting of barley grain. The Hurbanovo malt house provided 100 t of a specially prepared batch of malt for use in industrial-scale beer production at the Żywiec brewery (which produces 4.7 million hl annually). The malt, produced from barley variety Overture, was characterized by a higher extract and protein content and increased enzymatic activity. The test malt also demonstrated favorable properties such as higher friability, lower viscosity, and a two-fold shorter saccharification time. Four HGB worts were produced during production tests. Each brew used 21.5 tons of malt, yielding an average 1020 hl of wort, with an extract content of 15.5°Blg. The malt was milled in a two-roll wet mill with a capacity of 40 t per hour. Mash filtration took place in lauter tuns with a diameter of 12.4 m each. The produced worts were transferred into a fermentation tank with a capacity of 5500 hl, and then fermentation, maturation, and lagering processes were carried out. The tested batch of malt was examined in detail and compared with a standard malt blend from three different suppliers. The tests showed an increase in extract efficiency in the process, with a simultaneous reduction in extract losses (1.2%pt.). The filterability of the mash improved compared to the standard blend, and an improvement in wort quality was observed as a result of lower turbidity (by approximately 34%). The data obtained indicate an improvement in the process with the use of the specially prepared batch of malt. Full article
(This article belongs to the Special Issue Food Processing and Ingredient Analysis)
15 pages, 4009 KB  
Article
Towards the Potential of Using Downstream-Separated Solvents as the Pulping Liquor of Upstream Lignocellulose Fractionation for Enhanced Acetone–Butanol–Ethanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Hao Wen, Rui Chen, Jiajing Wang, Yujie Li, Mingyuan Sun, Jikang Cao and Di Cai
Fermentation 2025, 11(9), 514; https://doi.org/10.3390/fermentation11090514 - 1 Sep 2025
Viewed by 540
Abstract
Developing efficient, clean, and sustainable lignocellulose pretreatment technologies is essential for second-generation biofuel production. In this study, we attempted to use downstream-separated binary acetone-water, n-butanol-water, and ethanol-water solutions as the initial liquor for upstream organosolv pulping, in order to achieve the efficient [...] Read more.
Developing efficient, clean, and sustainable lignocellulose pretreatment technologies is essential for second-generation biofuel production. In this study, we attempted to use downstream-separated binary acetone-water, n-butanol-water, and ethanol-water solutions as the initial liquor for upstream organosolv pulping, in order to achieve the efficient and economic closed-circuit clean fractionation of the lignocelluloses for biological acetone–butanol–ethanol (ABE) production. Parameters, including concentration and temperature of the organosolv pulping, were optimized systematically. Results indicated that the 50 wt% ethanol and 30 wt% acetone aqueous solutions and pulping at 200 °C for 1 h exhibited better corn stover fractionation performances with higher fermentable sugar production. The total monosaccharide recovery (including glucose and xylose) was 50.92% and 50.89%, respectively, in subsequent enzymatic saccharification. While pulping corn stover using n-butanol solution as initial liquor showed higher delignification 86.16% (50 wt% of n-butanol and 200 °C for 1 h), the hydrolysate obtained by the organosolv pulps always exhibited good fermentability. A maximized 15.0 g/L of ABE with 0.36 g/g of yield was obtained in Ethanol-200 °C-50% group, corresponding to 112 g of ABE production from 1 kg of raw corn stover. As expected, the lignin specimens fractionated by closed-circuit organosolv pulping exhibited narrow molecule weight distribution, high purity, and high preservation of active groups, which supports further valorization. This novel strategy tightly bridges the upstream and downstream processes of second-generation ABE production, providing a new route for ‘energy-matter intensive’ and environmentally friendly lignocelluloses biorefineries. Full article
(This article belongs to the Special Issue Bioprocesses for Biomass Valorization in Biorefineries)
Show Figures

