Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = snapback

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 11841 KB  
Article
High-Voltage Electrostatic Discharge/Electrical Overstress Co-Protection Implementing Gradual-Triggered SCR and MOS-Stacked Configuration
by Hailian Liang, Jianfeng Li, Jun Sun, Dejin Wang, Fang Wang, Dong Wang and Junliang Liu
Electronics 2025, 14(6), 1076; https://doi.org/10.3390/electronics14061076 - 8 Mar 2025
Viewed by 890
Abstract
This paper proposes a monolithic electrostatic discharge/electrical overstress (ESD/EOS) co-protection device featuring gradual triggering by silicon-controlled rectifier (SCR) and metal–oxide semiconductor (MOS) structures, demonstrating enhanced voltage clamping and current-conducting capabilities. Compared with conventional PMOS-triggered SCR (PMOS-SCR) for ESD protection, the proposed dual-PMOS-triggered SCR [...] Read more.
This paper proposes a monolithic electrostatic discharge/electrical overstress (ESD/EOS) co-protection device featuring gradual triggering by silicon-controlled rectifier (SCR) and metal–oxide semiconductor (MOS) structures, demonstrating enhanced voltage clamping and current-conducting capabilities. Compared with conventional PMOS-triggered SCR (PMOS-SCR) for ESD protection, the proposed dual-PMOS-triggered SCR (DPMOS-SCR) architecture within a compact area achieves monolithic ESD/EOS protection performance due to the strategic semiconductor structures integration. ESD measurement results show that the snapback voltage of the designed DPMOS-SCR with the width of 170 μm is approximately 2.5 V, the failure current (It2) is up to 4.5 A, and both the simulation and measurement results demonstrate that the designed DPMOS-SCR is helpful for reducing the leakage current and accelerating the response time. By embedding an additional p-type well in the DPMOS-SCR, the optimized DPMOS-SCR (ODPMOS-SCR) presents a higher breakdown voltage, trigger voltage, and holding voltage while keeping a similar It2. The EOS current-conducting ability measured by a surge test system indicates the peak surge current is up to 3.7 A, demonstrating superior monolithic ESD/EOS protection performance. As a result, the designed DPMOS-SCR and ODPMOS-SCR structures achieve high-voltage ESD/EOS co-protection with high efficiency in a small chip area, providing a chip-scale solution for improving the reliability of high-voltage ICs. Full article
Show Figures

Figure 1

20 pages, 6026 KB  
Article
Analysis of Collapse–Snapback Phenomena in Capacitive Micromachined Ultrasound Transducers
by Chloé Halbach, Veronique Rochus, Jan Genoe, Xavier Rottenberg, David Cheyns and Paul Heremans
Micromachines 2025, 16(2), 160; https://doi.org/10.3390/mi16020160 - 29 Jan 2025
Cited by 2 | Viewed by 2901
Abstract
The pull-in and pull-out voltages are important characteristics of Capacitive Micromachined Ultrasound Transducers (CMUTs), marking the transition between conventional and collapse operation regimes. These voltages are commonly determined using capacitance–voltage (C-V) sweeps. By modeling the operating conditions of an LCR meter in COMSOL [...] Read more.
The pull-in and pull-out voltages are important characteristics of Capacitive Micromachined Ultrasound Transducers (CMUTs), marking the transition between conventional and collapse operation regimes. These voltages are commonly determined using capacitance–voltage (C-V) sweeps. By modeling the operating conditions of an LCR meter in COMSOL Multiphysics®, we demonstrate that the measured capacitance comprises both static and dynamic capacitances, with the dynamic capacitance causing the appearance of a peak in the effective C-V curve. Furthermore, Laser Doppler Vibrometer (LDV) measurements and electromechanical simulations indicate the occurrence of collapse–snapback phenomena during the C-V sweeps. This study, through advanced simulations and experimental analyses, demonstrates that the transient membrane behavior significantly affects the apparent capacitance–voltage characteristics of electrostatically actuated Micro-Electromechanical Systems (MEMS). Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers)
Show Figures

Figure 1

17 pages, 4756 KB  
Article
The Existence of Li–Yorke Chaos in a Discrete-Time Glycolytic Oscillator Model
by Mirela Garić-Demirović, Mustafa R. S. Kulenović, Mehmed Nurkanović and Zehra Nurkanović
Axioms 2024, 13(4), 280; https://doi.org/10.3390/axioms13040280 - 22 Apr 2024
Cited by 1 | Viewed by 1502
Abstract
This paper investigates an autonomous discrete-time glycolytic oscillator model with a unique positive equilibrium point which exhibits chaos in the sense of Li–Yorke in a certain region of the parameters. We use Marotto’s theorem to prove the existence of chaos by finding a [...] Read more.
This paper investigates an autonomous discrete-time glycolytic oscillator model with a unique positive equilibrium point which exhibits chaos in the sense of Li–Yorke in a certain region of the parameters. We use Marotto’s theorem to prove the existence of chaos by finding a snap-back repeller. The illustration of the results is presented by using numerical simulations. Full article
(This article belongs to the Special Issue Advances in Dynamical Systems and Control)
Show Figures

Figure 1

11 pages, 4418 KB  
Communication
Simulation Study of 4H-SiC Low Turn-Off Loss and Snapback-Free Reverse-Conducting Gate Turn-Off Thyristor with N-Float Structure
by Chengcheng Wu, Juntao Li, Zhiqiang Li, Lin Zhang, Kun Zhou and Xiaochuan Deng
Electronics 2024, 13(4), 786; https://doi.org/10.3390/electronics13040786 - 17 Feb 2024
Viewed by 1661
Abstract
In this study, a novel integrated 4H-SiC reverse-conducting gate turn-off thyristor (GTO) featuring an N-type floating (NF) structure is proposed. The proposed NF-structured 4H-SiC GTO outperforms conventional reverse-conducting GTOs in forward conduction, effectively eliminating the snapback phenomenon. This is achieved by increasing lateral [...] Read more.
In this study, a novel integrated 4H-SiC reverse-conducting gate turn-off thyristor (GTO) featuring an N-type floating (NF) structure is proposed. The proposed NF-structured 4H-SiC GTO outperforms conventional reverse-conducting GTOs in forward conduction, effectively eliminating the snapback phenomenon. This is achieved by increasing lateral resistance above the P-injector and modifying the electron current path during early turn-on. NF structures with a doping concentration of 2 × 1014 cm−3 and thicknesses exceeding 4 μm have been indicated to successfully eliminate the snapback phenomenon. Moreover, the anode-shorted structure enhances the GTO’s breakdown voltage and concurrently reduces turn-off losses by 85% at low current densities. Full article
Show Figures

Figure 1

16 pages, 6556 KB  
Article
Analysis of the Operation Mechanism of Superjunction in RC-IGBT and a Novel Snapback-Free Partial Schottky Collector Superjunction RC-IGBT
by Song Yuan, Yichong Li, Min Hou, Xi Jiang, Xiaowu Gong and Yue Hao
Micromachines 2024, 15(1), 73; https://doi.org/10.3390/mi15010073 - 29 Dec 2023
Cited by 3 | Viewed by 2256
Abstract
This paper explores the operation mechanism of the superjunction structure in RC-IGBTs based on carrier distribution and analyzes the advantages and challenges associated with its application in RC-IGBTs for the first time. A Partial Schottky Collector Superjunction Reverse Conduction IGBT (PSC-SJ-RC-IGBT) is proposed [...] Read more.
This paper explores the operation mechanism of the superjunction structure in RC-IGBTs based on carrier distribution and analyzes the advantages and challenges associated with its application in RC-IGBTs for the first time. A Partial Schottky Collector Superjunction Reverse Conduction IGBT (PSC-SJ-RC-IGBT) is proposed to address these issues. The new structure eliminates the snapback phenomenon. Furthermore, by leveraging the unipolar conduction of the Schottky diode and its fast turn-off characteristics, the proposed device significantly reduces the turn-off power consumption and reverse recovery charge. With medium pillar doping concentration, the turn-off loss of the PSC-SJ-RC-IGBT decreases by 54.1% compared to conventional superjunction RC-IGBT, while the reverse recovery charge is reduced by 52.6%. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 2nd Edition)
Show Figures