Figure 1

14 pages, 2011 KB  
Article
Circulating of In Situ Recovered Stream from Fermentation Broth as the Liquor for Lignocellulosic Biobutanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Xinyue Zhang, Yating Li, Hongjia Zhang, Hao Wen, Wenqiang Ren, Changwei Zhang and Di Cai
Fermentation 2025, 11(8), 453; https://doi.org/10.3390/fermentation11080453 - 3 Aug 2025
Cited by 1 | Viewed by 614
Abstract
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from [...] Read more.
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from pervaporation (PV) and gas stripping (GS) as examples, results indicated that under dilute alkaline (1% NaOH) catalysis, the highly recalcitrant lignocellulosic matrices can be efficiently depolymerized, thereby improving fermentable sugars recovery in saccharification stage and ABE yield in subsequent fermentation stage. Results also revealed delignification of 91.5% (stream from PV) and 94.3% (stream from GS), with total monosaccharides recovery rates of 56.5% and 57.1%, respectively, can be realized when using corn stover as feedstock. Coupled with ABE fermentation, mass balance indicated a maximal 106.6 g of ABE (65.8 g butanol) can be produced from 1 kg of dry corn stover by circulating the GS condensate in pretreatment (the optimized pretreatment conditions were 1% w/v alkali and 160 °C for 1 h). Additionally, technical lignin with low molecular weight and narrow distribution was isolated, which enabled further side-stream valorisation. Therefore, integrating ISPR product circulation with lignocellulosic biobutanol shows strong potential for application under the concept of biorefinery. Full article
Show Figures

Figure 1

20 pages, 2249 KB  
Article
Cellulolytic Potential of Newly Isolated Alcohol-Tolerant Bacillus methylotrophicus
by Anna Choińska-Pulit, Justyna Sobolczyk-Bednarek and Wojciech Łaba
Materials 2025, 18(14), 3256; https://doi.org/10.3390/ma18143256 - 10 Jul 2025
Viewed by 353
Abstract
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as [...] Read more.
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as most beneficial. Plackett–Burman design was used for screening medium components, while Box–Behnken design was further applied to model the impact of the three most influential variables. The maximum approximated cellulase activity was 0.469 U/mL (1 U = 1 µmol of reducing sugars/1 min), at 48.6 g/L substrate, 5.3 g/L ammonium sulfate, pH 6.1. The partially purified cellulase was characterized, which demonstrated broad range of optimal pH (6.5–9.4), temperature (50–60 °C), and sensitivity to metals. Changes in lignin and pentosans content was demonstrated as a result of BSG hydrolysis with a cell-free cellulase preparation. The produced enzyme was used for hydrolysis of various chemically pretreated (NaOH and H2SO4) cellulosic substrates, where for reused alkali-pretreated BSG (after microbial enzyme production) the saccharification efficiency was at a level of 25%. The cellulolytic potential of the bacterial strain, along with its resistance to ethanol, present a beneficial combination, potentially applicable to aid saccharification of lignocellulosic by-products for biofuel production. Full article
(This article belongs to the Special Issue Biomass Materials Recycling: Utilization and Valorisation)
Show Figures

Figure 1

15 pages, 2785 KB  
Article
Temperature-Driven Divergence in Microbial Consortia and Physicochemical Functionality: A Comparative Study of High- and Medium-Temperature Daqu
by Huawei Yuan, Jia Zheng, Liping Ding, Hong Wang, Qin Jiang, Chao Zhang, Tingna Xie, Guohui Nan, Li Li and Kai Lou
Microorganisms 2025, 13(6), 1312; https://doi.org/10.3390/microorganisms13061312 - 5 Jun 2025
Viewed by 579
Abstract
Daqu, a crucial fermentation starter for Chinese Baijiu, develops distinct microbial and physicochemical profiles depending on fermentation temperature, which significantly influence enzymatic activity and flavor formation. While high-temperature (HT-Daqu, 65 °C) and medium-temperature (MT-Daqu, 60 °C) variants [...] Read more.
Daqu, a crucial fermentation starter for Chinese Baijiu, develops distinct microbial and physicochemical profiles depending on fermentation temperature, which significantly influence enzymatic activity and flavor formation. While high-temperature (HT-Daqu, 65 °C) and medium-temperature (MT-Daqu, 60 °C) variants are known to produce different liquor aromas, systematic comparisons of their microbial and physicochemical dynamics remain limited. This study integrated physicochemical assays (moisture, starch, acidity, enzymatic activity) with 16S rRNA and ITS (Internal Transcribed Spacer) sequencing to analyze HT-Daqu (HQ1–HQ3) and MT-Daqu (MQ1–MQ3) from Sichuan breweries. Results revealed that HT-Daqu exhibited significantly lower moisture (p < 0.05) and starch content (p < 0.05) but higher acidity (p < 0.05) compared to MT-Daqu. Enzymatic activities were generally reduced in HT-Daqu, except for neutral protease. Microbial profiling revealed distinct microbial dynamics between HT-Daqu and MT-Daqu: HT-Daqu harbored thermophilic Bacillus (40–60% relative abundance) with reduced fungal diversity, while MT-Daqu prioritized fungal consortia—Aspergillus dominated MQ1 (78%) and Saccharomyces transiently peaked in MQ2 (35%)—which correlated with enhanced saccharification enzyme activities and esterification potential. Alpha-diversity indices confirmed higher bacterial diversity in HT-Daqu and greater fungal richness in MT-Daqu. Correlation networks highlighted temperature-driven linkages, such as Bacillus positively associating with acidity. These findings elucidate the trade-offs between microbial stress adaptation and metabolic efficiency under different thermal regimes, providing actionable insights for optimizing Daqu production through targeted microbial management and temperature control to enhance liquor quality. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
Show Figures

Figure 1

16 pages, 17025 KB  
Article
Bisulfite Pretreatment Improves Enzymatic Digestibility of Oil Palm Empty Fruit Bunch and Poplar Through Changing Its Structure and Lignin Distribution
by Liping Tan, Xuezhi Li, Xianqin Lu and Jian Zhao
Int. J. Mol. Sci. 2025, 26(11), 5334; https://doi.org/10.3390/ijms26115334 - 1 Jun 2025
Viewed by 605
Abstract
This paper investigated the changes in anatomy, ultrastructure and lignin distribution of oil palm empty fruit bunch (EFB) by bisulfite pretreatment. It was found that after bisulfite pretreatment, a large number of pores formed in the cell walls, and the removal of part [...] Read more.
This paper investigated the changes in anatomy, ultrastructure and lignin distribution of oil palm empty fruit bunch (EFB) by bisulfite pretreatment. It was found that after bisulfite pretreatment, a large number of pores formed in the cell walls, and the removal of part of the lignin in the cell wall corner, partial middle layer, and other locations made the tissue structure of the EFB looser, which uncovered cellulose and broke the steric hindrance of cellulase access to cellulose in EFB, and also weakened the negative influence of lignin on cellulase. The changes can greatly contribute to the improvement of enzymatic hydrolysis after bisulfite pretreatment, which is consistent with the increased saccharification efficiency of the pretreated EFB. Poplar was also used to compare the differences and similarities between non-wood and wood materials. Full article
(This article belongs to the Special Issue Lignocellulose Bioconversion and High-Value Utilization)
Show Figures