Figure 1

12 pages, 867 KB  
Article
Dynamic Modeling and Response Analysis of Dielectric Elastomer Incorporating Fractional Viscoelasticity and Gent Function
by Qiaoyan Li and Zhongkui Sun
Fractal Fract. 2023, 7(11), 786; https://doi.org/10.3390/fractalfract7110786 - 28 Oct 2023
Cited by 5 | Viewed by 1881
Abstract
Dielectric Elastomer (DE) has been recognized for its remarkable potential in actuation and sensing applications. However, the functionality of most DE materials is restricted by their high viscoelastic effects. Currently, there is a lack of dynamic models that consider both viscoelasticity and stiffening [...] Read more.
Dielectric Elastomer (DE) has been recognized for its remarkable potential in actuation and sensing applications. However, the functionality of most DE materials is restricted by their high viscoelastic effects. Currently, there is a lack of dynamic models that consider both viscoelasticity and stiffening effects. To address this research gap, we propose a fractional-order model in this study. Specifically, the model comprehensively integrates both viscoelastic and stiffening effects under electromechanical coupling, utilizing the principle of virtual work. Further, the effects of the system parameters are analyzed. The results indicate that the fractional-order derivative influences the hysteresis behaviors during the transient state and affects the duration of the transient process. Furthermore, when the system’s energy surpasses a certain threshold, the steady-state response can transition between two distinct potential wells. Through the manipulation of electromechanical coupling parameters, bifurcation can be induced, and the occurrence of snap-through and snap-back behaviors can be controlled. These findings have significant implications for the design and optimization of DE materials in various applications. Full article
Show Figures

Figure 1

13 pages, 5527 KB  
Article
A Novel Concept of Electron–Hole Enhancement for Superjunction Reverse-Conducting Insulated Gate Bipolar Transistor with Electron-Blocking Layer
by Zhigang Wang, Chong Yang and Xiaobing Huang
Micromachines 2023, 14(3), 646; https://doi.org/10.3390/mi14030646 - 12 Mar 2023
Cited by 5 | Viewed by 2779
Abstract
A novel snapback-free superjunction reverse-conducting insulated gate bipolar transistor (SJ-RC-IGBT) is proposed and verified by simulation. In the SJ-RC-IGBT, the parasitic P/N/P/N structure as thyristor or Shockley diode demonstrates large conductivity due to an overabundance of carriers for reverse conduction. By preventing electrons [...] Read more.
A novel snapback-free superjunction reverse-conducting insulated gate bipolar transistor (SJ-RC-IGBT) is proposed and verified by simulation. In the SJ-RC-IGBT, the parasitic P/N/P/N structure as thyristor or Shockley diode demonstrates large conductivity due to an overabundance of carriers for reverse conduction. By preventing electrons from leaking across the N+ region at the collector side, the extra electron-blocking (EB) layer introduced in the SJ-RC-IGBT can dramatically enhance electron–hole pairs in the N/P-pillars. Hence, the SJ-RC-IGBT demonstrates a low on-state voltage (Von). In addition, snapback-free characteristics and a large safe operating area (SOA) are also achieved in the SJ-RC-IGBT. During the turn-off process, a significant amount of electrons are extracted by parasitic MOS across the EB layer at the collector side to decrease the turn-off loss (Eoff). According to the optimized results, the SJ-RC-IGBT with EB layer obtains an ultralow Eoff of 3.9 mJ/cm2 at Von = 1.38 V with 88% and 81% decreases, respectively, compared with the conventional reverse-conducting IGBT (CRC-IGBT) and superjunction IGBT (SJ-IGBT). Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications)
Show Figures

Figure 1

9 pages, 2303 KB  
Article
Simulation Study of Low Turn-Off Loss and Snapback-Free SA-IGBT with Injection-Enhanced p-Floating Layer
by Xiaodong Zhang, Ming Gong, Junfeng Pan, Mingxin Song, Hang Zhang and Linlin Zhang
Electronics 2022, 11(15), 2351; https://doi.org/10.3390/electronics11152351 - 28 Jul 2022
Cited by 2 | Viewed by 2074
Abstract
In this study, a shorted-anode IGBT with an injection-enhanced p-floating layer (IEPF-IGBT) under the N-buffer layer is proposed. Compared to conventional shorted-anode IGBT (SA-IGBT), the IEPF-IGBT has the structural characteristics of an injection-enhanced P-floating (IEPF) layer inserted into the N-buffer layer and [...] Read more.
In this study, a shorted-anode IGBT with an injection-enhanced p-floating layer (IEPF-IGBT) under the N-buffer layer is proposed. Compared to conventional shorted-anode IGBT (SA-IGBT), the IEPF-IGBT has the structural characteristics of an injection-enhanced P-floating (IEPF) layer inserted into the N-buffer layer and the P+ collector region. The IEPF layer and P+ collector region pinch off the electron path during the turn-on period to suppress the snapback effect with a half-cell pitch of 10 μm. In addition, the IEPF layer acts as an injection-enhanced layer that influences the current injection of the holes. There is 56.3% reduction in the turn-off loss of the IEPF-IGBT at the same forward voltage drop. Full article
(This article belongs to the Special Issue Advanced CMOS Devices and Applications)
Show Figures

Figure 1

10 pages, 3487 KB  
Article
A Snapback-Free and Low Turn-Off Loss 15 kV 4H–SiC IGBT with Multifunctional P-Floating Layer
by Xiaodong Zhang, Pei Shen, Zhijie Zou, Mingxin Song and Linlin Zhang
Micromachines 2022, 13(5), 734; https://doi.org/10.3390/mi13050734 - 3 May 2022
Cited by 7 | Viewed by 2822
Abstract
In this paper, a 4H–SiC IGBT with a multifunctional P-floating layer (MP-IGBT) is proposed and investigated by Silvaco TCAD simulations. Compared with the conventional 4H–SiC field stop IGBT (FS-IGBT), the MP-IGBT structure features a P-floating layer structure under the N-buffer layer. The P-floating [...] Read more.
In this paper, a 4H–SiC IGBT with a multifunctional P-floating layer (MP-IGBT) is proposed and investigated by Silvaco TCAD simulations. Compared with the conventional 4H–SiC field stop IGBT (FS-IGBT), the MP-IGBT structure features a P-floating layer structure under the N-buffer layer. The P-floating layer increases the distributed path resistance below the buffer layer to eliminate the snapback phenomenon. In addition, the P-floating layer acts as an amplifying stage for the hole currents’ injection. The snapback-free structure features a half-cell pitch of 10 μm. For the same forward voltage drop, the turn-off loss of the MP-IGBT structure is reduced by 42%. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

18 pages, 735 KB  
Article
Natural Frequencies and Modes of Electrostatically Actuated Curved Bell-Shaped Microplates
by Asaf Asher, Rivka Gilat and Slava Krylov
Appl. Sci. 2022, 12(5), 2704; https://doi.org/10.3390/app12052704 - 5 Mar 2022
Cited by 6 | Viewed by 2048
Abstract
Configuration-dependent spectral behavior of initially curved circular microplates loaded by a distributed nonlinear electrostatic force is investigated. The structures under consideration are distinguished by two interesting features. The first is that the plates are initially bell-shaped, rather than flat or spherical, and therefore [...] Read more.
Configuration-dependent spectral behavior of initially curved circular microplates loaded by a distributed nonlinear electrostatic force is investigated. The structures under consideration are distinguished by two interesting features. The first is that the plates are initially bell-shaped, rather than flat or spherical, and therefore have regions of both positive and negative curvature. Second, the plates are sufficiently curved to exhibit snap-through buckling and bistability. The structure is described in the framework of the nonlinear Föppl von Kármán shallow plate theory. The influence of the initial curvature and loading on the free vibrations around unloaded and deformed equilibria is investigated. The results of the Galerkin model backed by the finite elements analysis show that the modes of even slightly curved bell-shaped unloaded plates differ significantly from those of the initially flat plates. As a result, when the natural modes of a curved plate are used as the base functions, a significantly better convergence of the RO model is achieved. In the vicinity of the critical snap-through and snap-back configurations, the sensitivity of the natural frequencies to the plate deflection is much higher than in the unloaded state. This high tunability opens new opportunities for the design of better resonant sensors with enhanced performance. Full article
(This article belongs to the Special Issue Nonlinear Dynamics of Micro- and Nanosystems)
Show Figures