Figure 1

18 pages, 5995 KB  
Article
Pretreatment of Luzhou Distiller’s Grains with Crude Enzyme from Trichoderma harzianum for Feed Protein Production
by Xueke Bai, Jiaxin Wang, Xi Wang, Shuai Li, Yanni Yang, Ruoya Sun, Shilei Wang, Xiaoling Zhao, Zhi Wang, Yafan Cai, Jingliang Xu and Hanjie Ying
Fermentation 2025, 11(5), 294; https://doi.org/10.3390/fermentation11050294 - 21 May 2025
Viewed by 750
Abstract
This study developed a solid-state fermentation system based on Trichoderma harzianum, which significantly enhanced the nutritional value of distiller’s grain (DG) feed through a multi-stage synergistic treatment process. During the cellulase production phase, rice husk was used as an auxiliary material, and [...] Read more.
This study developed a solid-state fermentation system based on Trichoderma harzianum, which significantly enhanced the nutritional value of distiller’s grain (DG) feed through a multi-stage synergistic treatment process. During the cellulase production phase, rice husk was used as an auxiliary material, and specific degradation of DGs was effectively enhanced. Through optimization using response surface methodology, the optimal enzyme production conditions were determined. The filter paper enzyme activity reached a peak of 1.45 U/gds (enzyme activity per gram of dry substrate) when the moisture content was 53%, the fermentation time was 3 days, and the Tween-80 dosage was 0.015 mL/g (dry weight basis). Under these conditions, the crude enzyme solution was used to hydrolyze DGs. Compared to original DGs, the content of reducing sugars increased by 10.75%. In the stage of protein production, segmented hydrolysis fermentation (SHF) and simultaneous saccharification fermentation (SSF) processes were employed using yeast. The results showed that SSF pathway showed better performance, and the true protein content reached 15.16% after 11 days, an increase of 41.5% compared to the control. Finally, through secondary fermentation regulated by Lactobacillus fermentum, the flavor of the feed was significantly improved. This study innovatively integrated bio-enzymatic hydrolysis and multi-strain synergistic fermentation technologies, providing a novel strategy for the efficient and sustainable production of protein feed based on DGs. Full article
(This article belongs to the Special Issue Application and Research of Solid State Fermentation, 2nd Edition)
Show Figures

Figure 1

14 pages, 5609 KB  
Article
The Characterization of the Purine Nucleoside Phosphorylase from Agaricus bisporus and Its Potential Application in Reducing Purine Content in Beer
by Jun Liu and Jian Lu
J. Fungi 2025, 11(4), 268; https://doi.org/10.3390/jof11040268 - 31 Mar 2025
Cited by 2 | Viewed by 862
Abstract
Beer, the most popular alcoholic beverage, poses health risks for individuals with gout and hyperuricemia due to its high purine content. Herein, we identified a novel purine nucleoside phosphorylase (AbPNP) from the edible mushroom Agaricus bisporus and heterologously expressed it in [...] Read more.
Beer, the most popular alcoholic beverage, poses health risks for individuals with gout and hyperuricemia due to its high purine content. Herein, we identified a novel purine nucleoside phosphorylase (AbPNP) from the edible mushroom Agaricus bisporus and heterologously expressed it in Pichia pastoris. The recombinant AbPNP exhibited optimal activity at 60 °C and pH 7.0, retaining >80% activity at pH 6.0–9.0 and >85% activity after 3 h at ≤60 °C. Kinetic analysis revealed high catalytic efficiency (kcat/Km = 2.02 × 106 s−1⋅M−1) toward inosine, with strong resistance to metal ions except for Co2+ and Cu2+. The application of AbPNP (1.0–5.0 U/mL) during wort saccharification reduced purine nucleosides by 33.54% (from 151.53 to 100.65 mg/L) while increasing yeast utilization of free purine bases. The resulting beer showed improved fermentation performance (alcohol content increased by 3.6%) without compromising flavor profiles. This study provides the food-grade enzymatic strategy for low-purine beer production, leveraging the GRAS status of both A. bisporus and P. pastoris. Full article
Show Figures