Figure 1

13 pages, 3244 KB  
Article
Molecular Characterization of the 2020 Outbreak of Lumpy Skin Disease in Nepal
by Pragya Koirala, Irene Kasindi Meki, Manju Maharjan, Bharani Kumar Settypalli, Salina Manandhar, Sanjay Kumar Yadav, Giovanni Cattoli and Charles Euloge Lamien
Microorganisms 2022, 10(3), 539; https://doi.org/10.3390/microorganisms10030539 - 28 Feb 2022
Cited by 33 | Viewed by 6518
Abstract
Lumpy skin disease (LSD) is a transboundary viral disease of cattle and buffaloes transmitted by blood-feeding vectors and causes high morbidity and low-to-moderate mortality. Since the first observation of LSD in Zambia in 1929, it has spread in cattle populations across African countries, [...] Read more.
Lumpy skin disease (LSD) is a transboundary viral disease of cattle and buffaloes transmitted by blood-feeding vectors and causes high morbidity and low-to-moderate mortality. Since the first observation of LSD in Zambia in 1929, it has spread in cattle populations across African countries, the Middle East, Europe, and Asia. Following the recent outbreaks of LSD in South Asian countries such as India and Bangladesh, the disease was first reported in cattle farms in Nepal in June 2020. This study investigated the Nepalese LSD outbreak and confirmed that the disease spread rapidly to three neighboring districts in a month, infecting 1300 animals. Both cattle and buffaloes showed common clinical signs of LSD, with the exception that the buffaloes presented small nodular lesions without centered ulcerations. The collected samples were first tested for the presence of LSDV by real-time PCR. We further applied molecular tools, RPO30, GPCR, EEV glycoprotein gene, and B22R, for additional characterization of the LSDV isolates circulating in Nepal. Using a PCR-based Snapback assay, we confirmed that samples collected from cattle and buffaloes were positive of LSDV. Furthermore, sequence analysis (phylogenetic and multiple sequence alignments) of four selected LSDV genes revealed that the Nepal LSDVs resemble the Bangladesh and Indian isolates and the historic isolates from Kenya. We also highlight the importance of a unique B22R gene region harboring single-nucleotide insertions in LSDV Neethling and LSDV KSGPO-240 vaccine strains, enabling us to differentiate them from the Nepalese isolates and other fields isolates. This study demonstrates the importance of disease surveillance and the need to determine the source of the disease introduction, the extent of spread, modes of transmission, and the necessary control measures. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

15 pages, 2298 KB  
Article
Influence of Loading Distance, Loading Angle and Log Orientation on Time Consumption of Forwarder Loading Cycles: A Pilot Case Study
by Florian Hartsch, Marian Schönauer, Lorenz Breinig and Dirk Jaeger
Forests 2022, 13(3), 384; https://doi.org/10.3390/f13030384 - 25 Feb 2022
Cited by 6 | Viewed by 2956
Abstract
Fully mechanized timber harvesting systems are well established in forest operations worldwide. In cut-to-length (CTL) systems, forwarders are used for extracting logs from the stand. The productivity of a forwarder is related to site- and stand-specific characteristics, technical parameters, organizational aspects, and the [...] Read more.
Fully mechanized timber harvesting systems are well established in forest operations worldwide. In cut-to-length (CTL) systems, forwarders are used for extracting logs from the stand. The productivity of a forwarder is related to site- and stand-specific characteristics, technical parameters, organizational aspects, and the individual skills of the operator. The operator’s performance during “loading” considerably affects forwarder productivity, since this element occupies nearly 50% of forwarding cycle time in CTL operations. When positioning the forwarder for loading, different loading angles and loading distances arise. Additionally, different log orientation angles in relation to the machine operating trail can be observed. Therefore, an in-depth analysis of loading conditions was conducted. The goal of this pilot case study was to explore the potential impact of different loading angles and distances, and log orientation angles, on time consumption per loading cycle in order to derive indications for more efficient work practices. Therefore, controlled loading sequences were tested on a physical Rottne-F10-based forwarder simulator with an experienced forest machine operator. Three loading angles (45°, 90° and 135° azimuthal to the machine axis) with five loading distances (3, 4, 5, 6 and 7 m), and three log orientation angles (45°, 90°, 135°), resulted in a total of 45 settings, which were tested in 10 repetitions each. The time required for a loading cycle was captured in a time study, applying the snap-back method. Results showed that all three tested variables had a significant influence on time consumption per loading cycle. Loading at an angle of 135°, and from a close (3 m) or far distance (7 m) led to especially increased cycle times. Loading from 4 to 6 m distance could be detected as an optimal loading range. Additionally, log orientation angles of 45° and 90° led to increased loading efficiency. Even if the validity of the results may be limited due to different conditions and influencing factors in field forwarding operations, these data can contribute to a better understanding of the loading element and, in particular, to productivity determining factors of forwarder work. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