Figure 1

16 pages, 8102 KB  
Article
Co-Production of Furfural, Xylo-Oligosaccharides, and Reducing Sugars from Waste Yellow Bamboo Through the Solid Acid-Assisted Hydrothermal Pretreatment
by Dan Yang, Qizhen Yang, Ruiqing Yang, Yifeng Zhou and Yucai He
Catalysts 2025, 15(4), 325; https://doi.org/10.3390/catal15040325 - 28 Mar 2025
Cited by 2 | Viewed by 671
Abstract
Lignocellulosic waste biomass, a versatile natural resource derived from plants, has gained significant attention for its potential in the sustainable production of biobased chemicals. Furfural (FAL), xylo-oligosaccharides (XOSs), and reducing sugars are important platform chemicals, which can be obtained through the valorization of [...] Read more.
Lignocellulosic waste biomass, a versatile natural resource derived from plants, has gained significant attention for its potential in the sustainable production of biobased chemicals. Furfural (FAL), xylo-oligosaccharides (XOSs), and reducing sugars are important platform chemicals, which can be obtained through the valorization of lignocellulosic solid biomass in a green and sustainable way. Waste yellow bamboo (YB) is one kind of abundant, inexpensive, and renewable lignocellulosic biomass resource. In order to improve the high-value utilization rate of raw YB, biochar-based solid acid catalyst (AT-Sn-YB) was utilized to assist the hydrothermal pretreatment for the valorization of YB in water. Under the optimal reaction conditions (200 °C, 60 min, and AT-Sn-YB dosage of 5.4 wt%), the FAL yield reached 60.8%, and 2.5 g/L of XOSs was obtained in the pretreatment system. It was observed that the surface structure of YB became rough and loose, exposing a significant number of pores. The accessibility increased from 101.8 mg/g to 352.6 mg/g after combined treatment. The surface area and hydrophobicity of lignin were 70.7 m2/g and 2.5 L/g, respectively, which were significantly lower than those of untreated YB (195.4 m2/g and 4.1 L/g, respectively). The YB solid residues obtained after treatment were subjected to enzymatic saccharification, achieving an enzymatic hydrolysis efficiency of 47.9%. Therefore, the hydrothermal pretreatment assisted by the AT-Sn-YB catalyst shows potential application value in FAL production and bamboo utilization, providing important references for other biomass materials. Full article
(This article belongs to the Special Issue Waste-to-Resources Through Catalysis in Green and Sustainable Way)
Show Figures

Figure 1

13 pages, 3559 KB  
Article
Biochemical and Structural Characterization of a Highly Glucose-Tolerant β-Glucosidase from the Termite Reticulitermes perilucifugus
by Guotao Mao, Ming Song, Hao Li, Junhan Lin, Kai Wang, Qian Liu, Zengping Su, Hongsen Zhang, Lijuan Su, Hui Xie and Andong Song
Int. J. Mol. Sci. 2025, 26(7), 3118; https://doi.org/10.3390/ijms26073118 - 28 Mar 2025
Viewed by 584
Abstract
The enzymatic hydrolysis of lignocellulose is often hindered by the glucose-mediated inhibition of β-glucosidases, a major bottleneck in industrial cellulose degradation. Identifying novel glucose-tolerant β-glucosidases is essential for enhancing saccharification efficiency. In this study, we cloned and heterologously expressed a novel β-glucosidase, RpBgl8, [...] Read more.
The enzymatic hydrolysis of lignocellulose is often hindered by the glucose-mediated inhibition of β-glucosidases, a major bottleneck in industrial cellulose degradation. Identifying novel glucose-tolerant β-glucosidases is essential for enhancing saccharification efficiency. In this study, we cloned and heterologously expressed a novel β-glucosidase, RpBgl8, from the termite Reticulitermes perilucifugus in Escherichia coli. Sequence and structural analyses classified RpBgl8 as a glycoside hydrolase family 1 enzyme. The purified enzyme exhibited optimal activity at 45 °C and pH 7.0, with broad stability across pH 4.0–8.0. Notably, RpBgl8 demonstrated high tolerance to lignocellulose-derived inhibitors and organic solvents, maintaining 100% activity in 15% ethanol. Furthermore, RpBgl8 exhibited outstanding glucose tolerance, retaining 100% activity at 2.5 M glucose and 82% activity at 4.0 M glucose—outperforming most previously reported β-glucosidases. A structural analysis revealed a narrow, hydrophobic substrate pocket, with residue F124 at the glycone-binding site critical for minimizing glucose accumulation. The F124W mutation significantly reduced glucose tolerance, confirming that hydrophobic interactions at the active site mitigate inhibition. These findings establish RpBgl8 as a promising candidate for high-solid biomass processing and simultaneous saccharification and fermentation applications, highlighting termites as underexplored sources of biocatalysts with unique industrial potential. Full article
(This article belongs to the Special Issue Lignocellulose Bioconversion and High-Value Utilization)
Show Figures