18 pages, 4574 KB  
Article
SPICE Implementation of the Dynamic Memdiode Model for Bipolar Resistive Switching Devices
by Fernando Leonel Aguirre, Jordi Suñé and Enrique Miranda
Micromachines 2022, 13(2), 330; https://doi.org/10.3390/mi13020330 - 19 Feb 2022
Cited by 41 | Viewed by 5289
Abstract
This paper reports the fundamentals and the SPICE implementation of the Dynamic Memdiode Model (DMM) for the conduction characteristics of bipolar-type resistive switching (RS) devices. Following Prof. Chua’s memristive devices theory, the memdiode model comprises two equations, one for the electron transport based [...] Read more.
This paper reports the fundamentals and the SPICE implementation of the Dynamic Memdiode Model (DMM) for the conduction characteristics of bipolar-type resistive switching (RS) devices. Following Prof. Chua’s memristive devices theory, the memdiode model comprises two equations, one for the electron transport based on a heuristic extension of the quantum point-contact model for filamentary conduction in thin dielectrics and a second equation for the internal memory state related to the reversible displacement of atomic species within the oxide film. The DMM represents a breakthrough with respect to the previous Quasi-static Memdiode Model (QMM) since it describes the memory state of the device as a balance equation incorporating both the snapback and snapforward effects, features of utmost importance for the accurate and realistic simulation of the RS phenomenon. The DMM allows simple setting of the initial memory condition as well as decoupled modeling of the set and reset transitions. The model equations are implemented in the LTSpice simulator using an equivalent circuital approach with behavioral components and sources. The practical details of the model implementation and its modes of use are also discussed. Full article
Show Figures

Figure 1

10 pages, 4836 KB  
Article
The ESD Characteristics of a pMOS-Triggered Bidirectional SCR in SOI BCD Technology
by Mingzhu Li, Xiaowu Cai, Chuanbin Zeng, Xiaojing Li, Tao Ni, Juanjuan Wang, Duoli Li, Fazhan Zhao and Zhengsheng Han
Electronics 2022, 11(4), 546; https://doi.org/10.3390/electronics11040546 - 11 Feb 2022
Cited by 4 | Viewed by 3459
Abstract
In this work, the electrostatic discharge (ESD) characteristics of a pMOS-triggered bidirectional silicon-controlled rectifier (PTBSCR) that was fabricated in a 0.18 μm silicon-on-insulator (SOI) bipolar-CMOS-DMOS (BCD) process, is investigated. The multi-snapback phenomenon was observed under the transmission line pulsing (TLP) test system. It [...] Read more.
In this work, the electrostatic discharge (ESD) characteristics of a pMOS-triggered bidirectional silicon-controlled rectifier (PTBSCR) that was fabricated in a 0.18 μm silicon-on-insulator (SOI) bipolar-CMOS-DMOS (BCD) process, is investigated. The multi-snapback phenomenon was observed under the transmission line pulsing (TLP) test system. It was found that gate voltage and inserting shallow trench isolation (STI) can significantly affect the trigger voltage and holding voltage. The underlying physical mechanism related to the multi-snapback phenomenon and the effects of gate voltage on the critical parameters was investigated through the experimental results and the assistance of technology computer-aided design (TCAD) simulations. The adjustments of gate voltage and STI on the critical ESD parameters of the device provide an effective design idea for low-voltage ESD protection in the SOI BCD process. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

20 pages, 6341 KB  
Article
Structural and Parametric Identification of Knowm Memristors
by Valerii Ostrovskii, Petr Fedoseev, Yulia Bobrova and Denis Butusov
Nanomaterials 2022, 12(1), 63; https://doi.org/10.3390/nano12010063 - 27 Dec 2021
Cited by 46 | Viewed by 4715
Abstract
This paper proposes a novel identification method for memristive devices using Knowm memristors as an example. The suggested identification method is presented as a generalized process for a wide range of memristive elements. An experimental setup was created to obtain a set of [...] Read more.
This paper proposes a novel identification method for memristive devices using Knowm memristors as an example. The suggested identification method is presented as a generalized process for a wide range of memristive elements. An experimental setup was created to obtain a set of intrinsic I–V curves for Knowm memristors. Using the acquired measurements data and proposed identification technique, we developed a new mathematical model that considers low-current effects and cycle-to-cycle variability. The process of parametric identification for the proposed model is described. The obtained memristor model represents the switching threshold as a function of the state variables vector, making it possible to account for snapforward or snapback effects, frequency properties, and switching variability. Several tools for the visual presentation of the identification results are considered, and some limitations of the proposed model are discussed. Full article
Show Figures

Figure 1

Back to TopTop