Graphical abstract

12 pages, 12247 KB  
Article
Characterization of Low pH and Inhibitor Tolerance Capacity of Candida krusei Strains
by Hironaga Akita, Daisuke Moriguchi and Akinori Matsushika
Fermentation 2025, 11(3), 146; https://doi.org/10.3390/fermentation11030146 - 14 Mar 2025
Viewed by 760
Abstract
Interest in the production of bioethanol from inedible biomass is growing worldwide because of its sustainable supply and lack of competition with food supplies. Candida krusei (also known as Pichia kudriavzevii or Issatchenkia orientalis) is one of the most suitable thermotolerant yeasts [...] Read more.
Interest in the production of bioethanol from inedible biomass is growing worldwide because of its sustainable supply and lack of competition with food supplies. Candida krusei (also known as Pichia kudriavzevii or Issatchenkia orientalis) is one of the most suitable thermotolerant yeasts used in the simultaneous saccharification and fermentation process for bioethanol production. In the production of bioethanol from lignocellulosic biomass as a feedstock, various environmental conditions occur, and the stress tolerance capacity of C. krusei, especially its low pH and tolerance to inhibitors, limits its practical application. In this study, to select a suitable second-generation bioethanol-producing strain, the tolerance capacity of five available C. krusei strains (NBRC0584, NBRC0841, NBRC1162, NBRC1395 and NBRC1664) was characterized. Spot assay and growth experiment results showed that among the five C. krusei strains, C. krusei NBRC1664 showed superior tolerance capacity for low pH and inhibitors. Furthermore, this strain efficiently produced ethanol from glucose under low pH conditions with or without sulfate. A comparative analysis of the draft genome sequences suggested that Opy2, Sln1 and Cdc24 in the HOG pathway are conserved only in C. krusei NBRC1664, which may contribute to its superior tolerance to low pH levels. Moreover, amino acid sequence alignment showed that aldehyde dehydrogenase family proteins, which catalyze the degradation of cyclic aldehydes, are commonly conserved in C. krusei. In addition, the increased transcription levels in C. krusei NBRC1664 could play a role in its higher tolerance to inhibitors. These results suggest that C. krusei NBRC1664 is a more suitable strain for application in industrial processes for second-generation bioethanol production. Full article
(This article belongs to the Special Issue Biofuels and Green Technology)
Show Figures

Figure 1

18 pages, 272 KB  
Article
Quality Parameters of Wort Produced with Lentil Malt with the Use of Some Enzymatic Preparations
by Katarzyna Fulara, Aneta Ciosek, Olga Hrabia, Monika Cioch-Skoneczny, Krystian Klimczak and Aleksander Poreda
Foods 2025, 14(5), 848; https://doi.org/10.3390/foods14050848 - 1 Mar 2025
Viewed by 934
Abstract
Lentils represent a promising alternative for beer production, potentially offering unique benefits and challenges. This study investigates the physicochemical properties of brewer’s wort derived from both barley and lentil grains. Specifically, it compares worts produced from raw and malted lentils, with and without [...] Read more.
Lentils represent a promising alternative for beer production, potentially offering unique benefits and challenges. This study investigates the physicochemical properties of brewer’s wort derived from both barley and lentil grains. Specifically, it compares worts produced from raw and malted lentils, with and without the addition of amylase and protease enzymes. Key parameters such as filtration and saccharification times, pH, extract content, color, turbidity, polyphenol content, free amino nitrogen (FAN), nitrogen content, and metal ion and sugar composition were meticulously measured. Results indicate that both raw and malted lentils can be utilized to produce brewer’s wort, with the malting process enhancing extract levels. Notably, the addition of amylolytic enzymes resulted in the highest extract levels for both lentil types. Lentil-based worts exhibited significantly higher FAN levels and lower turbidity compared to barley malt worts. Despite barley malt’s established advantages in saccharification efficiency, filtration, and extract yield, lentils offer distinct benefits such as elevated FAN levels and unique color profiles. Enzyme treatments play a crucial role in optimizing lentil-based wort production, highlighting the potential for lentils in brewing applications. Full article
(This article belongs to the Section Food Biotechnology)
18 pages, 10824 KB  
Article
Co-Producing Xylo-Oligosaccharides, 5-HMF, Furfural, Organic Acids, and Reducing Sugars from Waste Poplar Debris by Clean Hydrothermal Pretreatment
by Yuheng Yang, Ruibing Cui, Wei Tang, Bo Fan and Yucai He
Processes 2025, 13(3), 665; https://doi.org/10.3390/pr13030665 - 26 Feb 2025
Viewed by 680
Abstract
The sustainable valorization of lignocellulosic biomass into value-added biobased chemicals has gained more and more attention on a large industrial scale. To efficiently utilize the abundant, inexpensive, and renewable biomass, it is necessary to employ an effective biomass pretreatment technology for breaking down [...] Read more.
The sustainable valorization of lignocellulosic biomass into value-added biobased chemicals has gained more and more attention on a large industrial scale. To efficiently utilize the abundant, inexpensive, and renewable biomass, it is necessary to employ an effective biomass pretreatment technology for breaking down hemicellulose and lignin. Hydrothermal pretreatment is an effective way to change the structure of lignocellulose and improve its enzymatic hydrolysis efficiency. The hydrothermal cleaning of waste poplar debris (PD) was conducted when the severity factor (LogR0) score was 5.49. At 220 °C and a solid–liquid ratio of 1:10 for 90 min, the pretreatment liquor contained 4.90 g/L of xylo-oligosaccharides, 1.23 g/L of furfural, 0.41 g/L of formic acid, 2.42 g/L of acetic acid, and 0.57 g/L of 5-HMF. Additionally, 74.9% xylan and 82.4% lignin were removed. After 72 h of enzymatic saccharification, a high enzymolysis efficiency of PD was obtained. A series of characterizations (such as chemical composition analysis, hydrophobicity, lignin surface area, and cellulase accessibility) indicated that hydrothermal pretreatment destroyed the surface structure of PD, improved cellulose accessibility, decreased lignin surface area and weakened lignin hydrophobicity. In general, hydrothermal pretreatment is a simple, green, and environmentally friendly approach for sustainable pretreatment of PD using water as a solvent. It can efficiently break the surface structure of PD and remove lignin and xylan, acquiring high enzymolysis efficiency and realizing the co-production of 5-HMF, furfural, xylo-oligosaccharides, and organic acids. It provides an innovative idea for the value-added utilization of wood-based and straw-based biomass in a sustainable and cost-effective way, showing high potential in industrial application. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

23 pages, 4379 KB  
Article
Simultaneous Saccharification and Fermentation of Wheat Starch for Bioethanol Production
by Vesna Vučurović, Aleksandra Katanski, Damjan Vučurović, Bojana Bajić and Siniša Dodić
Fermentation 2025, 11(2), 80; https://doi.org/10.3390/fermentation11020080 - 6 Feb 2025
Cited by 1 | Viewed by 2866
Abstract
Bioethanol is a renewable, environmentally-friendly biofuel conventionally produced through the alcoholic fermentation of sugary or starch-rich substrates by microorganisms, commonly Yeast Saccharomyces cerevisiae. Intermediates of industrial wheat flour wet milling processing to starch, such as A-starch and B-starch milk, are cost-effective, abundant, [...] Read more.
Bioethanol is a renewable, environmentally-friendly biofuel conventionally produced through the alcoholic fermentation of sugary or starch-rich substrates by microorganisms, commonly Yeast Saccharomyces cerevisiae. Intermediates of industrial wheat flour wet milling processing to starch, such as A-starch and B-starch milk, are cost-effective, abundant, and non-seasonal feedstocks for bioethanol production. This study evaluates the bioethanol production from wheat A-starch and B-starch milk and mixtures of these two substrates in different ratios (1:3, 1:1, and 3:1) using two cold hydrolysis procedures at 65 °C: (i) simultaneous liquefaction and saccharification (SLS) followed by fermentation, and (ii) liquefaction by alpha-amylase followed by simultaneous saccharification and fermentation (SSF). The results demonstrated that SSF and SLS are equally efficient procedures for reaching a high ethanol yield of 53 g per 100 g of starch and 93% of starch conversion to ethanol for all investigated substrates. Lower levels of non-starch components in A-starch milk, which typically contribute to volatile by-product formation, allowed clear distillate profiles in terms of and lower content of aldehydes, methanol, and volatile acidity, enhancing ethanol distillate purity compared to B-starch milk. Mixing high-quality A-starch milk with low-cost B-starch milk enables higher ethanol yield, improved distillate quality, and energy savings for efficient industrial-scale applications. Full article
(This article belongs to the Special Issue Biofuels Production and Processing Technology, 3rd Edition)
Show Figures

Graphical abstract

18 pages, 3980 KB  
Article
Efficient Production of Fuel Ethanol via the Simultaneous Use of Distillery Stillage Biomass and Beet Molasses
by Katarzyna Osmolak, Dawid Mikulski and Grzegorz Kłosowski
Energies 2025, 18(2), 312; https://doi.org/10.3390/en18020312 - 12 Jan 2025
Cited by 4 | Viewed by 1326
Abstract
The integrated production of ethanol fuel through the simultaneous use of various by-products and waste materials is an intriguing concept, as it maximizes the raw material potential while addressing the challenge of managing waste biomass from different technological processes. The efficient utilization of [...] Read more.
The integrated production of ethanol fuel through the simultaneous use of various by-products and waste materials is an intriguing concept, as it maximizes the raw material potential while addressing the challenge of managing waste biomass from different technological processes. The efficient utilization of lignocellulosic waste depends on employing a pretreatment method that enhances the susceptibility of structural polysaccharides to hydrolysis. The aim of the study was to assess the possibility of the simultaneous use of corn stillage biomass and beet molasses as raw materials for the production of ethanol fuel. The research focused on optimizing the process conditions for the acid pretreatment of stillage biomass and the enzymatic hydrolysis of cellulose and evaluating the effectiveness of two fermentation strategies: SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous Saccharification and Fermentation). The highest hydrolysis susceptibility was observed in biomass pretreated with 2% v/v H3PO4 for 30 min at 121 °C. The maximum glucose concentration of about 12 g/L (hydrolysis efficiency about 35.5%) was achieved even with the lowest enzyme dose, i.e., 7.5 FPU per gram of biomass. The yeast also showed high fermentation activity in media prepared from stillage biomass and molasses, producing about 50 g/L of ethanol regardless of the fermentation strategy used. The complete fermentation of carbohydrates assimilated by yeast confirmed the complementarity of the two raw materials used to prepare fermentation media, emphasizing the high potential of the proposed technological solution for ethanol fuel production. Full article
(This article belongs to the Special Issue New Challenges in Lignocellulosic Biomass Conversion)
Show Figures

Figure 1

Back to TopTop